Skip to main content
Top
Published in: Inflammation 6/2018

Open Access 01-12-2018 | ORIGINAL ARTICLE

Inhibition of NF-κB Reduces Renal Inflammation and Expression of PEPCK in Type 2 Diabetic Mice

Authors: Qianling Liu, Liangyan Zhang, Wei Zhang, Qiufa Hao, Wei Qiu, Yubing Wen, Haiyun Wang, Xuemei Li

Published in: Inflammation | Issue 6/2018

Login to get access

Abstract

Renal gluconeogenesis is markedly promoted in patients with type 2 diabetes mellitus (T2DM); however, the underlying mechanism remains largely unknown. Renal gluconeogenesis is found to be negatively regulated by insulin. T2DM is characterized by chronic and subacute inflammation; however, inflammation has been well recognized to induce insulin resistance. Therefore, this study aimed to investigate whether the enhanced renal gluconeogenesis in T2DM was partially due to the renal inflammation-mediated insulin resistance. If so, whether inflammation inhibitor could partially reverse such change. Diabetic db/db mice and db/m mice were used in our study. Typically, diabetic db/db mice were intraperitoneally treated with 1 mg/kg NF-κB inhibitor parthenolide (PTN) or saline as control every other day. Twelve weeks after treatment, animal samples were collected for measurements. Our results suggested that the expression levels of the inflammatory factors and the gluconeogenic rate-limiting enzyme phosphoenolpyruvate carboxykinase (PEPCK) were up-regulated in renal cortex of both db/db mice and T2DM patients. Moreover, reduced insulin signaling, as well as up-regulated expression of downstream genes FOXO1 and PGC-1ɑ, could be detected in renal cortex of db/db mice compared with that of db/m mice. Consistent with our hypothesis, PTN treatment could alleviate renal inflammation and insulin resistance in db/db mice. Moreover, it could also down-regulate the renal expression of PEPCK, indicating that inflammation could be one of the triggers of insulin resistance and the enhanced renal gluconeogenesis in db/db mice. This study can shed light on the role of inflammation in the enhanced renal gluconeogenesis in T2DM, which may yield a novel target for hyperglycemia.
Literature
1.
go back to reference Tahrani, A.A., C.J. Bailey, P.S. Del, and A.H. Barnett. 2011. Management of type 2 diabetes: new and future developments in treatment. Lancet 378 (9786): 182–197.CrossRef Tahrani, A.A., C.J. Bailey, P.S. Del, and A.H. Barnett. 2011. Management of type 2 diabetes: new and future developments in treatment. Lancet 378 (9786): 182–197.CrossRef
2.
go back to reference Landau, B.R., J. Wahren, V. Chandramouli, W.C. Schumann, K. Ekberg, and S.C. Kalhan. 1996. Contributions of gluconeogenesis to glucose production in the fasted state. Journal of Clinical Investigation 98 (2): 378–385.CrossRef Landau, B.R., J. Wahren, V. Chandramouli, W.C. Schumann, K. Ekberg, and S.C. Kalhan. 1996. Contributions of gluconeogenesis to glucose production in the fasted state. Journal of Clinical Investigation 98 (2): 378–385.CrossRef
3.
go back to reference Gerich, J.E. 2000. Physiology of glucose homeostasis. Diabetes Obesity & Metabolism 2 (6): 345–350.CrossRef Gerich, J.E. 2000. Physiology of glucose homeostasis. Diabetes Obesity & Metabolism 2 (6): 345–350.CrossRef
4.
go back to reference Consoli, A., F. Kennedy, J. Miles, and J. Gerich. 1987. Determination of Krebs cycle metabolic carbon exchange in vivo and its use to estimate the individual contributions of gluconeogenesis and glycogenolysis to overall glucose output in man. Journal of Clinical Investigation 80 (5): 1303–1310.CrossRef Consoli, A., F. Kennedy, J. Miles, and J. Gerich. 1987. Determination of Krebs cycle metabolic carbon exchange in vivo and its use to estimate the individual contributions of gluconeogenesis and glycogenolysis to overall glucose output in man. Journal of Clinical Investigation 80 (5): 1303–1310.CrossRef
