Skip to main content
Top
Published in: Inflammation 6/2018

01-12-2018 | ORIGINAL ARTICLE

The Pannexin-1 Channel Inhibitor Probenecid Attenuates Skeletal Muscle Cellular Energy Crisis and Histopathological Injury in a Rabbit Endotoxemia Model

Authors: Huaiwu He, Dawei Liu, Yun Long, Xiaoting Wang, Bo Yao

Published in: Inflammation | Issue 6/2018

Login to get access

Abstract

This study aimed to investigate the effect of probenecid (Pro) as an inhibitor of the pannexin-1 (Panx-1) channel-mediated release of intracellular ATP to the extracellular compartment on inflammation, cellular energy crisis, and organ injury in a rabbit sepsis model induced by Escherichia coli lipopolysaccharides (LPS). A total of 24 anesthetized and ventilated rabbits were randomly assigned to receive one of four treatments: infusion of LPS without Pro (LPS group), infusion of LPS with Pro (LPS + Pro group), sham operation without Pro (normal group), and sham operation with Pro (normal + Pro group). The LPS group had significantly higher serum ATP levels, serum inflammatory factor levels (TNF-α, IL-6, and IL-1β), and lower ATP concentrations and ATP/ADP ratios in the skeletal muscle tissue than the normal group. Compared to that at baseline, the expression of Panx-1 in peripheral blood cells increased significantly after the infusion of LPS (fluorescence intensity of Panx-1: T0 (baseline) vs. T1 (post-LPS) = 10 ± 1.2 vs. 84 ± 48, P < 0.0001; paired differences 73 ± 46, P = 0.024). Moreover, the LPS group exhibited higher expression of Panx-1 in the skeletal muscle tissue than the normal group. The serum ATP level was significantly positively correlated with IL-1β (R = 0.602, P = 0.001), IL-6 (R = 0.381, P = 0.033), and TNF-α (R = 0.514, P = 0.005) in 24 paired measurements. Compared to the LPS group, the LPS + Pro group had significantly lower levels of inflammatory factors (TNF-α, IL-6, and IL-1β) and serum ATP. In the skeletal muscle tissue, the LPS + Pro group also had a higher ATP concentration (1.1 ± 0.15 vs. 1.33 ± 0.17, P = 0.041) and ATP/ADP ratio (0.37 ± 0.03 vs. 0.51 ± 0.06, P = 0.002) and a lower histopathological damage score (4.67 ± 0.52 vs. 3 ± 0.63, P = 0.004). An overexpression of Panx-1 channel might be responsible for the strong inflammatory response, high serum ATP level, and skeletal muscle cellular energy crisis and histopathological damages in sepsis. Inhibiting Panx-1 channel-mediated release of intracellular ATP could decrease the above-mentioned injuries, and Panx-1 might be a potential therapeutic target in sepsis.
Literature
1.
go back to reference He, H.W., Y. Long, X. Zhou, X. Wang, H. Zhang, W. Chai, N. Cui, H. Wang, and D. Liu. 2018. Oxygen-flow-pressure targets for resuscitation in critical hemodynamic therapy. Shock 49: 15–23.CrossRef He, H.W., Y. Long, X. Zhou, X. Wang, H. Zhang, W. Chai, N. Cui, H. Wang, and D. Liu. 2018. Oxygen-flow-pressure targets for resuscitation in critical hemodynamic therapy. Shock 49: 15–23.CrossRef
2.
go back to reference Crouser, E. 2004. Mitochondrial dysfunction in sepsis and multiple organ dysfunction syndrome. Mitochondrion 4: 729–741.CrossRef Crouser, E. 2004. Mitochondrial dysfunction in sepsis and multiple organ dysfunction syndrome. Mitochondrion 4: 729–741.CrossRef
