Skip to main content
Top
Published in: Inflammation 5/2018

01-10-2018 | REVIEW

Mechanisms of Hemolysis During Sepsis

Authors: Katharina Effenberger-Neidnicht, Matthias Hartmann

Published in: Inflammation | Issue 5/2018

Login to get access

Abstract

Cell-free hemoglobin is increasingly playing a more central role in the pathogenesis of sepsis being proved to be a potent predictor of patient’s outcome. It is crucial, hence, to further investigate the mechanisms of sepsis-induced hemolysis with the aim of deriving possible therapeutic principles. Herein, we collected the most important previously known triggers of hemolysis during sepsis, which are (1) transfusion reactions and complement activation, (2) disseminated intravascular coagulation, (3) capillary stopped-flow, (4) restriction of glucose to red blood cells, (5) changes in red blood cell membrane properties, (6) hemolytic pathogens, and (7) red blood cell apoptosis.
Literature
1.
go back to reference Adamzik, M., T. Hamburger, F. Petrat, J. Peters, H. de Groot, and M. Hartmann. 2012. Free hemoglobin concentration in severe sepsis: Methods of measurement and prediction of outcome. Critical Care 16 (4): R125.PubMedPubMedCentralCrossRef Adamzik, M., T. Hamburger, F. Petrat, J. Peters, H. de Groot, and M. Hartmann. 2012. Free hemoglobin concentration in severe sepsis: Methods of measurement and prediction of outcome. Critical Care 16 (4): R125.PubMedPubMedCentralCrossRef
2.
go back to reference Janz, D.R., J.A. Bastarache, J.F. Peterson, G. Sills, N. Wickersham, A.K. May, L.J. Roberts 2nd, and L.B. Ware. 2013. Association between cell-free hemoglobin, acetaminophen, and mortality in patients with sepsis: An observational study. Critical Care Medicine 41: 784–790.PubMedPubMedCentralCrossRef Janz, D.R., J.A. Bastarache, J.F. Peterson, G. Sills, N. Wickersham, A.K. May, L.J. Roberts 2nd, and L.B. Ware. 2013. Association between cell-free hemoglobin, acetaminophen, and mortality in patients with sepsis: An observational study. Critical Care Medicine 41: 784–790.PubMedPubMedCentralCrossRef
3.
go back to reference Hartmann, M., and H. De Groot. 2013. Cell-free hemoglobin: A new player in sepsis pathophysiology. Critical Care Medicine 41 (8): e186–e187.PubMedCrossRef Hartmann, M., and H. De Groot. 2013. Cell-free hemoglobin: A new player in sepsis pathophysiology. Critical Care Medicine 41 (8): e186–e187.PubMedCrossRef
4.
go back to reference Pita Zapata, E., A. Sarmiento Penide, A. Bautista Guillen, M. Gonzalez Cabano, J.A. Agulla Budino, and M.A. Camba Rodriguez. 2010. Massive intravascular hemolysis secondary to sepsis due to Clostridium perfingens. Revista Española de Anestesiología y Reanimación 57 (5): 314–316.PubMedCrossRef Pita Zapata, E., A. Sarmiento Penide, A. Bautista Guillen, M. Gonzalez Cabano, J.A. Agulla Budino, and M.A. Camba Rodriguez. 2010. Massive intravascular hemolysis secondary to sepsis due to Clostridium perfingens. Revista Española de Anestesiología y Reanimación 57 (5): 314–316.PubMedCrossRef
5.
go back to reference Effenberger-Neidnicht, K., L. Brencher, M. Broecker-Preuss, T. Hamburger, F. Petrat, and H. De Groot. 2014. Immune stimulation by exogenous melatonin during experimental endotoxemia. Inflammation 37: 738–744.PubMed Effenberger-Neidnicht, K., L. Brencher, M. Broecker-Preuss, T. Hamburger, F. Petrat, and H. De Groot. 2014. Immune stimulation by exogenous melatonin during experimental endotoxemia. Inflammation 37: 738–744.PubMed
6.
go back to reference Oude Lansink, M., K. Görlinger, M. Hartmann, H. de Groot, and K. Effenberger-Neidnicht. 2016. Melatonin does not affect disseminated intravascular coagulation but diminishes decreases in platelet count during subacute endotoxaemia in rats. Thrombosis Research 139: 38–43.CrossRef Oude Lansink, M., K. Görlinger, M. Hartmann, H. de Groot, and K. Effenberger-Neidnicht. 2016. Melatonin does not affect disseminated intravascular coagulation but diminishes decreases in platelet count during subacute endotoxaemia in rats. Thrombosis Research 139: 38–43.CrossRef
7.
go back to reference Hamburger, T., M. Broecker-Preuss, M. Hartmann, F.U. Schade, H. de Groot, and F. Petrat. 2013. Effects of glycine, pyruvate, resveratrol, and nitrite on tissue injury and cytokine response in endotoxemic rats. The Journal of Surgical Research 183: e7–e21.PubMedCrossRef Hamburger, T., M. Broecker-Preuss, M. Hartmann, F.U. Schade, H. de Groot, and F. Petrat. 2013. Effects of glycine, pyruvate, resveratrol, and nitrite on tissue injury and cytokine response in endotoxemic rats. The Journal of Surgical Research 183: e7–e21.PubMedCrossRef
8.
go back to reference Larsen, R., R. Gozzelino, V. Jeney, L. Tokaji, F.A. Bozza, A.M. Japiassu, D. Bonaparte, M.M. Cavalcante, A. Chora, A. Ferrari, et al. 2010. A central role for free heme in the pathogenesis of severe sepsis. Science Translational Medicine 2 (51): 51ra71–51ra82.PubMedCrossRef Larsen, R., R. Gozzelino, V. Jeney, L. Tokaji, F.A. Bozza, A.M. Japiassu, D. Bonaparte, M.M. Cavalcante, A. Chora, A. Ferrari, et al. 2010. A central role for free heme in the pathogenesis of severe sepsis. Science Translational Medicine 2 (51): 51ra71–51ra82.PubMedCrossRef
9.
go back to reference Su, D., R.I. Roth, M. Yoshida, and J. Levin. 1997. Hemoglobin increases mortality from bacterial endotoxin. Infect Immun 65 (4): 1258–1266.PubMedPubMedCentral Su, D., R.I. Roth, M. Yoshida, and J. Levin. 1997. Hemoglobin increases mortality from bacterial endotoxin. Infect Immun 65 (4): 1258–1266.PubMedPubMedCentral
10.
go back to reference Janz, D.R., and L.B. Ware. 2015. The role of red blood cells and cell-free hemoglobin in the pathogenesis of ARDS. J Intensive Care 17 (3): 20.CrossRef Janz, D.R., and L.B. Ware. 2015. The role of red blood cells and cell-free hemoglobin in the pathogenesis of ARDS. J Intensive Care 17 (3): 20.CrossRef
11.
