Skip to main content
Top
Published in: Inflammation 1/2019

01-02-2019 | ORIGINAL ARTICLE

Progranulin Promotes Regeneration of Inflammatory Periodontal Bone Defect in Rats via Anti-inflammation, Osteoclastogenic Inhibition, and Osteogenic Promotion

Authors: Qian Chen, Jun Cai, Xiao Li, Aimei Song, Hongmei Guo, Qinfeng Sun, Chengzhe Yang, Pishan Yang

Published in: Inflammation | Issue 1/2019

Login to get access

Abstract

Progranulin (PGRN) has been proved to play a crucial role in anti-inflammation and osteogenesis promotion; thus, it was hypothesized that PGRN could promote bone regeneration in periodontal disease. In this experiment, the periodontal bone defects were established in periodontitis rats; recombinant human progranulin (rhPGRN), tumor necrosis factor alpha inhibitor (anti-TNF-α), or phosphate buffer saline (PBS)-loaded collagen membrane scaffolds were implanted within defects and the rats were sacrificed at scheduled time points. Volume of new bone was assessed by radiological and histomorphometric analyses. Expression of osteogenesis-related markers and tumor necrosis factor-α (TNF-α) was evaluated using immunohistochemistry. Tartrate-resistant acid phosphatase (TRAP) staining was also performed to determine the number of osteoclasts. Immunofluorescence (IF) staining was performed to explore the interaction between rhPGRN and tumor necrosis factor receptors (TNFRs). The results showed that the rhPGRN group had significantly superior quantity and quality of newly formed bone, higher expression of alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and TNFR2 compared with the PBS group and the anti-TNF-α group. Similarly to the anti-TNF-α group, the rhPGRN group also exhibited the significant inhibitory effect on the expression of TNF-α and the number of TRAP-positive cells compared with the PBS group. Hence, our experiment suggests that PGRN promotes regeneration of inflammatory periodontal bone defect in rats via anti-inflammation, osteoclastogenic inhibition, and osteogenic promotion. Local administration of PGRN may provide a new therapeutic strategy for periodontal bone regeneration.
Literature
1.
go back to reference Chapple, I.L., F. Van der Weijden, C. Doerfer, et al. 2015. Primary prevention of periodontitis: Managing gingivitis. Journal of Clinical Periodontology 42 (Suppl 16): S71–S76.CrossRefPubMed Chapple, I.L., F. Van der Weijden, C. Doerfer, et al. 2015. Primary prevention of periodontitis: Managing gingivitis. Journal of Clinical Periodontology 42 (Suppl 16): S71–S76.CrossRefPubMed
2.
go back to reference Bartold, P.M., M.D. Cantley, and D.R. Haynes. 2010. Mechanisms and control of pathologic bone loss in periodontitis. Periodontology 53 (1): 55–69.CrossRef Bartold, P.M., M.D. Cantley, and D.R. Haynes. 2010. Mechanisms and control of pathologic bone loss in periodontitis. Periodontology 53 (1): 55–69.CrossRef
3.
go back to reference Nakajima, T., and K. Yamazaki. 2009. Periodontal disease and risk of atherosclerotic coronary heart disease. Odontology 97 (2): 84–91.CrossRefPubMed Nakajima, T., and K. Yamazaki. 2009. Periodontal disease and risk of atherosclerotic coronary heart disease. Odontology 97 (2): 84–91.CrossRefPubMed
4.
go back to reference Mercado, F.B., R.I. Marshall, and P.M. Bartold. 2003. Inter-relationships between rheumatoid arthritis and periodontal disease. A review. Journal of Clinical Periodontology 30 (9): 761–772.CrossRefPubMed Mercado, F.B., R.I. Marshall, and P.M. Bartold. 2003. Inter-relationships between rheumatoid arthritis and periodontal disease. A review. Journal of Clinical Periodontology 30 (9): 761–772.CrossRefPubMed
5.
go back to reference Chapple, I.L., and R. Genco. 2013. Diabetes and periodontal diseases: Consensus report of the joint EFP/AAP workshop on periodontitis and systemic diseases. Journal of Clinical Periodontology 84 (s14): 106–112. Chapple, I.L., and R. Genco. 2013. Diabetes and periodontal diseases: Consensus report of the joint EFP/AAP workshop on periodontitis and systemic diseases. Journal of Clinical Periodontology 84 (s14): 106–112.