3.
go back to reference Albuszies, G., P. Radermacher, J. Vogt, U. Wachter, S. Weber, M. Schoaff, M. Georgieff, and E. Barth. 2005. Effect of increased cardiac output on hepatic and intestinal microcirculatory blood flow, oxygenation, and metabolism in hyperdynamic murine septic shock. Critical Care Medicine 33: 2332–2338.CrossRef Albuszies, G., P. Radermacher, J. Vogt, U. Wachter, S. Weber, M. Schoaff, M. Georgieff, and E. Barth. 2005. Effect of increased cardiac output on hepatic and intestinal microcirculatory blood flow, oxygenation, and metabolism in hyperdynamic murine septic shock. Critical Care Medicine 33: 2332–2338.CrossRef
4.
go back to reference Brealey, D., M. Brand, I. Hargreaves, S. Heales, J. Land, R. Smolenski, N.A. Davies, C.E. Cooper, and M. Singer. 2002. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360: 219–223.CrossRef Brealey, D., M. Brand, I. Hargreaves, S. Heales, J. Land, R. Smolenski, N.A. Davies, C.E. Cooper, and M. Singer. 2002. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360: 219–223.CrossRef
5.
go back to reference Singer, M., C.S. Deutschman, C.W. Seymour, et al. 2016. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Journal of the American Medical Association 315 (8): 801–810.CrossRef Singer, M., C.S. Deutschman, C.W. Seymour, et al. 2016. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Journal of the American Medical Association 315 (8): 801–810.CrossRef
6.
go back to reference Rhodes, A., L.E. Evans, W. Alhazzani, M.M. Levy, M. Antonelli, R. Ferrer, A. Kumar, J.E. Sevransky, C.L. Sprung, M.E. Nunnally, B. Rochwerg, G.D. Rubenfeld, D.C. Angus, D. Annane, R.J. Beale, G.J. Bellinghan, G.R. Bernard, J.D. Chiche, C. Coopersmith, D.P. de Backer, C.J. French, S. Fujishima, H. Gerlach, J.L. Hidalgo, S.M. Hollenberg, A.E. Jones, D.R. Karnad, R.M. Kleinpell, Y. Koh, T.C. Lisboa, F.R. Machado, J.J. Marini, J.C. Marshall, J.E. Mazuski, L.A. McIntyre, A.S. McLean, S. Mehta, R.P. Moreno, J. Myburgh, P. Navalesi, O. Nishida, T.M. Osborn, A. Perner, C.M. Plunkett, M. Ranieri, C.A. Schorr, M.A. Seckel, C.W. Seymour, L. Shieh, K.A. Shukri, S.Q. Simpson, M. Singer, B.T. Thompson, S.R. Townsend, T. van der Poll, J.L. Vincent, W.J. Wiersinga, J.L. Zimmerman, and R.P. Dellinger. 2017. Surviving sepsis campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Critical Care Medicine 45: 486–552.CrossRef Rhodes, A., L.E. Evans, W. Alhazzani, M.M. Levy, M. Antonelli, R. Ferrer, A. Kumar, J.E. Sevransky, C.L. Sprung, M.E. Nunnally, B. Rochwerg, G.D. Rubenfeld, D.C. Angus, D. Annane, R.J. Beale, G.J. Bellinghan, G.R. Bernard, J.D. Chiche, C. Coopersmith, D.P. de Backer, C.J. French, S. Fujishima, H. Gerlach, J.L. Hidalgo, S.M. Hollenberg, A.E. Jones, D.R. Karnad, R.M. Kleinpell, Y. Koh, T.C. Lisboa, F.R. Machado, J.J. Marini, J.C. Marshall, J.E. Mazuski, L.A. McIntyre, A.S. McLean, S. Mehta, R.P. Moreno, J. Myburgh, P. Navalesi, O. Nishida, T.M. Osborn, A. Perner, C.M. Plunkett, M. Ranieri, C.A. Schorr, M.A. Seckel, C.W. Seymour, L. Shieh, K.A. Shukri, S.Q. Simpson, M. Singer, B.T. Thompson, S.R. Townsend, T. van der Poll, J.L. Vincent, W.J. Wiersinga, J.L. Zimmerman, and R.P. Dellinger. 2017. Surviving sepsis campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Critical Care Medicine 45: 486–552.CrossRef