go back to reference Kaca, W., R.I. Roth, and J. Levin. 1994. Hemoglobin, a newly recognized lipopolysaccharide (LPS)-binding protein that enhances LPS biological activity. The Journal of Biological Chemistry 269 (40): 25078–25084.PubMed Kaca, W., R.I. Roth, and J. Levin. 1994. Hemoglobin, a newly recognized lipopolysaccharide (LPS)-binding protein that enhances LPS biological activity. The Journal of Biological Chemistry 269 (40): 25078–25084.PubMed
12.
go back to reference Rother, R.P., L. Bell, P. Hillmen, and M.T. Gladwin. 2005. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin. JAMA 293: 1653–1662.PubMedCrossRef Rother, R.P., L. Bell, P. Hillmen, and M.T. Gladwin. 2005. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin. JAMA 293: 1653–1662.PubMedCrossRef
14.
go back to reference Weis, S., A.R. Carlos, M.R. Moita, S. Singh, B. Blankenhaus, S. Cardoso, R. Larsen, S. Rebelo, S. Schauble, L. Del Barrio, et al. 2017. Metabolic adaptation establishes disease tolerance to sepsis. Cell 169 (7): 1263–1275 e1214.PubMedPubMedCentralCrossRef Weis, S., A.R. Carlos, M.R. Moita, S. Singh, B. Blankenhaus, S. Cardoso, R. Larsen, S. Rebelo, S. Schauble, L. Del Barrio, et al. 2017. Metabolic adaptation establishes disease tolerance to sepsis. Cell 169 (7): 1263–1275 e1214.PubMedPubMedCentralCrossRef
16.
go back to reference Brunkhorst, F.M. 2006. Epidemiology, economy and practice—results of the German study on prevalence by the competence network Sepsis (SepNet). Anasthesiol Intensivmed Notfallmed Schmerzther 41 (1): 43–44.PubMedCrossRef Brunkhorst, F.M. 2006. Epidemiology, economy and practice—results of the German study on prevalence by the competence network Sepsis (SepNet). Anasthesiol Intensivmed Notfallmed Schmerzther 41 (1): 43–44.PubMedCrossRef
17.
go back to reference Trampuz, A., and W. Zimmerli. 2003. Pathogenesis und Therapie der Sepsis. Schweizerisches Medizin-Forum 35: 811–818. Trampuz, A., and W. Zimmerli. 2003. Pathogenesis und Therapie der Sepsis. Schweizerisches Medizin-Forum 35: 811–818.
18.
go back to reference Vincent, J.L., E.C. Serrano, and A. Dimoula. 2011. Current management of sepsis in critically ill adult patients. Expert Review of Anti-Infective Therapy 9 (7): 847–856.PubMedCrossRef Vincent, J.L., E.C. Serrano, and A. Dimoula. 2011. Current management of sepsis in critically ill adult patients. Expert Review of Anti-Infective Therapy 9 (7): 847–856.PubMedCrossRef
19.
go back to reference Müller-Werdan, U., M. Buerke, and K. Werdan. 2003. Fortschritte in der Therapie der Sepsis. Der Internist (Berlin) 44 (12): 1531–1540.CrossRef Müller-Werdan, U., M. Buerke, and K. Werdan. 2003. Fortschritte in der Therapie der Sepsis. Der Internist (Berlin) 44 (12): 1531–1540.CrossRef
20.
go back to reference Christaki, E., and S.M. Opal. 2008. Is the mortality rate for septic shock really decreasing? Current Opinion in Critical Care 14 (5): 580–586.PubMedCrossRef Christaki, E., and S.M. Opal. 2008. Is the mortality rate for septic shock really decreasing? Current Opinion in Critical Care 14 (5): 580–586.PubMedCrossRef
21.
go back to reference Rhodes, A., L.E. Evans, W. Alhazzani, M.M. Levy, M. Antonelli, and R. Ferrer. 2017. al. E: Surviving Sepsis campaign: International guidelines for management of sepsis and septic shock: 2016. Intensive Care Medicine 43: 304–377.PubMedCrossRef Rhodes, A., L.E. Evans, W. Alhazzani, M.M. Levy, M. Antonelli, and R. Ferrer. 2017. al. E: Surviving Sepsis campaign: International guidelines for management of sepsis and septic shock: 2016. Intensive Care Medicine 43: 304–377.PubMedCrossRef
22.
go back to reference Seymour, C.W., V.X. Liu, T.J. Iwashyna, F.M. Brunkhorst, T.D. Rea, A. Scherag, G. Rubenfeld, J.M. Kahn, M. Shankar-Hari, M. Singer, C.S. Deutschman, G.J. Escobar, and D.C. Angus. 2016. Assessment of clinical criteria for Sepsis: For the third international consensus definitions for Sepsis and septic shock (Sepsis-3). JAMA 315 (8): 762–774.PubMedPubMedCentralCrossRef Seymour, C.W., V.X. Liu, T.J. Iwashyna, F.M. Brunkhorst, T.D. Rea, A. Scherag, G. Rubenfeld, J.M. Kahn, M. Shankar-Hari, M. Singer, C.S. Deutschman, G.J. Escobar, and D.C. Angus. 2016. Assessment of clinical criteria for Sepsis: For the third international consensus definitions for Sepsis and septic shock (Sepsis-3). JAMA 315 (8): 762–774.PubMedPubMedCentralCrossRef
23.
go back to reference Weis, S., P. Dickmann, M.W. Pletz, S.M. Coldewey, H. Gerlach, and M. Bauer. 2017. Sepsis 2017: Eine neue Definition führt zu neuen Konzepten. Deutsches Ärzteblatt 114 (29–30): 1424–1428. Weis, S., P. Dickmann, M.W. Pletz, S.M. Coldewey, H. Gerlach, and M. Bauer. 2017. Sepsis 2017: Eine neue Definition führt zu neuen Konzepten. Deutsches Ärzteblatt 114 (29–30): 1424–1428.
24.
go back to reference Bone, R.C., W.J. Sibbald, and C.L. Sprung. 1992. The ACCP-SCCM consensus conference on Sepsis and organ failure. Chest 101 (6): 1481–1483.PubMedCrossRef Bone, R.C., W.J. Sibbald, and C.L. Sprung. 1992. The ACCP-SCCM consensus conference on Sepsis and organ failure. Chest 101 (6): 1481–1483.PubMedCrossRef
25.
go back to reference Levy, M.M., M.P. Fink, J.C. Marshall, E. Abraham, D. Angus, D. Cook, J. Cohen, S.M. Opal, J.L. Vincent, G. Ramsay, et al. 2003. 2001 SCCM/ESICM/ACCP/ATS/SIS international Sepsis definitions conference. Intensive Care Med 29 (4): 530–538.PubMedCrossRef Levy, M.M., M.P. Fink, J.C. Marshall, E. Abraham, D. Angus, D. Cook, J. Cohen, S.M. Opal, J.L. Vincent, G. Ramsay, et al. 2003. 2001 SCCM/ESICM/ACCP/ATS/SIS international Sepsis definitions conference. Intensive Care Med 29 (4): 530–538.PubMedCrossRef
26.