6.
go back to reference Zhang, H., S. Liu, B. Zhu, Q. Xu, Y. Ding, and Y. Jin. 2016. Composite cell sheet for periodontal regeneration: Crosstalk between different types of MSCs in cell sheet facilitates complex periodontal-like tissue regeneration. Stem Cell Research & Therapy 7 (1): 168.CrossRef Zhang, H., S. Liu, B. Zhu, Q. Xu, Y. Ding, and Y. Jin. 2016. Composite cell sheet for periodontal regeneration: Crosstalk between different types of MSCs in cell sheet facilitates complex periodontal-like tissue regeneration. Stem Cell Research & Therapy 7 (1): 168.CrossRef
7.
go back to reference Hu, J., C. Yu, Y. Xie, et al. 2016. Periodontal regeneration in swine after cell injection and cell sheet transplantation of human dental pulp stem cells following good manufacturing practice. Stem Cell Research & Therapy 7 (1): 130.CrossRef Hu, J., C. Yu, Y. Xie, et al. 2016. Periodontal regeneration in swine after cell injection and cell sheet transplantation of human dental pulp stem cells following good manufacturing practice. Stem Cell Research & Therapy 7 (1): 130.CrossRef
8.
go back to reference Su, F., S.S. Liu, J.L. Ma, et al. 2015. Enhancement of periodontal tissue regeneration by transplantation of osteoprotegerin-engineered periodontal ligament stem cells. Stem Cell Research & Therapy 6 (1): 1–14.CrossRef Su, F., S.S. Liu, J.L. Ma, et al. 2015. Enhancement of periodontal tissue regeneration by transplantation of osteoprotegerin-engineered periodontal ligament stem cells. Stem Cell Research & Therapy 6 (1): 1–14.CrossRef
9.
go back to reference Choung, P.H., H. Jin, B. Jin, et al. 2015. Recombinant human plasminogen activator inhibitor-1 induces cementogenic differentiation of human periodontal ligament stem cells. Tissue Engineering. Part A 21 (23–24). Choung, P.H., H. Jin, B. Jin, et al. 2015. Recombinant human plasminogen activator inhibitor-1 induces cementogenic differentiation of human periodontal ligament stem cells. Tissue Engineering. Part A 21 (23–24).
10.
go back to reference Garlet, G.P. 2010. Destructive and protective roles of cytokines in periodontitis: A re-appraisal from host defense and tissue destruction viewpoints. Journal of Dental Research 89 (12): 1349–1363.CrossRefPubMed Garlet, G.P. 2010. Destructive and protective roles of cytokines in periodontitis: A re-appraisal from host defense and tissue destruction viewpoints. Journal of Dental Research 89 (12): 1349–1363.CrossRefPubMed
11.
go back to reference Cekici, A., A. Kantarci, H. Hasturk, and T.E. Van Dyke. 2014. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontology 64 (1): 57–80.CrossRef Cekici, A., A. Kantarci, H. Hasturk, and T.E. Van Dyke. 2014. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontology 64 (1): 57–80.CrossRef
12.
go back to reference Zhou, R., L. Shen, C. Yang, et al. 2018. Periodontitis may restrain the mandibular bone healing via disturbing osteogenic and osteoclastic balance. Inflammation 1: 1–12. Zhou, R., L. Shen, C. Yang, et al. 2018. Periodontitis may restrain the mandibular bone healing via disturbing osteogenic and osteoclastic balance. Inflammation 1: 1–12.
13.
go back to reference Wang, Nan, Zubin Zhou, Tianyi Wu, Wei Liu, Peipei Yin, Chenhao Pan, and Xiaowei Yu. 2016. TNF-α-induced NF-κB activation upregulates microRNA-150-3p and inhibits osteogenesis of mesenchymal stem cells by targeting β-catenin. Open Biology 6 (3): 150258.CrossRefPubMedPubMedCentral Wang, Nan, Zubin Zhou, Tianyi Wu, Wei Liu, Peipei Yin, Chenhao Pan, and Xiaowei Yu. 2016. TNF-α-induced NF-κB activation upregulates microRNA-150-3p and inhibits osteogenesis of mesenchymal stem cells by targeting β-catenin. Open Biology 6 (3): 150258.CrossRefPubMedPubMedCentral
14.