5.
go back to reference Meyer, C., J.M. Dostou, S.L. Welle, and J.E. Gerich. 2002. Role of human liver, kidney, and skeletal muscle in postprandial glucose homeostasis. American Journal of Physiology. Endocrinology and Metabolism 282 (2): E419–E427.CrossRef Meyer, C., J.M. Dostou, S.L. Welle, and J.E. Gerich. 2002. Role of human liver, kidney, and skeletal muscle in postprandial glucose homeostasis. American Journal of Physiology. Endocrinology and Metabolism 282 (2): E419–E427.CrossRef
6.
go back to reference Stumvoll, M., C. Meyer, A. Mitrakou, V. Nadkarni, and J.E. Gerich. 1997. Renal glucose production and utilization: new aspects in humans. Diabetologia 40 (7): 749–757.CrossRef Stumvoll, M., C. Meyer, A. Mitrakou, V. Nadkarni, and J.E. Gerich. 1997. Renal glucose production and utilization: new aspects in humans. Diabetologia 40 (7): 749–757.CrossRef
7.
go back to reference Meyer, C., M. Stumvoll, V. Nadkarni, J. Dostou, A. Mitrakou, and J. Gerich. 1998. Abnormal renal and hepatic glucose metabolism in type 2 diabetes mellitus. Journal of Clinical Investigation 102 (3): 619–624.CrossRef Meyer, C., M. Stumvoll, V. Nadkarni, J. Dostou, A. Mitrakou, and J. Gerich. 1998. Abnormal renal and hepatic glucose metabolism in type 2 diabetes mellitus. Journal of Clinical Investigation 102 (3): 619–624.CrossRef
8.
go back to reference Meyer, C., H.J. Woerle, J.M. Dostou, S.L. Welle, and J.E. Gerich. 2004. Abnormal renal, hepatic, and muscle glucose metabolism following glucose ingestion in type 2 diabetes. American Journal of Physiology. Endocrinology and Metabolism 287 (6): E1049–E1056.CrossRef Meyer, C., H.J. Woerle, J.M. Dostou, S.L. Welle, and J.E. Gerich. 2004. Abnormal renal, hepatic, and muscle glucose metabolism following glucose ingestion in type 2 diabetes. American Journal of Physiology. Endocrinology and Metabolism 287 (6): E1049–E1056.CrossRef
9.
go back to reference Cersosimo, E., R.L. Judd, and J.M. Miles. 1994. Insulin regulation of renal glucose metabolism in conscious dogs. Journal of Clinical Investigation 93 (6): 2584–2589.CrossRef Cersosimo, E., R.L. Judd, and J.M. Miles. 1994. Insulin regulation of renal glucose metabolism in conscious dogs. Journal of Clinical Investigation 93 (6): 2584–2589.CrossRef
10.
go back to reference Cersosimo, E., P. Garlick, and J. Ferretti. 1999. Insulin regulation of renal glucose metabolism in humans. The American Journal of Physiology 276 (1 Pt 1): E78–E84.PubMed Cersosimo, E., P. Garlick, and J. Ferretti. 1999. Insulin regulation of renal glucose metabolism in humans. The American Journal of Physiology 276 (1 Pt 1): E78–E84.PubMed
11.
go back to reference Kida, K., S. Nakajo, F. Kamiya, Y. Toyama, T. Nishio, and H. Nakagawa. 1978. Renal net glucose release in vivo and its contribution to blood glucose in rats. Journal of Clinical Investigation 62 (4): 721–726.CrossRef Kida, K., S. Nakajo, F. Kamiya, Y. Toyama, T. Nishio, and H. Nakagawa. 1978. Renal net glucose release in vivo and its contribution to blood glucose in rats. Journal of Clinical Investigation 62 (4): 721–726.CrossRef
12.
go back to reference Meyer, C., J. Dostou, V. Nadkarni, and J. Gerich. 1998. Effects of physiological hyperinsulinemia on systemic, renal, and hepatic substrate metabolism. The American Journal of Physiology 275 (6 Pt 2): F915–F921.PubMed Meyer, C., J. Dostou, V. Nadkarni, and J. Gerich. 1998. Effects of physiological hyperinsulinemia on systemic, renal, and hepatic substrate metabolism. The American Journal of Physiology 275 (6 Pt 2): F915–F921.PubMed
13.
go back to reference Shoelson, S.E., J. Lee, and A.B. Goldfine. 2006. Inflammation and insulin resistance. Journal of Clinical Investigation 116 (7): 1793–1801.CrossRef Shoelson, S.E., J. Lee, and A.B. Goldfine. 2006. Inflammation and insulin resistance. Journal of Clinical Investigation 116 (7): 1793–1801.CrossRef