go back to reference Levi, M., T. van der Poll, and H.R. Buller. 2004. Bidirectional relation between inflammation and coagulation. Circulation 109 (22): 2698–2704.PubMedCrossRef Levi, M., T. van der Poll, and H.R. Buller. 2004. Bidirectional relation between inflammation and coagulation. Circulation 109 (22): 2698–2704.PubMedCrossRef
27.
go back to reference Jean-Baptiste, E. 2007. Cellular mechanisms in sepsis. Journal of Intensive Care Medicine 22 (2): 63–72.PubMedCrossRef Jean-Baptiste, E. 2007. Cellular mechanisms in sepsis. Journal of Intensive Care Medicine 22 (2): 63–72.PubMedCrossRef
28.
go back to reference Kumar, H., T. Kawai, and S. Akira. 2011. Pathogen recognition by the innate immune system. International Reviews of Immunology 30 (1): 16–34.PubMedCrossRef Kumar, H., T. Kawai, and S. Akira. 2011. Pathogen recognition by the innate immune system. International Reviews of Immunology 30 (1): 16–34.PubMedCrossRef
30.
31.
go back to reference Wattel, F., D. Mathieu, R. Neviere, and N. Bocquillon. 2000. Role of microcirculation in multiorgan failure of infectious origin. Bulletin de l'Académie Nationale de Médecine 184 (8): 1609–1619.PubMed Wattel, F., D. Mathieu, R. Neviere, and N. Bocquillon. 2000. Role of microcirculation in multiorgan failure of infectious origin. Bulletin de l'Académie Nationale de Médecine 184 (8): 1609–1619.PubMed
32.
go back to reference Kusuma, B., and T.K. Schulz. 2009. Acute disseminated intravascular coagulation. Hospital Physicians 45 (3): 35–41. Kusuma, B., and T.K. Schulz. 2009. Acute disseminated intravascular coagulation. Hospital Physicians 45 (3): 35–41.
33.
go back to reference Bloom, O., H. Wang, S. Ivanova, J.M. Vishnubhakat, M. Ombrellino, and K.J. Tracey. 1998. Hypophysectomy, high tumor necrosis factor levels, and hemoglobinemia in lethal endotoxemic shock. Shock 10: 395–400.PubMedCrossRef Bloom, O., H. Wang, S. Ivanova, J.M. Vishnubhakat, M. Ombrellino, and K.J. Tracey. 1998. Hypophysectomy, high tumor necrosis factor levels, and hemoglobinemia in lethal endotoxemic shock. Shock 10: 395–400.PubMedCrossRef
34.
go back to reference Su, D., R.I. Roth, and J. Levin. 1999. Hemoglobin infusion augments the tumor necrosis response to bacterial endotoxin (lipopolysaccharide) in mice. Critical Care Medicine 28: 771–778.CrossRef Su, D., R.I. Roth, and J. Levin. 1999. Hemoglobin infusion augments the tumor necrosis response to bacterial endotoxin (lipopolysaccharide) in mice. Critical Care Medicine 28: 771–778.CrossRef
35.
go back to reference Hartl, W., and K.-W. Jauch. 2014. Metabolic self-destruction in critically ill patients: Origins, mechanisms and therapeutic principles. Nutrition 30: 261–267.PubMedCrossRef Hartl, W., and K.-W. Jauch. 2014. Metabolic self-destruction in critically ill patients: Origins, mechanisms and therapeutic principles. Nutrition 30: 261–267.PubMedCrossRef
36.
go back to reference McKechnie, S., and T. Walsh. 2018. Metabolic response to injury, fluid and electrolyte balance and shock. In Principles and practice of surgery, ed. O.J. Garden and R.W. Parks, vol. 7, 3–28. Edinburgh: Elsevier. McKechnie, S., and T. Walsh. 2018. Metabolic response to injury, fluid and electrolyte balance and shock. In Principles and practice of surgery, ed. O.J. Garden and R.W. Parks, vol. 7, 3–28. Edinburgh: Elsevier.
37.
go back to reference Kreymann, K.G., and M. Wolf. 2000. Die metabolische Antwort auf Trauma und Sepsis. Intensiv- und Notfallbehandlung 25 (1): 4–19. Kreymann, K.G., and M. Wolf. 2000. Die metabolische Antwort auf Trauma und Sepsis. Intensiv- und Notfallbehandlung 25 (1): 4–19.
39.
go back to reference Schaer, D.J., P.W. Buehler, A.I. Alayash, J.D. Belcher, and G.M. Vercellotti. 2013. Hemolysis and free hemoglobin revisited: Exploring hemoglobin and hemin scavenger as a novel class of therapeutic proteins. Blood 121: 1276–1284.PubMedPubMedCentralCrossRef Schaer, D.J., P.W. Buehler, A.I. Alayash, J.D. Belcher, and G.M. Vercellotti. 2013. Hemolysis and free hemoglobin revisited: Exploring hemoglobin and hemin scavenger as a novel class of therapeutic proteins. Blood 121: 1276–1284.PubMedPubMedCentralCrossRef
40.
go back to reference Weinberg, J.A., S.R. Barnum, and R.P. Patel. 2011. Red blood cell age and potentiation of transfusion-related pathology in trauma patients. Transfusion 51: 867–873.PubMedPubMedCentralCrossRef Weinberg, J.A., S.R. Barnum, and R.P. Patel. 2011. Red blood cell age and potentiation of transfusion-related pathology in trauma patients. Transfusion 51: 867–873.PubMedPubMedCentralCrossRef
41.
go back to reference Figueiredo, R.T., P.L. Fernandez, D. Mourao-Sa, B.N. Porto, F.F. Dutra, L.S. Alves, M.F. Oliveira, P.L. Oliveira, A.V. Graca-Souza, and M.T. Bozza. 2007. Characterization of heme as activator of toll-like receptor 4. The Journal of Biological Chemistry 282 (28): 20221–20229.PubMedCrossRef Figueiredo, R.T., P.L. Fernandez, D. Mourao-Sa, B.N. Porto, F.F. Dutra, L.S. Alves, M.F. Oliveira, P.L. Oliveira, A.V. Graca-Souza, and M.T. Bozza. 2007. Characterization of heme as activator of toll-like receptor 4. The Journal of Biological Chemistry 282 (28): 20221–20229.PubMedCrossRef
42.
go back to reference Belcher, J.D., C. Chen, J. Nguyen, L. Milbauer, F. Abdulla, A.I. Alayasha, A. Smith, K.A. Nath, R.P. Hebbel, and G.M. Vercellotti. 2014. Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood 123 (3): 337–390.CrossRef Belcher, J.D., C. Chen, J. Nguyen, L. Milbauer, F. Abdulla, A.I. Alayasha, A. Smith, K.A. Nath, R.P. Hebbel, and G.M. Vercellotti. 2014. Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood 123 (3): 337–390.CrossRef
43.