go back to reference Qin, Z., Z. Fang, Z. Lei, et al. 2015. High dose of TNF-α suppressed osteogenic differentiation of human dental pulp stem cells by activating the Wnt/β-catenin signaling. Journal of Molecular Histology 46 (4–5): 409–420.CrossRefPubMed Qin, Z., Z. Fang, Z. Lei, et al. 2015. High dose of TNF-α suppressed osteogenic differentiation of human dental pulp stem cells by activating the Wnt/β-catenin signaling. Journal of Molecular Histology 46 (4–5): 409–420.CrossRefPubMed
15.
go back to reference Wang, L.M., N. Zhao, J. Zhang, et al. 2017. Tumor necrosis factor-alpha inhibits osteogenic differentiation of pre-osteoblasts by downregulation of EphB4 signaling via activated nuclear factor-kappaB signaling pathway. Journal of Periodontal Research 53 (1). Wang, L.M., N. Zhao, J. Zhang, et al. 2017. Tumor necrosis factor-alpha inhibits osteogenic differentiation of pre-osteoblasts by downregulation of EphB4 signaling via activated nuclear factor-kappaB signaling pathway. Journal of Periodontal Research 53 (1).
16.
go back to reference Huang, H., N. Zhao, X. Xu, Y. Xu, S. Li, J. Zhang, and P. Yang. 2011. Dose-specific effects of tumor necrosis factor alpha on osteogenic differentiation of mesenchymal stem cells. Cell Proliferation 44 (5): 420–427.CrossRefPubMed Huang, H., N. Zhao, X. Xu, Y. Xu, S. Li, J. Zhang, and P. Yang. 2011. Dose-specific effects of tumor necrosis factor alpha on osteogenic differentiation of mesenchymal stem cells. Cell Proliferation 44 (5): 420–427.CrossRefPubMed
17.
go back to reference Mukai, T., F. Otsuka, H. Otani, M. Yamashita, K. Takasugi, K. Inagaki, M. Yamamura, and H. Makino. 2007. TNF-alpha inhibits BMP-induced osteoblast differentiation through activating SAPK/JNK signaling. Biochemical and Biophysical Research Communications 356 (4): 1004–1010.CrossRefPubMed Mukai, T., F. Otsuka, H. Otani, M. Yamashita, K. Takasugi, K. Inagaki, M. Yamamura, and H. Makino. 2007. TNF-alpha inhibits BMP-induced osteoblast differentiation through activating SAPK/JNK signaling. Biochemical and Biophysical Research Communications 356 (4): 1004–1010.CrossRefPubMed
18.
go back to reference Feng, J.Q., F.J. Guo, B.C. Jiang, Y. Zhang, S. Frenkel, D.W. Wang, W. Tang, Y. Xie, and C.J. Liu. 2010. Granulin epithelin precursor: A bone morphogenic protein 2-inducible growth factor that activates ERK1/2 signaling and JunB transcription factor in chondrogenesis. FASEB Journal 24 (6): 1879–1892.CrossRefPubMedPubMedCentral Feng, J.Q., F.J. Guo, B.C. Jiang, Y. Zhang, S. Frenkel, D.W. Wang, W. Tang, Y. Xie, and C.J. Liu. 2010. Granulin epithelin precursor: A bone morphogenic protein 2-inducible growth factor that activates ERK1/2 signaling and JunB transcription factor in chondrogenesis. FASEB Journal 24 (6): 1879–1892.CrossRefPubMedPubMedCentral
19.
go back to reference He, Z., C.H. Ong, J. Halper, and A. Bateman. 2003. Progranulin is a mediator of the wound response. Nature Medicine 9 (2): 225–229.CrossRefPubMed He, Z., C.H. Ong, J. Halper, and A. Bateman. 2003. Progranulin is a mediator of the wound response. Nature Medicine 9 (2): 225–229.CrossRefPubMed
20.
go back to reference Guo, Z., Li, Q., Han, Y., et al. 2012. Prevention of LPS-induced acute lung injury in mice by progranulin. Mediators of Inflammation 2012,(2012-8-15), 2012(962–9351): 540794. Guo, Z., Li, Q., Han, Y., et al. 2012. Prevention of LPS-induced acute lung injury in mice by progranulin. Mediators of Inflammation 2012,(2012-8-15), 2012(962–9351): 540794.