14.
go back to reference Kanwar, Y.S., L. Sun, P. Xie, F.Y. Liu, and S. Chen. 2011. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annual Review of Pathology 6: 395–423.CrossRef Kanwar, Y.S., L. Sun, P. Xie, F.Y. Liu, and S. Chen. 2011. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annual Review of Pathology 6: 395–423.CrossRef
15.
go back to reference Qiu, Y.Y., and L.Q. Tang. 2016. Roles of the NLRP3 inflammasome in the pathogenesis of diabetic nephropathy. Pharmacological Research 114(251–264.CrossRef Qiu, Y.Y., and L.Q. Tang. 2016. Roles of the NLRP3 inflammasome in the pathogenesis of diabetic nephropathy. Pharmacological Research 114(251–264.CrossRef
16.
go back to reference Liu, Q., J. Jin, J. Ying, M. Sun, Y. Cui, L. Zhang, B. Xu, Y. Fan, and Q. Zhang. 2015. Frequent epigenetic suppression of tumor suppressor gene glutathione peroxidase 3 by promoter hypermethylation and its clinical implication in clear cell renal cell carcinoma. International Journal of Molecular Sciences 16 (5): 10636–10649.CrossRef Liu, Q., J. Jin, J. Ying, M. Sun, Y. Cui, L. Zhang, B. Xu, Y. Fan, and Q. Zhang. 2015. Frequent epigenetic suppression of tumor suppressor gene glutathione peroxidase 3 by promoter hypermethylation and its clinical implication in clear cell renal cell carcinoma. International Journal of Molecular Sciences 16 (5): 10636–10649.CrossRef
17.
go back to reference DeFronzo, R.A., L. Norton, and M. Abdul-Ghani. 2017. Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nature Reviews Nephrology 13 (1): 11–26.CrossRef DeFronzo, R.A., L. Norton, and M. Abdul-Ghani. 2017. Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nature Reviews Nephrology 13 (1): 11–26.CrossRef
18.
go back to reference Pandey, G., K. Shankar, E. Makhija, A. Gaikwad, C. Ecelbarger, A. Mandhani, A. Srivastava, and S. Tiwari. 2017. Reduced insulin receptor expression enhances proximal tubule gluconeogenesis. Journal of Cellular Biochemistry 118 (2): 276–285.CrossRef Pandey, G., K. Shankar, E. Makhija, A. Gaikwad, C. Ecelbarger, A. Mandhani, A. Srivastava, and S. Tiwari. 2017. Reduced insulin receptor expression enhances proximal tubule gluconeogenesis. Journal of Cellular Biochemistry 118 (2): 276–285.CrossRef
19.
go back to reference Sasaki, M., T. Sasako, N. Kubota, Y. Sakurai, I. Takamoto, T. Kubota, R. Inagi, G. Seki, M. Goto, K. Ueki, M. Nangaku, T. Jomori, and T. Kadowaki. 2017. Dual regulation of gluconeogenesis by insulin and glucose in the proximal tubules of the kidney. Diabetes 66 (9): 2339–2350.CrossRef Sasaki, M., T. Sasako, N. Kubota, Y. Sakurai, I. Takamoto, T. Kubota, R. Inagi, G. Seki, M. Goto, K. Ueki, M. Nangaku, T. Jomori, and T. Kadowaki. 2017. Dual regulation of gluconeogenesis by insulin and glucose in the proximal tubules of the kidney. Diabetes 66 (9): 2339–2350.CrossRef
20.
go back to reference Bertinat, R., J.P. Pontigo, M. Perez, I.I. Concha, M.R. San, J.J. Guinovart, J.C. Slebe, and A.J. Yanez. 2012. Nuclear accumulation of fructose 1,6-bisphosphatase is impaired in diabetic rat liver. Journal of Cellular Biochemistry 113 (3): 848–856.CrossRef Bertinat, R., J.P. Pontigo, M. Perez, I.I. Concha, M.R. San, J.J. Guinovart, J.C. Slebe, and A.J. Yanez. 2012. Nuclear accumulation of fructose 1,6-bisphosphatase is impaired in diabetic rat liver. Journal of Cellular Biochemistry 113 (3): 848–856.CrossRef
21.
go back to reference Pilkis, S.J., M.R. El-Maghrabi, M. McGrane, J. Pilkis, and T.H. Claus. 1982. Regulation by glucagon of hepatic pyruvate kinase, 6-phosphofructo 1-kinase, and fructose-1,6-bisphosphatase. Federation Proceedings 41 (10): 2623–2628.PubMed Pilkis, S.J., M.R. El-Maghrabi, M. McGrane, J. Pilkis, and T.H. Claus. 1982. Regulation by glucagon of hepatic pyruvate kinase, 6-phosphofructo 1-kinase, and fructose-1,6-bisphosphatase. Federation Proceedings 41 (10): 2623–2628.PubMed