go back to reference Pishchany, G., A.L. McCoy, V.J. Torres, J.C. Krause, J.E.J. Crowe, M.E. Fabry, and E.P. Skaar. 2010. Specificity for human hemoglobin enhances Staphylococcus aureus infection. Cell Host & Microbe 8 (6): 544–550.CrossRef Pishchany, G., A.L. McCoy, V.J. Torres, J.C. Krause, J.E.J. Crowe, M.E. Fabry, and E.P. Skaar. 2010. Specificity for human hemoglobin enhances Staphylococcus aureus infection. Cell Host & Microbe 8 (6): 544–550.CrossRef
44.
go back to reference Tullius, M.V., C.A. Harmston, C.P. Owens, N. Chim, R.P. Morse, L.M. McMath, A. Iniguez, J.M. Kimmey, M.R. Sawaya, J.P. Whitelegge, et al. 2011. Discovery and characterization of a unique mycobacterial heme acquisition system. PNAS 108 (12): 5051–5056.PubMedCrossRef Tullius, M.V., C.A. Harmston, C.P. Owens, N. Chim, R.P. Morse, L.M. McMath, A. Iniguez, J.M. Kimmey, M.R. Sawaya, J.P. Whitelegge, et al. 2011. Discovery and characterization of a unique mycobacterial heme acquisition system. PNAS 108 (12): 5051–5056.PubMedCrossRef
45.
go back to reference Bahl, N., R. Du, I. Winarsih, B. Ho, L. Tucker-Kellogg, B. Tidor, and J.L. Ding. 2011. Delineation of lipopolysaccharide (LPS)-binding sites on hemoglobin: From in silico predictions to biophysical characterization. The Journal of Biological Chemistry 286 (43): 37793–37803.PubMedPubMedCentralCrossRef Bahl, N., R. Du, I. Winarsih, B. Ho, L. Tucker-Kellogg, B. Tidor, and J.L. Ding. 2011. Delineation of lipopolysaccharide (LPS)-binding sites on hemoglobin: From in silico predictions to biophysical characterization. The Journal of Biological Chemistry 286 (43): 37793–37803.PubMedPubMedCentralCrossRef
46.
go back to reference Roth, R.I. 1994. Hemoglobin enhances the production of tissue factor by endothelial cells in response to bacterial endotoxin. Blood 83 (10): 2860–2865.PubMed Roth, R.I. 1994. Hemoglobin enhances the production of tissue factor by endothelial cells in response to bacterial endotoxin. Blood 83 (10): 2860–2865.PubMed
47.
go back to reference Atichartakarn, V., S. Jootar, K. Pathapchotiwong, and T. Srichaikul. 1979. Acute massive intravascular hemolysis and disseminated intravascular coagulation. The Southeast Asian Journal of Tropical Medicine and Public Health 10 (3): 338–341.PubMed Atichartakarn, V., S. Jootar, K. Pathapchotiwong, and T. Srichaikul. 1979. Acute massive intravascular hemolysis and disseminated intravascular coagulation. The Southeast Asian Journal of Tropical Medicine and Public Health 10 (3): 338–341.PubMed
48.
go back to reference Cooper, G.S., D.S. Havlir, D.M. Shlaes, and R.A. Salata. 1990. Polymicrobial bacteremia in the late 1980s: Predictors of outcome and review of the literature. Medicine 69 (2): 114–123.PubMedCrossRef Cooper, G.S., D.S. Havlir, D.M. Shlaes, and R.A. Salata. 1990. Polymicrobial bacteremia in the late 1980s: Predictors of outcome and review of the literature. Medicine 69 (2): 114–123.PubMedCrossRef
49.
go back to reference Janz, D.R., J.A. Bastarache, G. Sills, N. Wickersham, A.K. May, G.R. Bernard, and L.B. Ware. 2013. Association between haptoglobin, hemopexin and mortality in adults with sepsis. Critical Care 17 (6): R272.PubMedPubMedCentralCrossRef Janz, D.R., J.A. Bastarache, G. Sills, N. Wickersham, A.K. May, G.R. Bernard, and L.B. Ware. 2013. Association between haptoglobin, hemopexin and mortality in adults with sepsis. Critical Care 17 (6): R272.PubMedPubMedCentralCrossRef
50.
go back to reference Lin, T., Y.H. Kwak, F. Sammy, P. He, S. Thundivalappil, G. Sun, W. Chao, and H.S. Warren. 2010. Synergistic inflammation is induced by blood degradation products with microbial toll-like receptor agonists and is blocked by hemopexin. The Journal of Infectious Diseases 202: 624–632.PubMedPubMedCentralCrossRef Lin, T., Y.H. Kwak, F. Sammy, P. He, S. Thundivalappil, G. Sun, W. Chao, and H.S. Warren. 2010. Synergistic inflammation is induced by blood degradation products with microbial toll-like receptor agonists and is blocked by hemopexin. The Journal of Infectious Diseases 202: 624–632.PubMedPubMedCentralCrossRef
51.
52.
53.
go back to reference Cholette, J.M., A.P. Pietropaoli, K.F. Henrichs, G.M. Alfieris, K.S. Powers, R. Phipps, S.L. Spinelli, M. Swartz, F. Gensini, L.E. Daugherty, E. Nazarian, J.S. Rubenstein, D. Sweeney, M. Eaton, and N. Blumberg. 2015. Longer RBC storage duration is associated with increased postoperative infections in pediatric cardiac surgery. Pediatric Critical Care Medicine 16 (3): 227–235.PubMedPubMedCentralCrossRef Cholette, J.M., A.P. Pietropaoli, K.F. Henrichs, G.M. Alfieris, K.S. Powers, R. Phipps, S.L. Spinelli, M. Swartz, F. Gensini, L.E. Daugherty, E. Nazarian, J.S. Rubenstein, D. Sweeney, M. Eaton, and N. Blumberg. 2015. Longer RBC storage duration is associated with increased postoperative infections in pediatric cardiac surgery. Pediatric Critical Care Medicine 16 (3): 227–235.PubMedPubMedCentralCrossRef
54.
go back to reference Hod, E.A., N. Zhang, S.A. Sokol, B.S. Wojczyk, R.O. Francis, D. Ansaldi, K.P. Francis, P. Della-Latta, S. Whittier, S. Sheth, J.E. Hendrickson, J.C. Zimring, G.M. Brittenham, and S.L. Spitalnik. 2010. Transfusion of red blood cells after prolonged storage produced harmful effects that are mediated by iron and inflammation. Blood 115: 4284–4289.PubMedPubMedCentralCrossRef Hod, E.A., N. Zhang, S.A. Sokol, B.S. Wojczyk, R.O. Francis, D. Ansaldi, K.P. Francis, P. Della-Latta, S. Whittier, S. Sheth, J.E. Hendrickson, J.C. Zimring, G.M. Brittenham, and S.L. Spitalnik. 2010. Transfusion of red blood cells after prolonged storage produced harmful effects that are mediated by iron and inflammation. Blood 115: 4284–4289.PubMedPubMedCentralCrossRef
55.