21.
go back to reference Yin, F., R. Banerjee, B. Thomas, P. Zhou, L. Qian, T. Jia, X. Ma, Y. Ma, C. Iadecola, M.F. Beal, C. Nathan, and A. Ding. 2010. Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. Journal of Experimental Medicine 207 (1): 117–128.CrossRefPubMed Yin, F., R. Banerjee, B. Thomas, P. Zhou, L. Qian, T. Jia, X. Ma, Y. Ma, C. Iadecola, M.F. Beal, C. Nathan, and A. Ding. 2010. Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. Journal of Experimental Medicine 207 (1): 117–128.CrossRefPubMed
22.
go back to reference Tang, W., Y. Lu, Q.Y. Tian, Y. Zhang, F.J. Guo, G.Y. Liu, N.M. Syed, Y. Lai, E.A. Lin, L. Kong, J. Su, F. Yin, A.H. Ding, A. Zanin-Zhorov, M.L. Dustin, J. Tao, J. Craft, Z. Yin, J.Q. Feng, S.B. Abramson, X.P. Yu, and C.J. Liu. 2011. The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science 332 (6028): 478–484.CrossRefPubMedPubMedCentral Tang, W., Y. Lu, Q.Y. Tian, Y. Zhang, F.J. Guo, G.Y. Liu, N.M. Syed, Y. Lai, E.A. Lin, L. Kong, J. Su, F. Yin, A.H. Ding, A. Zanin-Zhorov, M.L. Dustin, J. Tao, J. Craft, Z. Yin, J.Q. Feng, S.B. Abramson, X.P. Yu, and C.J. Liu. 2011. The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science 332 (6028): 478–484.CrossRefPubMedPubMedCentral
23.
go back to reference Zhao, Y.P., Q.Y. Tian, S. Frenkel, and C.J. Liu. 2013. The promotion of bone healing by progranulin, a downstream molecule of BMP-2, through interacting with TNF/TNFR signaling. Biomaterials 34 (27): 6412–6421.CrossRefPubMedPubMedCentral Zhao, Y.P., Q.Y. Tian, S. Frenkel, and C.J. Liu. 2013. The promotion of bone healing by progranulin, a downstream molecule of BMP-2, through interacting with TNF/TNFR signaling. Biomaterials 34 (27): 6412–6421.CrossRefPubMedPubMedCentral
24.
go back to reference Noguchi, T., K. Ebina, M. Hirao, R. Kawase, T. Ohama, S. Yamashita, T. Morimoto, K. Koizumi, K. Kitaguchi, H. Matsuoka, S. Kaneshiro, and H. Yoshikawa. 2015. Progranulin plays crucial roles in preserving bone mass by inhibiting TNF-α-induced osteoclastogenesis and promoting osteoblastic differentiation in mice. Biochemical & Biophysical Research Communications 465 (3): 638–643.CrossRef Noguchi, T., K. Ebina, M. Hirao, R. Kawase, T. Ohama, S. Yamashita, T. Morimoto, K. Koizumi, K. Kitaguchi, H. Matsuoka, S. Kaneshiro, and H. Yoshikawa. 2015. Progranulin plays crucial roles in preserving bone mass by inhibiting TNF-α-induced osteoclastogenesis and promoting osteoblastic differentiation in mice. Biochemical & Biophysical Research Communications 465 (3): 638–643.CrossRef
25.
go back to reference Zhao, Yunpeng, Ben Liu, Qingyun Tian, Jian-lu Wei, Brendon Richbourgh, and Chuan-ju Liu. 2015. Progranulin protects against osteoarthritis through interacting with TNF-α and β-catenin signalling. Annals of the Rheumatic Diseases 74 (12): 2244–2253.CrossRefPubMed Zhao, Yunpeng, Ben Liu, Qingyun Tian, Jian-lu Wei, Brendon Richbourgh, and Chuan-ju Liu. 2015. Progranulin protects against osteoarthritis through interacting with TNF-α and β-catenin signalling. Annals of the Rheumatic Diseases 74 (12): 2244–2253.CrossRefPubMed
26.
go back to reference Lehmann, N., T. Christ, A. Daugs, O. Bloch, and S. Holinski. 2017. EDC-crosslinking of decellularized tissue-a promising approach? Tissue Engineering Part A 23 (13): 675–682.CrossRefPubMed Lehmann, N., T. Christ, A. Daugs, O. Bloch, and S. Holinski. 2017. EDC-crosslinking of decellularized tissue-a promising approach? Tissue Engineering Part A 23 (13): 675–682.CrossRefPubMed
27.