7.
go back to reference Isakson, B.E., and R.J. Thompson. 2014. Pannexin-1 as a potentiator of ligand-gated receptor signaling Channels. Austin 8 (2): 118–123. Isakson, B.E., and R.J. Thompson. 2014. Pannexin-1 as a potentiator of ligand-gated receptor signaling Channels. Austin 8 (2): 118–123.
8.
go back to reference Alves, L.A., R.A. de Melo Reis, C.A. de Souza, et al. 2014. The P2X7 receptor: shifting from a low- to a high-conductance channel—an enigmatic phenomenon? Biochimica et Biophysica Acta 1838 (10): 2578–2587.CrossRef Alves, L.A., R.A. de Melo Reis, C.A. de Souza, et al. 2014. The P2X7 receptor: shifting from a low- to a high-conductance channel—an enigmatic phenomenon? Biochimica et Biophysica Acta 1838 (10): 2578–2587.CrossRef
9.
go back to reference Samavati, L., I. Lee, I. Mathes, F. Lottspeich, and M. Hüttemann. 2008. Tumor necrosis factor alpha inhibits oxidative phosphorylation through tyrosine phosphorylation at subunit I of cytochrome c oxidase. The Journal of Biological Chemistry 283 (30): 21134–21144.CrossRef Samavati, L., I. Lee, I. Mathes, F. Lottspeich, and M. Hüttemann. 2008. Tumor necrosis factor alpha inhibits oxidative phosphorylation through tyrosine phosphorylation at subunit I of cytochrome c oxidase. The Journal of Biological Chemistry 283 (30): 21134–21144.CrossRef
10.
go back to reference Mariappan, N., C.M. Elks, B. Fink, and J. Francis. 2009. TNF-induced mitochondrial damage: a link between mitochondrial complex I activity and left ventricular dysfunction. Free Radical Biology & Medicine 46 (4): 462–470.CrossRef Mariappan, N., C.M. Elks, B. Fink, and J. Francis. 2009. TNF-induced mitochondrial damage: a link between mitochondrial complex I activity and left ventricular dysfunction. Free Radical Biology & Medicine 46 (4): 462–470.CrossRef
11.
go back to reference Shestopalov, V.I., and Y. Panchin. 2008. Pannexins and gap junction protein diversity. Cellular and Molecular Life Sciences 65: 376–394.CrossRef Shestopalov, V.I., and Y. Panchin. 2008. Pannexins and gap junction protein diversity. Cellular and Molecular Life Sciences 65: 376–394.CrossRef
12.
go back to reference Lee, D.Y., I.H. Choi, C.Y. Chung, P.H. Chung, J.G. Chi, and Y.L. Suh. 1993. Effect of tibial lengthening on the gastrocnemius muscle: a histopathologic and morphometric study in rabbits. Acta Orthopaedica Scandinavica 64 (6): 688–692.CrossRef Lee, D.Y., I.H. Choi, C.Y. Chung, P.H. Chung, J.G. Chi, and Y.L. Suh. 1993. Effect of tibial lengthening on the gastrocnemius muscle: a histopathologic and morphometric study in rabbits. Acta Orthopaedica Scandinavica 64 (6): 688–692.CrossRef
13.
go back to reference Chekeni, F.B., M.R. Elliott, J.K. Sandilos, S.F. Walk, J.M. Kinchen, E.R. Lazarowski, A.J. Armstrong, S. Penuela, D.W. Laird, G.S. Salvesen, B.E. Isakson, D.A. Bayliss, and K.S. Ravichandran. 2010. Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467 (7317): 863–867.CrossRef Chekeni, F.B., M.R. Elliott, J.K. Sandilos, S.F. Walk, J.M. Kinchen, E.R. Lazarowski, A.J. Armstrong, S. Penuela, D.W. Laird, G.S. Salvesen, B.E. Isakson, D.A. Bayliss, and K.S. Ravichandran. 2010. Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467 (7317): 863–867.CrossRef