go back to reference Sadaka, F., R. Aggu-Sher, K. Krause, J. O'Brien, E.S. Armbrecht, and R.W. Taylor. 2011. The effect of red blood cell transfusion on tissue oxygenation and microcirculation in severe septic patients. Annals of Intensive Care 1 (1): 46.PubMedPubMedCentralCrossRef Sadaka, F., R. Aggu-Sher, K. Krause, J. O'Brien, E.S. Armbrecht, and R.W. Taylor. 2011. The effect of red blood cell transfusion on tissue oxygenation and microcirculation in severe septic patients. Annals of Intensive Care 1 (1): 46.PubMedPubMedCentralCrossRef
56.
go back to reference Hann, L., D.C. Brown, L.G. King, and M.B. Callan. 2014. Effect of duration of packed red blood cell storage on morbidity and mortality in dogs after transfusion: 3,095 cases (2001–2010). Journal of Veterinary Internal Medicine 28 (6): 1830–1837.PubMedPubMedCentralCrossRef Hann, L., D.C. Brown, L.G. King, and M.B. Callan. 2014. Effect of duration of packed red blood cell storage on morbidity and mortality in dogs after transfusion: 3,095 cases (2001–2010). Journal of Veterinary Internal Medicine 28 (6): 1830–1837.PubMedPubMedCentralCrossRef
57.
go back to reference Hod, E.A., N. Zhang, S.A. Sokol, B.S. Wojczyk, R.O. Francis, D. Ansaldi, K.P. Francis, P. Della-Latta, S. Whittier, S. Sheth, J.E. Hendrickson, J.C. Zimring, G.M. Brittenham, and S.L. Spitalnik. 2010. Transfusion of red blood cells after prolonged storage produces harmful effects that are mediated by iron and inflammation. Blood 115 (21): 4284–4292.PubMedPubMedCentralCrossRef Hod, E.A., N. Zhang, S.A. Sokol, B.S. Wojczyk, R.O. Francis, D. Ansaldi, K.P. Francis, P. Della-Latta, S. Whittier, S. Sheth, J.E. Hendrickson, J.C. Zimring, G.M. Brittenham, and S.L. Spitalnik. 2010. Transfusion of red blood cells after prolonged storage produces harmful effects that are mediated by iron and inflammation. Blood 115 (21): 4284–4292.PubMedPubMedCentralCrossRef
59.
go back to reference Obrador, R., S. Musulin, and B. Hansen. 2015. Red blood cell storage lesion. Journal of Veterinary Emergency and Critical Care 25 (2): 187–199.PubMedCrossRef Obrador, R., S. Musulin, and B. Hansen. 2015. Red blood cell storage lesion. Journal of Veterinary Emergency and Critical Care 25 (2): 187–199.PubMedCrossRef
60.
go back to reference Koch, A., F. Tacke, K.L. Streetz, and C. Trautwein. 2012. Treatment of inflammatory bowel disease in intensive care medicine. Deutsche Medizinische Wochenschrift 137 (21): 1107–1118 quiz 1119-1120.PubMedCrossRef Koch, A., F. Tacke, K.L. Streetz, and C. Trautwein. 2012. Treatment of inflammatory bowel disease in intensive care medicine. Deutsche Medizinische Wochenschrift 137 (21): 1107–1118 quiz 1119-1120.PubMedCrossRef
61.
go back to reference Basran, S., R.J. Frumento, A. Cohen, S. Lee, Y. Du, E. Nishanian, H.S. Kaplan, M. Stafford-Smith, and E. Bennett-Guerrero. 2006. The association between duration of storage of transfused red blood cells and morbidity and mortality after reoperative cardiac surgery. Anesthesia and Analgesia 103 (1): 15–20 table of contents.PubMedCrossRef Basran, S., R.J. Frumento, A. Cohen, S. Lee, Y. Du, E. Nishanian, H.S. Kaplan, M. Stafford-Smith, and E. Bennett-Guerrero. 2006. The association between duration of storage of transfused red blood cells and morbidity and mortality after reoperative cardiac surgery. Anesthesia and Analgesia 103 (1): 15–20 table of contents.PubMedCrossRef
62.
go back to reference Purdy, F.R., M.G. Tweeddale, and P.M. Merrick. 1997. Association of mortality with age of blood transfused in septic ICU patients. Canadian Journal of Anaesthesia 44 (12): 1256–1261.PubMedCrossRef Purdy, F.R., M.G. Tweeddale, and P.M. Merrick. 1997. Association of mortality with age of blood transfused in septic ICU patients. Canadian Journal of Anaesthesia 44 (12): 1256–1261.PubMedCrossRef
63.
go back to reference Janz, D.R., Z. Zhao, T. Koyama, A.K. May, G.R. Bernard, J.A. Bastarache, P.P. Young, and L.B. Ware. 2013. Longer storage duration of red blood cells is associated with an increased risk of acute lung injury in patients with sepsis. Annals Intensive Care 3: 33.CrossRef Janz, D.R., Z. Zhao, T. Koyama, A.K. May, G.R. Bernard, J.A. Bastarache, P.P. Young, and L.B. Ware. 2013. Longer storage duration of red blood cells is associated with an increased risk of acute lung injury in patients with sepsis. Annals Intensive Care 3: 33.CrossRef
64.
go back to reference Tinmouth, A., D. Fergusson, I.C. Yee, P.C. Hebert, and A. Investigators. 2006. Canadian critical care trials G: Clinical consequences of red cell storage in the critically ill. Transfusion 46 (11): 2014–2027.PubMedCrossRef Tinmouth, A., D. Fergusson, I.C. Yee, P.C. Hebert, and A. Investigators. 2006. Canadian critical care trials G: Clinical consequences of red cell storage in the critically ill. Transfusion 46 (11): 2014–2027.PubMedCrossRef
65.
go back to reference Vamvakas, E.C., and J.H. Carven. 2000. Length of storage of transfused red cells and postoperative morbidity in patients undergoing coronary artery bypass graft surgery. Transfusion 40: 101–109.PubMedCrossRef Vamvakas, E.C., and J.H. Carven. 2000. Length of storage of transfused red cells and postoperative morbidity in patients undergoing coronary artery bypass graft surgery. Transfusion 40: 101–109.PubMedCrossRef
66.
go back to reference van de Watering, L., J. Lorinser, M. Versteegh, R. Westendord, and A. Brand. 2006. Effects of storage time of red blood cell transfusions on the prognosis of coronary artery bypass graft patients. Transfusion 46 (10): 1712–1718.PubMedCrossRef van de Watering, L., J. Lorinser, M. Versteegh, R. Westendord, and A. Brand. 2006. Effects of storage time of red blood cell transfusions on the prognosis of coronary artery bypass graft patients. Transfusion 46 (10): 1712–1718.PubMedCrossRef
67.