go back to reference Chen, S., Xin, Y., Yu, X., Xu, Q., Pan, K., et al. 2015. Co-culture with periodontal ligament stem cells enhanced osteoblastic differentiation of MC3T3-E1 cells and osteoclastic differentiation of RAW264.7 cells. International Journal of Clinical & Experimental Pathology, 8(11): 14596. Chen, S., Xin, Y., Yu, X., Xu, Q., Pan, K., et al. 2015. Co-culture with periodontal ligament stem cells enhanced osteoblastic differentiation of MC3T3-E1 cells and osteoclastic differentiation of RAW264.7 cells. International Journal of Clinical & Experimental Pathology, 8(11): 14596.
28.
go back to reference Fentoğlu, O., F.Y. Kirzioğlu, M. Ozdem, et al. 2012. Proinflammatory cytokine levels in hyperlipidemic patients with periodontitis after periodontal treatment. Oral Diseases 18 (3): 299–306.CrossRefPubMed Fentoğlu, O., F.Y. Kirzioğlu, M. Ozdem, et al. 2012. Proinflammatory cytokine levels in hyperlipidemic patients with periodontitis after periodontal treatment. Oral Diseases 18 (3): 299–306.CrossRefPubMed
29.
go back to reference Graves, D.T., A.J. Delima, R. Assuma, S. Amar, T. Oates, and D. Cochran. 1998. Interleukin-1 and tumor necrosis factor antagonists inhibit the progression of inflammatory cell infiltration toward alveolar bone in experimental periodontitis. Journal of Periodontology 69 (12): 1419–1425.CrossRefPubMed Graves, D.T., A.J. Delima, R. Assuma, S. Amar, T. Oates, and D. Cochran. 1998. Interleukin-1 and tumor necrosis factor antagonists inhibit the progression of inflammatory cell infiltration toward alveolar bone in experimental periodontitis. Journal of Periodontology 69 (12): 1419–1425.CrossRefPubMed
30.
go back to reference Xin, Y., H. Huang, Z. Ning, Z. Jin, and P. Yang. 2016. Inhibition of Runx2 signaling by TNF-α in ST2 murine bone marrow stromal cells undergoing osteogenic differentiation. Vitro Cellular & Developmental Biology - Animal 52 (10): 1–8. Xin, Y., H. Huang, Z. Ning, Z. Jin, and P. Yang. 2016. Inhibition of Runx2 signaling by TNF-α in ST2 murine bone marrow stromal cells undergoing osteogenic differentiation. Vitro Cellular & Developmental Biology - Animal 52 (10): 1–8.
31.
go back to reference Delima, A.J., T. Oates, R. Assuma, et al. 2010. Soluble antagonists to interleukin-1 (IL-1) and tumor necrosis factor (TNF) inhibits loss of tissue attachment in experimental periodontitis. Journal of Clinical Periodontology 28 (3): 233–240.CrossRef Delima, A.J., T. Oates, R. Assuma, et al. 2010. Soluble antagonists to interleukin-1 (IL-1) and tumor necrosis factor (TNF) inhibits loss of tissue attachment in experimental periodontitis. Journal of Clinical Periodontology 28 (3): 233–240.CrossRef
32.
go back to reference Redlich, K., and J.S. Smolen. 2012. Inflammatory bone loss: Pathogenesis and therapeutic intervention. Nature Reviews Drug Discovery 11 (3): 234–250.CrossRefPubMed Redlich, K., and J.S. Smolen. 2012. Inflammatory bone loss: Pathogenesis and therapeutic intervention. Nature Reviews Drug Discovery 11 (3): 234–250.CrossRefPubMed
34.
go back to reference Kobayashi, K., N. Takahashi, E. Jimi, N. Udagawa, M. Takami, S. Kotake, N. Nakagawa, M. Kinosaki, K. Yamaguchi, N. Shima, H. Yasuda, T. Morinaga, K. Higashio, T.J. Martin, and T. Suda. 2000. Tumor necrosis factor α stimulates osteoclast differentiation by a mechanism independent of the Odf/Rankl–Rank interaction. Journal of Experimental Medicine 191 (2): 275–286.CrossRefPubMed Kobayashi, K., N. Takahashi, E. Jimi, N. Udagawa, M. Takami, S. Kotake, N. Nakagawa, M. Kinosaki, K. Yamaguchi, N. Shima, H. Yasuda, T. Morinaga, K. Higashio, T.J. Martin, and T. Suda. 2000. Tumor necrosis factor α stimulates osteoclast differentiation by a mechanism independent of the Odf/Rankl–Rank interaction. Journal of Experimental Medicine 191 (2): 275–286.CrossRefPubMed
35.