14.
go back to reference Idzko, M., D. Ferrari, and H.K. Eltzschig. 2014. Nucleotide signalling during inflammation. Nature 2509: 310–307.CrossRef Idzko, M., D. Ferrari, and H.K. Eltzschig. 2014. Nucleotide signalling during inflammation. Nature 2509: 310–307.CrossRef
15.
go back to reference Adinolfi, E., M.G. Callegari, D. Ferrari, et al. 2005. Basal activation of the P2X7 ATP receptor elevates mitochondrial calcium and potential, increases cellular ATP levels, and promotes serum-independent growth. Molecular Biology of the Cell 16 (7): 3260–3272.CrossRef Adinolfi, E., M.G. Callegari, D. Ferrari, et al. 2005. Basal activation of the P2X7 ATP receptor elevates mitochondrial calcium and potential, increases cellular ATP levels, and promotes serum-independent growth. Molecular Biology of the Cell 16 (7): 3260–3272.CrossRef
16.
go back to reference Luis, A. Cea, Riquelme Anibal Manuel, et al. 2015. Pannexin 1 channels in skeletal muscles. Hypothesis and Theory Article 5 (135): 1–6. Luis, A. Cea, Riquelme Anibal Manuel, et al. 2015. Pannexin 1 channels in skeletal muscles. Hypothesis and Theory Article 5 (135): 1–6.
17.
go back to reference Abruzzo, P.M., S. di Tullio, C. Marchionni, S. Belia, G. Fanó, S. Zampieri, U. Carraro, H. Kern, G. Sgarbi, G. Lenaz, and M. Marini. 2010. Oxidative stress in the denervated muscle. Free Radical Research 44: 563–576.CrossRef Abruzzo, P.M., S. di Tullio, C. Marchionni, S. Belia, G. Fanó, S. Zampieri, U. Carraro, H. Kern, G. Sgarbi, G. Lenaz, and M. Marini. 2010. Oxidative stress in the denervated muscle. Free Radical Research 44: 563–576.CrossRef
18.
go back to reference (2016) Purinergic signaling and the immune response in sepsis: a review. Clinical Therapeutics 38(5):1054–65. (2016) Purinergic signaling and the immune response in sepsis: a review. Clinical Therapeutics 38(5):1054–65.
19.
go back to reference Cauwels, A., E. Rogge, B. Vandendriessche, et al. 2014. Extracellular ATP drives systemic inflammation, tissue damage and mortality. Cell Death & Disease 5: e1102.CrossRef Cauwels, A., E. Rogge, B. Vandendriessche, et al. 2014. Extracellular ATP drives systemic inflammation, tissue damage and mortality. Cell Death & Disease 5: e1102.CrossRef
20.
go back to reference Sumi, Y., T. Woehrle, Y. Chen, Y. Bao, X. Li, Y. Yao, Y. Inoue, H. Tanaka, and W.G. Junger. 2014. Plasma ATP is required for neutro-phil activation in a mouse sepsis model. Shock 42: 142–147.CrossRef Sumi, Y., T. Woehrle, Y. Chen, Y. Bao, X. Li, Y. Yao, Y. Inoue, H. Tanaka, and W.G. Junger. 2014. Plasma ATP is required for neutro-phil activation in a mouse sepsis model. Shock 42: 142–147.CrossRef
21.
go back to reference Csóka, B., Z.H. Németh, G. Törő, B. Koscsó, E. Kókai, S.C. Robson, K. Enjyoji, R.H. Rolandelli, K. Erdélyi, P. Pacher, and G. Haskó. 2015. CD39 improves survival in microbial sepsis by attenuating systemic inflammation. The FASEB Journal 29: 25–36.CrossRef Csóka, B., Z.H. Németh, G. Törő, B. Koscsó, E. Kókai, S.C. Robson, K. Enjyoji, R.H. Rolandelli, K. Erdélyi, P. Pacher, and G. Haskó. 2015. CD39 improves survival in microbial sepsis by attenuating systemic inflammation. The FASEB Journal 29: 25–36.CrossRef