go back to reference Heddle, N.M., R.J. Cook, D.M. Arnold, Y. Liu, R. Barty, M.A. Crowther, P.J. Devereaux, J. Hirsh, T.E. Warkentin, K.E. Webert, D. Roxby, M. Sobieraj-Teague, A. Kurz, D.I. Sessler, P. Figueroa, M. Ellis, and J.W. Eikelboom. 2016. Effect of short-term vs. long-term blood storage on mortality after transfusion. The New England Journal of Medicine 375 (20): 1937–1945.PubMedCrossRef Heddle, N.M., R.J. Cook, D.M. Arnold, Y. Liu, R. Barty, M.A. Crowther, P.J. Devereaux, J. Hirsh, T.E. Warkentin, K.E. Webert, D. Roxby, M. Sobieraj-Teague, A. Kurz, D.I. Sessler, P. Figueroa, M. Ellis, and J.W. Eikelboom. 2016. Effect of short-term vs. long-term blood storage on mortality after transfusion. The New England Journal of Medicine 375 (20): 1937–1945.PubMedCrossRef
68.
go back to reference Wendelbo, O., T. Hervig, O. Haugen, J. Seghatchian, and H. Reikvam. 2017. Microcirculation and red cell transfusion in patients with sepsis. Transfusion and Apheresis Science 56 (6): 900–905.PubMedCrossRef Wendelbo, O., T. Hervig, O. Haugen, J. Seghatchian, and H. Reikvam. 2017. Microcirculation and red cell transfusion in patients with sepsis. Transfusion and Apheresis Science 56 (6): 900–905.PubMedCrossRef
69.
go back to reference Hendrickson, J.E., and C.D. Hillyer. 2009. Noninfectious serious hazards of transfusion. Anesthesia and Analgesia 108 (3): 759–769.PubMedCrossRef Hendrickson, J.E., and C.D. Hillyer. 2009. Noninfectious serious hazards of transfusion. Anesthesia and Analgesia 108 (3): 759–769.PubMedCrossRef
71.
go back to reference Stowell, S.R., A.M. Winkler, C.L. Maier, C.M. Arthur, N.H. Smith, K.R. Girard-Pierce, R.D. Cummings, J.C. Zimring, and J.E. Hendrickson. 2012. Initiation and regulation of complement during hemolytic transfusion reactions. Clincal and Developmental Immunology 2012: 1–12.CrossRef Stowell, S.R., A.M. Winkler, C.L. Maier, C.M. Arthur, N.H. Smith, K.R. Girard-Pierce, R.D. Cummings, J.C. Zimring, and J.E. Hendrickson. 2012. Initiation and regulation of complement during hemolytic transfusion reactions. Clincal and Developmental Immunology 2012: 1–12.CrossRef
72.
go back to reference Davenport, R. 1994. Cytokines and erythrocytes incompatibility. Current Opinion in Hematology 1 (6): 452–456.PubMed Davenport, R. 1994. Cytokines and erythrocytes incompatibility. Current Opinion in Hematology 1 (6): 452–456.PubMed
73.
go back to reference Ehrnthaller, C., A. Ignatius, F. Gebhard, and M. Huber-Lang. 2011. New insights of an defense system: Structure, function, and clinical relevance of the complement system. Molecular Medicine 17: 317–329.PubMedCrossRef Ehrnthaller, C., A. Ignatius, F. Gebhard, and M. Huber-Lang. 2011. New insights of an defense system: Structure, function, and clinical relevance of the complement system. Molecular Medicine 17: 317–329.PubMedCrossRef
74.
go back to reference Smedegard, G., L. Cui, and T.E. Hugli. 1989. Endotoxin-induced shock in the rat. The American Journal of Pathology 135 (3): 489–497.PubMedPubMedCentral Smedegard, G., L. Cui, and T.E. Hugli. 1989. Endotoxin-induced shock in the rat. The American Journal of Pathology 135 (3): 489–497.PubMedPubMedCentral
75.
go back to reference Ehrnthaller, C., U. Amara, S. Weckbach, M. Kalbitz, M. Huber-Lang, and S. Bahrami. 2012. Alteration of complement hemolytic activity in different trauma and sepsis models. Journal of Inflammation Research 5: 59–66.PubMedPubMedCentralCrossRef Ehrnthaller, C., U. Amara, S. Weckbach, M. Kalbitz, M. Huber-Lang, and S. Bahrami. 2012. Alteration of complement hemolytic activity in different trauma and sepsis models. Journal of Inflammation Research 5: 59–66.PubMedPubMedCentralCrossRef
76.
go back to reference Schubert, J., and A. Roth. 2015. Update on paroxysmal nocturnal haemoglobinuria: On the long way to understand the principles of the disease. European Journal of Haematology 94 (6): 464–473.PubMedCrossRef Schubert, J., and A. Roth. 2015. Update on paroxysmal nocturnal haemoglobinuria: On the long way to understand the principles of the disease. European Journal of Haematology 94 (6): 464–473.PubMedCrossRef
77.
go back to reference Huber-Lang, M.S., J.V. Sarma, S.R. McGuire, K.T. Lu, R.F. Guo, V.A. Padgaonkar, E.M. Younkin, I.J. Laudes, N.C. Riedemann, J.G. Younger, et al. 2001. Protective effects of anti-C5a peptide antibodies in experimental sepsis. The FASEB Journal 15 (3): 568–570.PubMedCrossRef Huber-Lang, M.S., J.V. Sarma, S.R. McGuire, K.T. Lu, R.F. Guo, V.A. Padgaonkar, E.M. Younkin, I.J. Laudes, N.C. Riedemann, J.G. Younger, et al. 2001. Protective effects of anti-C5a peptide antibodies in experimental sepsis. The FASEB Journal 15 (3): 568–570.PubMedCrossRef
78.
go back to reference Huber-Lang, M., N. Riedemann, J.V. Sarma, E.M. Younkin, S.R. McGuire, I.J. Laudes, K.T. Lu, R.-F. Guo, T.A. Neff, V.A. Padgaonkar, et al. 2002. Protection of innate immunity by C5aR antagonist in septic mice. The FASEB Journal 16: 1567–1574.PubMedCrossRef Huber-Lang, M., N. Riedemann, J.V. Sarma, E.M. Younkin, S.R. McGuire, I.J. Laudes, K.T. Lu, R.-F. Guo, T.A. Neff, V.A. Padgaonkar, et al. 2002. Protection of innate immunity by C5aR antagonist in septic mice. The FASEB Journal 16: 1567–1574.PubMedCrossRef
79.
go back to reference Hitomi, Y., and S. Fujii. 1982. Inhibition of various immunological reactions in vivo by a new synthetic complement inhibitor. International Archives of Allergy and Applied Immunology 69: 262–267.PubMedCrossRef Hitomi, Y., and S. Fujii. 1982. Inhibition of various immunological reactions in vivo by a new synthetic complement inhibitor. International Archives of Allergy and Applied Immunology 69: 262–267.PubMedCrossRef
80.
go back to reference Brauckmann, S., K. Effenberger-Neidnicht, H. de Groot, M. Nagel, J. Peters, and M. Hartmann. 2015. Mechanismen der Lipopolysaccharid-induzierten Hämolyse—Hinweise für eine direkte Zellmembraninteraktion. Anästhesiologie & Intensivmedizin 56: 5–6. Brauckmann, S., K. Effenberger-Neidnicht, H. de Groot, M. Nagel, J. Peters, and M. Hartmann. 2015. Mechanismen der Lipopolysaccharid-induzierten Hämolyse—Hinweise für eine direkte Zellmembraninteraktion. Anästhesiologie & Intensivmedizin 56: 5–6.