go back to reference Lam, J., S. Takeshita, J.E. Barker, O. Kanagawa, F.P. Ross, and S.L. Teitelbaum. 2000. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. Journal of Clinical Investigation 106 (12): 1481–1488.CrossRefPubMedPubMedCentral Lam, J., S. Takeshita, J.E. Barker, O. Kanagawa, F.P. Ross, and S.L. Teitelbaum. 2000. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. Journal of Clinical Investigation 106 (12): 1481–1488.CrossRefPubMedPubMedCentral
36.
go back to reference Assuma, R., T. Oates, D. Cochran, S. Amar, and D.T. Graves. 1998. IL-1 and TNF antagonists inhibit the inflammatory response and bone loss in experimental periodontitis. J immunol 160: 403–409 160 (1): 403–409. Assuma, R., T. Oates, D. Cochran, S. Amar, and D.T. Graves. 1998. IL-1 and TNF antagonists inhibit the inflammatory response and bone loss in experimental periodontitis. J immunol 160: 403–409 160 (1): 403–409.
37.
go back to reference Wang, N., Z. Zhou, T. Wu, W. Liu, P. Yin, C. Pan, and X. Yu. 2016. TNF-α-induced NF-κB activation upregulates microRNA-150-3p and inhibits osteogenesis of mesenchymal stem cells by targeting β-catenin. Open Biol 6: 150258.CrossRefPubMedPubMedCentral Wang, N., Z. Zhou, T. Wu, W. Liu, P. Yin, C. Pan, and X. Yu. 2016. TNF-α-induced NF-κB activation upregulates microRNA-150-3p and inhibits osteogenesis of mesenchymal stem cells by targeting β-catenin. Open Biol 6: 150258.CrossRefPubMedPubMedCentral
38.
go back to reference Zhao, Y.P., J.L. Wei, Q.Y. Tian, A.T. Liu, Y.S. Yi, T.A. Einhorn, and C.J. Liu. 2016. Progranulin suppresses titanium particle induced inflammatory osteolysis by targeting TNFα signaling. Scientific Reports 6: 20909.CrossRefPubMedPubMedCentral Zhao, Y.P., J.L. Wei, Q.Y. Tian, A.T. Liu, Y.S. Yi, T.A. Einhorn, and C.J. Liu. 2016. Progranulin suppresses titanium particle induced inflammatory osteolysis by targeting TNFα signaling. Scientific Reports 6: 20909.CrossRefPubMedPubMedCentral
39.
go back to reference Wahl, E.C., J. Aronson, L. Liu, R.A. Skinner, M.J. Miller, G.E. Cockrell, J.L. Fowlkes, K.M. Thrailkill, R.C. Bunn, M.J.J. Ronis, and C.K. Lumpkin Jr. 2010. Direct bone formation during distraction osteogenesis does not require TNFα receptors and elevated serum TNFα fails to inhibit bone formation in TNFR1 deficient mice. Bone 46 (2): 410–417.CrossRefPubMed Wahl, E.C., J. Aronson, L. Liu, R.A. Skinner, M.J. Miller, G.E. Cockrell, J.L. Fowlkes, K.M. Thrailkill, R.C. Bunn, M.J.J. Ronis, and C.K. Lumpkin Jr. 2010. Direct bone formation during distraction osteogenesis does not require TNFα receptors and elevated serum TNFα fails to inhibit bone formation in TNFR1 deficient mice. Bone 46 (2): 410–417.CrossRefPubMed
Metadata
Title
Progranulin Promotes Regeneration of Inflammatory Periodontal Bone Defect in Rats via Anti-inflammation, Osteoclastogenic Inhibition, and Osteogenic Promotion
Authors
Qian Chen
Jun Cai
Xiao Li
Aimei Song
Hongmei Guo
Qinfeng Sun
Chengzhe Yang
Pishan Yang
Publication date
01-02-2019
Publisher
Springer US
Published in
Inflammation / Issue 1/2019
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0886-4

Other articles of this Issue 1/2019

Inflammation 1/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.