22.
go back to reference Gatica, R., R. Bertinat, P. Silva, D. Carpio, M.J. Ramirez, J.C. Slebe, M.R. San, F. Nualart, J.M. Campistol, C. Caelles, and A.J. Yanez. 2013. Altered expression and localization of insulin receptor in proximal tubule cells from human and rat diabetic kidney. Journal of Cellular Biochemistry 114 (3): 639–649.CrossRef Gatica, R., R. Bertinat, P. Silva, D. Carpio, M.J. Ramirez, J.C. Slebe, M.R. San, F. Nualart, J.M. Campistol, C. Caelles, and A.J. Yanez. 2013. Altered expression and localization of insulin receptor in proximal tubule cells from human and rat diabetic kidney. Journal of Cellular Biochemistry 114 (3): 639–649.CrossRef
23.
go back to reference Brezniceanu, M.L., F. Liu, C.C. Wei, I. Chenier, N. Godin, S.L. Zhang, J.G. Filep, J.R. Ingelfinger, and J.S. Chan. 2008. Attenuation of interstitial fibrosis and tubular apoptosis in db/db transgenic mice overexpressing catalase in renal proximal tubular cells. Diabetes 57 (2): 451–459.CrossRef Brezniceanu, M.L., F. Liu, C.C. Wei, I. Chenier, N. Godin, S.L. Zhang, J.G. Filep, J.R. Ingelfinger, and J.S. Chan. 2008. Attenuation of interstitial fibrosis and tubular apoptosis in db/db transgenic mice overexpressing catalase in renal proximal tubular cells. Diabetes 57 (2): 451–459.CrossRef
24.
go back to reference Singh, D.K., P. Winocour, and K. Farrington. 2008. Mechanisms of disease: the hypoxic tubular hypothesis of diabetic nephropathy. Nature Clinical Practice. Nephrology 4 (4): 216–226.CrossRef Singh, D.K., P. Winocour, and K. Farrington. 2008. Mechanisms of disease: the hypoxic tubular hypothesis of diabetic nephropathy. Nature Clinical Practice. Nephrology 4 (4): 216–226.CrossRef
25.
go back to reference Eid, A., S. Bodin, B. Ferrier, H. Delage, M. Boghossian, M. Martin, G. Baverel, and A. Conjard. 2006. Intrinsic gluconeogenesis is enhanced in renal proximal tubules of Zucker diabetic fatty rats. Journal of the American Society of Nephrology 17 (2): 398–405.CrossRef Eid, A., S. Bodin, B. Ferrier, H. Delage, M. Boghossian, M. Martin, G. Baverel, and A. Conjard. 2006. Intrinsic gluconeogenesis is enhanced in renal proximal tubules of Zucker diabetic fatty rats. Journal of the American Society of Nephrology 17 (2): 398–405.CrossRef
26.
go back to reference Tiwari, S., R.S. Singh, L. Li, S. Tsukerman, M. Godbole, G. Pandey, and C.M. Ecelbarger. 2013. Deletion of the insulin receptor in the proximal tubule promotes hyperglycemia. Journal of the American Society of Nephrology 24 (8): 1209–1214.CrossRef Tiwari, S., R.S. Singh, L. Li, S. Tsukerman, M. Godbole, G. Pandey, and C.M. Ecelbarger. 2013. Deletion of the insulin receptor in the proximal tubule promotes hyperglycemia. Journal of the American Society of Nephrology 24 (8): 1209–1214.CrossRef
27.
go back to reference Hundal, R.S., K.F. Petersen, A.B. Mayerson, P.S. Randhawa, S. Inzucchi, S.E. Shoelson, and G.I. Shulman. 2002. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. Journal of Clinical Investigation 109 (10): 1321–1326.CrossRef Hundal, R.S., K.F. Petersen, A.B. Mayerson, P.S. Randhawa, S. Inzucchi, S.E. Shoelson, and G.I. Shulman. 2002. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. Journal of Clinical Investigation 109 (10): 1321–1326.CrossRef
28.
go back to reference Shoelson, S.E., J. Lee, and M. Yuan. 2003. Inflammation and the IKK beta/I kappa B/NF-kappa B axis in obesity- and diet-induced insulin resistance. International Journal of Obesity and Related Metabolic Disorders 27 (Suppl 3): S49–S52.CrossRef Shoelson, S.E., J. Lee, and M. Yuan. 2003. Inflammation and the IKK beta/I kappa B/NF-kappa B axis in obesity- and diet-induced insulin resistance. International Journal of Obesity and Related Metabolic Disorders 27 (Suppl 3): S49–S52.CrossRef