81.
go back to reference Brauckmann, S., K. Effenberger-Neidnicht, H. de Groot, M. Nagel, C. Mayer, J. Peters, and M. Hartmann. 2016. Lipopolysaccharide-induced haemolysis: Evidence for direct membrane interactions. Scientific Reports 6: 35508.PubMedPubMedCentralCrossRef Brauckmann, S., K. Effenberger-Neidnicht, H. de Groot, M. Nagel, C. Mayer, J. Peters, and M. Hartmann. 2016. Lipopolysaccharide-induced haemolysis: Evidence for direct membrane interactions. Scientific Reports 6: 35508.PubMedPubMedCentralCrossRef
82.
go back to reference Noris, M., and G. Remuzzi. 2005. Hemolytic uremic syndrome. Journal of the American Society of Nephrology: JASN 16 (4): 1035–1050.PubMedCrossRef Noris, M., and G. Remuzzi. 2005. Hemolytic uremic syndrome. Journal of the American Society of Nephrology: JASN 16 (4): 1035–1050.PubMedCrossRef
83.
go back to reference Heideman, M., B. Kauser, and L.-E. Gelin. 1979. Complement activation early in endotoxin shock. The Journal of Surgical Research 26: 74–78.PubMedCrossRef Heideman, M., B. Kauser, and L.-E. Gelin. 1979. Complement activation early in endotoxin shock. The Journal of Surgical Research 26: 74–78.PubMedCrossRef
84.
go back to reference Levi, M., and M. Schlultz. 2010. Coagulopathy and platelet disorders in critically ill patients. Minerva Anestesiologica 76 (10): 851–859.PubMed Levi, M., and M. Schlultz. 2010. Coagulopathy and platelet disorders in critically ill patients. Minerva Anestesiologica 76 (10): 851–859.PubMed
85.
86.
go back to reference Adamzik, M., M. Eggmann, U.H. Frey, K. Gorlinger, M. Broecker-Preuss, G. Marggraf, F. Saner, H. Eggebrecht, J. Peters, and M. Hartmann. 2010. Comparison of thromboelastometry with procalcitonin, interleukin 6, and C-reactive protein as diagnostic tests for severe sepsis in critically ill adults. Critical Care 14 (5): R178.PubMedPubMedCentralCrossRef Adamzik, M., M. Eggmann, U.H. Frey, K. Gorlinger, M. Broecker-Preuss, G. Marggraf, F. Saner, H. Eggebrecht, J. Peters, and M. Hartmann. 2010. Comparison of thromboelastometry with procalcitonin, interleukin 6, and C-reactive protein as diagnostic tests for severe sepsis in critically ill adults. Critical Care 14 (5): R178.PubMedPubMedCentralCrossRef
87.
go back to reference Bahl, N., I. Winarsih, L. Tucker-Kellogg, and J.L. Ding. 2014. Extracellular haemoglobin upregulates and binds to tissue factor on macrophages: Implications for coagulation and oxidative stress. Thrombosis and Haemostasis 111 (1): 67–78.PubMedCrossRef Bahl, N., I. Winarsih, L. Tucker-Kellogg, and J.L. Ding. 2014. Extracellular haemoglobin upregulates and binds to tissue factor on macrophages: Implications for coagulation and oxidative stress. Thrombosis and Haemostasis 111 (1): 67–78.PubMedCrossRef
88.
go back to reference Bull, B.S., and I.N. Kuhn. 1970. The production of schistocytes by fibrin strands (a scanning electron microscope study). Blood 35 (1): 104–111.PubMed Bull, B.S., and I.N. Kuhn. 1970. The production of schistocytes by fibrin strands (a scanning electron microscope study). Blood 35 (1): 104–111.PubMed
89.
go back to reference Heyes, H., and W. Köhle. 1976. B. S: The appearance of schistocytes in the peripheral blood in correlation to the degree of disseminated intravascular coagulation. An experimental study in rats. Haemostasis 5 (2): 66–73.PubMed Heyes, H., and W. Köhle. 1976. B. S: The appearance of schistocytes in the peripheral blood in correlation to the degree of disseminated intravascular coagulation. An experimental study in rats. Haemostasis 5 (2): 66–73.PubMed
90.
go back to reference Covarrubias Espinoza, G., and J.L. Lepe Zuniga. 1980. Jaundice caused by microangiopathic hemolysis associated to septicemia in the newborn. Boletín Médico del Hospital Infantil de México 1980 (37): 3. Covarrubias Espinoza, G., and J.L. Lepe Zuniga. 1980. Jaundice caused by microangiopathic hemolysis associated to septicemia in the newborn. Boletín Médico del Hospital Infantil de México 1980 (37): 3.
91.
go back to reference Grigir'ev, G.P., and V.V. Usynin. 1991. Coagulative activity and acid resistance of damaged and intact erythrocytes in various types of intravascular blood coagulation. Gematologiia i Transfuziologiia 36 (4): 13–15.PubMed Grigir'ev, G.P., and V.V. Usynin. 1991. Coagulative activity and acid resistance of damaged and intact erythrocytes in various types of intravascular blood coagulation. Gematologiia i Transfuziologiia 36 (4): 13–15.PubMed
92.
go back to reference Borrego, D., P. María-Tome, P. Cascales, J.M. García Aguayo, G. Pérez Amoros, and A. Abad. 1991. Massive intravascular hemolysis in septicemia caused by Clostridium perfringens. Sangre (Barcelona) 36 (4): 315–317. Borrego, D., P. María-Tome, P. Cascales, J.M. García Aguayo, G. Pérez Amoros, and A. Abad. 1991. Massive intravascular hemolysis in septicemia caused by Clostridium perfringens. Sangre (Barcelona) 36 (4): 315–317.