22.
go back to reference Li, X., Y. Kondo, Y. Bao, L. Staudenmaier, A. Lee, J. Zhang, C. Ledderose, and W.G. Junger. 2017. Systemic adenosine triphosphate impairs neutrophil chemotaxis and host defense in Sepsis. Critical Care Medicine 45 (1): e97–e104.CrossRef Li, X., Y. Kondo, Y. Bao, L. Staudenmaier, A. Lee, J. Zhang, C. Ledderose, and W.G. Junger. 2017. Systemic adenosine triphosphate impairs neutrophil chemotaxis and host defense in Sepsis. Critical Care Medicine 45 (1): e97–e104.CrossRef
23.
go back to reference Woehrle, T., L. Yip, A. Elkhal, Y. Sumi, Y. Chen, Y. Yao, P.A. Insel, and W.G. Junger. 2010. Pannexin-1 hemichannel-mediated ATP release together with P2X1 and P2X4 receptors regulate T-cell activation at the immune synapse. Blood 116 (18): 3475–3484.CrossRef Woehrle, T., L. Yip, A. Elkhal, Y. Sumi, Y. Chen, Y. Yao, P.A. Insel, and W.G. Junger. 2010. Pannexin-1 hemichannel-mediated ATP release together with P2X1 and P2X4 receptors regulate T-cell activation at the immune synapse. Blood 116 (18): 3475–3484.CrossRef
24.
go back to reference Cekic, C., and J. Linden. 2016. Purinergic regulation of the immune system. Nature Reviews. Immunology 16 (3): 177–192.CrossRef Cekic, C., and J. Linden. 2016. Purinergic regulation of the immune system. Nature Reviews. Immunology 16 (3): 177–192.CrossRef
25.
go back to reference Leite, H.P., and L.F. de Lima. 2016. Metabolic resuscitation in sepsis: a necessary step beyond the hemodynamic? J Thorac Dis. 8 (7): E552–E557.CrossRef Leite, H.P., and L.F. de Lima. 2016. Metabolic resuscitation in sepsis: a necessary step beyond the hemodynamic? J Thorac Dis. 8 (7): E552–E557.CrossRef
26.
go back to reference Venkatesh B, Finfer S, Cohen J, et al. Adjunctive glucocorticoid therapy in patients with septic Shock. N Engl J Med. Jan 19. [Epub ahead of print], 2018. Venkatesh B, Finfer S, Cohen J, et al. Adjunctive glucocorticoid therapy in patients with septic Shock. N Engl J Med. Jan 19. [Epub ahead of print], 2018.
27.
go back to reference Shmygalev, S., M. Damm, L. Knels, A. Strassburg, K. Wünsche, R. Dumke, S.N. Stehr, T. Koch, and A.R. Heller. 2016. IgM-enriched solution BT086 improves host defense capacity and energy store preservation in a rabbit model of endotoxemia. Acta Anaesthesiologica Scandinavica 60 (4): 502–512.CrossRef Shmygalev, S., M. Damm, L. Knels, A. Strassburg, K. Wünsche, R. Dumke, S.N. Stehr, T. Koch, and A.R. Heller. 2016. IgM-enriched solution BT086 improves host defense capacity and energy store preservation in a rabbit model of endotoxemia. Acta Anaesthesiologica Scandinavica 60 (4): 502–512.CrossRef
Metadata
Title
The Pannexin-1 Channel Inhibitor Probenecid Attenuates Skeletal Muscle Cellular Energy Crisis and Histopathological Injury in a Rabbit Endotoxemia Model
Authors
Huaiwu He
Dawei Liu
Yun Long
Xiaoting Wang
Bo Yao
Publication date
01-12-2018
Publisher
Springer US
Published in
Inflammation / Issue 6/2018
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0846-z

Other articles of this Issue 6/2018

Inflammation 6/2018 Go to the issue