29.
go back to reference Ghantous, A., H. Gali-Muhtasib, H. Vuorela, N.A. Saliba, and N. Darwiche. 2010. What made sesquiterpene lactones reach cancer clinical trials? Drug Discovery Today 15 (15–16): 668–678.CrossRef Ghantous, A., H. Gali-Muhtasib, H. Vuorela, N.A. Saliba, and N. Darwiche. 2010. What made sesquiterpene lactones reach cancer clinical trials? Drug Discovery Today 15 (15–16): 668–678.CrossRef
30.
go back to reference Nakae, J., W.R. Biggs, T. Kitamura, W.K. Cavenee, C.V. Wright, K.C. Arden, and D. Accili. 2002. Regulation of insulin action and pancreatic beta-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1. Nature Genetics 32 (2): 245–253.CrossRef Nakae, J., W.R. Biggs, T. Kitamura, W.K. Cavenee, C.V. Wright, K.C. Arden, and D. Accili. 2002. Regulation of insulin action and pancreatic beta-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1. Nature Genetics 32 (2): 245–253.CrossRef
31.
go back to reference Hall, R.K., T. Yamasaki, T. Kucera, M. Waltner-Law, R. O’Brien, and D.K. Granner. 2000. Regulation of phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein-1 gene expression by insulin. The role of winged helix/forkhead proteins. Journal of Biological Chemistry 275 (39): 30169–30175.CrossRef Hall, R.K., T. Yamasaki, T. Kucera, M. Waltner-Law, R. O’Brien, and D.K. Granner. 2000. Regulation of phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein-1 gene expression by insulin. The role of winged helix/forkhead proteins. Journal of Biological Chemistry 275 (39): 30169–30175.CrossRef
32.
go back to reference Brunet, A., A. Bonni, M.J. Zigmond, M.Z. Lin, P. Juo, L.S. Hu, M.J. Anderson, K.C. Arden, J. Blenis, and M.E. Greenberg. 1999. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96 (6): 857–868.CrossRef Brunet, A., A. Bonni, M.J. Zigmond, M.Z. Lin, P. Juo, L.S. Hu, M.J. Anderson, K.C. Arden, J. Blenis, and M.E. Greenberg. 1999. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96 (6): 857–868.CrossRef
33.
go back to reference Nakae, J., B.C. Park, and D. Accili. 1999. Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive pathway. Journal of Biological Chemistry 274 (23): 15982–15985.CrossRef Nakae, J., B.C. Park, and D. Accili. 1999. Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive pathway. Journal of Biological Chemistry 274 (23): 15982–15985.CrossRef
34.
go back to reference Kubota, N., T. Kubota, S. Itoh, H. Kumagai, H. Kozono, I. Takamoto, T. Mineyama, H. Ogata, K. Tokuyama, M. Ohsugi, T. Sasako, M. Moroi, K. Sugi, S. Kakuta, Y. Iwakura, T. Noda, S. Ohnishi, R. Nagai, K. Tobe, Y. Terauchi, K. Ueki, and T. Kadowaki. 2008. Dynamic functional relay between insulin receptor substrate 1 and 2 in hepatic insulin signaling during fasting and feeding. Cell Metabolism 8 (1): 49–64.CrossRef Kubota, N., T. Kubota, S. Itoh, H. Kumagai, H. Kozono, I. Takamoto, T. Mineyama, H. Ogata, K. Tokuyama, M. Ohsugi, T. Sasako, M. Moroi, K. Sugi, S. Kakuta, Y. Iwakura, T. Noda, S. Ohnishi, R. Nagai, K. Tobe, Y. Terauchi, K. Ueki, and T. Kadowaki. 2008. Dynamic functional relay between insulin receptor substrate 1 and 2 in hepatic insulin signaling during fasting and feeding. Cell Metabolism 8 (1): 49–64.CrossRef
Metadata
Title
Inhibition of NF-κB Reduces Renal Inflammation and Expression of PEPCK in Type 2 Diabetic Mice
Authors
Qianling Liu
Liangyan Zhang
Wei Zhang
Qiufa Hao
Wei Qiu
Yubing Wen
Haiyun Wang
Xuemei Li
Publication date
01-12-2018
Publisher
Springer US
Published in
Inflammation / Issue 6/2018
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0845-0

Other articles of this Issue 6/2018

Inflammation 6/2018 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.