93.
go back to reference Daly, J.J., M.N. Haeusler, C.J. Hogan, and E.M. Wood. 2006. Massive intravascular haemolysis with T-activation and disseminated intravascular coagulation due to clostridial sepsis. British Journal of Haematology 134 (6): 553.PubMedCrossRef Daly, J.J., M.N. Haeusler, C.J. Hogan, and E.M. Wood. 2006. Massive intravascular haemolysis with T-activation and disseminated intravascular coagulation due to clostridial sepsis. British Journal of Haematology 134 (6): 553.PubMedCrossRef
94.
go back to reference Novotny, J., and M. Penka. 2012. Disturbances of hemostasis in sepsis. Vnitřní Lékařství 58 (6): 439–447.PubMed Novotny, J., and M. Penka. 2012. Disturbances of hemostasis in sepsis. Vnitřní Lékařství 58 (6): 439–447.PubMed
95.
go back to reference Jacobi, H., D. Karitzky, C. Mittermayer, G. Seseke, I. Witt, and W. Künzer. 1971. Intravasale Hämolyse und Blutgerinnung: Tierexperimentelle Untersuchungen üder die Folgen einer intravenösen Hämolysatapplikation. Blut Band XXII: 244–254.CrossRef Jacobi, H., D. Karitzky, C. Mittermayer, G. Seseke, I. Witt, and W. Künzer. 1971. Intravasale Hämolyse und Blutgerinnung: Tierexperimentelle Untersuchungen üder die Folgen einer intravenösen Hämolysatapplikation. Blut Band XXII: 244–254.CrossRef
96.
go back to reference Helms, C.C., M. Marvel, W. Zhao, M. Stahle, R. Vest, G.J. Kato, J.S. Lee, G. Christ, M.T. Gladwin, R.R. Hantgan, and D.B. Kim-Shapiro. 2013. Mechanisms of hemolysis-associated platelet activation. Journal of Thrombosis and Haemostasis 11 (12): 2148–2154.PubMedCrossRef Helms, C.C., M. Marvel, W. Zhao, M. Stahle, R. Vest, G.J. Kato, J.S. Lee, G. Christ, M.T. Gladwin, R.R. Hantgan, and D.B. Kim-Shapiro. 2013. Mechanisms of hemolysis-associated platelet activation. Journal of Thrombosis and Haemostasis 11 (12): 2148–2154.PubMedCrossRef
97.
go back to reference Dale, J., K. Ohlsson, K. Nordstoga, and A.O. Aasen. 1980. Intravascular hemolysis and ultrastructural changes of erythrocytes in lethal canine endotoxin shock. European Surgical Research 12 (1): 39–51.PubMedCrossRef Dale, J., K. Ohlsson, K. Nordstoga, and A.O. Aasen. 1980. Intravascular hemolysis and ultrastructural changes of erythrocytes in lethal canine endotoxin shock. European Surgical Research 12 (1): 39–51.PubMedCrossRef
98.
go back to reference Aasen, A.O., J. Dale, K. Ohlsson, and M. Gallimore. 1978. Effects of slow intravenous administration of endotoxin on blood cells and coagulation in dogs. European Surgical Research 10 (3): 194–205.PubMedCrossRef Aasen, A.O., J. Dale, K. Ohlsson, and M. Gallimore. 1978. Effects of slow intravenous administration of endotoxin on blood cells and coagulation in dogs. European Surgical Research 10 (3): 194–205.PubMedCrossRef
99.
go back to reference Koch, T., S. Geiger, and M.J.R. Ragaller. 2001. Monitoring of organ dysfunction in sepsis/systemic inflammatory response syndrome: Novel strategies. Journal of the American Society of Nephrology: JASN 12 (17): S53–S59.PubMed Koch, T., S. Geiger, and M.J.R. Ragaller. 2001. Monitoring of organ dysfunction in sepsis/systemic inflammatory response syndrome: Novel strategies. Journal of the American Society of Nephrology: JASN 12 (17): S53–S59.PubMed
100.
go back to reference Lam, C., K. Tyml, C.M. Martin, and W.J. Sibbald. 1994. Microvascular perfusion is impaired in a rat model of normotensive sepsis. The Journal of Clinical Investigation 94: 2077–2083.PubMedPubMedCentralCrossRef Lam, C., K. Tyml, C.M. Martin, and W.J. Sibbald. 1994. Microvascular perfusion is impaired in a rat model of normotensive sepsis. The Journal of Clinical Investigation 94: 2077–2083.PubMedPubMedCentralCrossRef
101.
go back to reference Farquhar, I., C.M. Martin, C. Lam, R. Potter, C.G. Ellis, and W.J. Sibbald. 1996. Decreased capillary density in vivo in bowel mucosa of rats with normotensive sepsis. The Journal of Surgical Research 61: 190–196.PubMedCrossRef Farquhar, I., C.M. Martin, C. Lam, R. Potter, C.G. Ellis, and W.J. Sibbald. 1996. Decreased capillary density in vivo in bowel mucosa of rats with normotensive sepsis. The Journal of Surgical Research 61: 190–196.PubMedCrossRef
102.
go back to reference Edul, V.S., C. Ince, A.R. Vazquez, P.N. Rubatto, E.D. Espinoza, S. Welsh, C. Enrico, and A. Dubin. 2016. Similar microcirculatory alterations in patients with normodynamic and hyperdynamic septic shock. Annals of the American Thoracic Society 13 (2): 240–247.PubMed Edul, V.S., C. Ince, A.R. Vazquez, P.N. Rubatto, E.D. Espinoza, S. Welsh, C. Enrico, and A. Dubin. 2016. Similar microcirculatory alterations in patients with normodynamic and hyperdynamic septic shock. Annals of the American Thoracic Society 13 (2): 240–247.PubMed
103.
go back to reference Bateman, R.M., M.D. Sharpe, J.E. Jagger, and C.G. Ellis. 2015. Sepsis impairs microvascular autoregulation and delays capillary response within hypoxic capillaries. Critical Care 19: 389.PubMedPubMedCentralCrossRef Bateman, R.M., M.D. Sharpe, J.E. Jagger, and C.G. Ellis. 2015. Sepsis impairs microvascular autoregulation and delays capillary response within hypoxic capillaries. Critical Care 19: 389.PubMedPubMedCentralCrossRef
104.
go back to reference Fukumura, D., S. Miura, I. Kurose, H. Higuchi, H. Suzuki, H. Ebinuma, J.-Y. Han, N. Watanabe, W. Yashi, M. Kitajima, et al. 1996. IL-1 is an important mediator for microcirculatory changes in endotoxin-induced intestinal mucosal damage. Digestive Diseases and Sciences 41 (12): 2482–2492.PubMedCrossRef Fukumura, D., S. Miura, I. Kurose, H. Higuchi, H. Suzuki, H. Ebinuma, J.-Y. Han, N. Watanabe, W. Yashi, M. Kitajima, et al. 1996. IL-1 is an important mediator for microcirculatory changes in endotoxin-induced intestinal mucosal damage. Digestive Diseases and Sciences 41 (12): 2482–2492.PubMedCrossRef
105.
go back to reference Oude Lansink, M., V. Patyk, H. de Groot, and K. Effenberger-Neidnicht. 2017. Melatonin reduces changes to small intestinal microvasculature during systemic inflammation. The Journal of Surgical Research 211: 114–125.CrossRef Oude Lansink, M., V. Patyk, H. de Groot, and K. Effenberger-Neidnicht. 2017. Melatonin reduces changes to small intestinal microvasculature during systemic inflammation. The Journal of Surgical Research 211: 114–125.CrossRef
106.
go back to reference Hinshaw, L.B. 1996. Sepsis/septic shock: Participation of the microcirculation: An abbreviated review. Critical Care Medicine 24: 1072–1078.PubMedCrossRef Hinshaw, L.B. 1996. Sepsis/septic shock: Participation of the microcirculation: An abbreviated review. Critical Care Medicine 24: 1072–1078.PubMedCrossRef
107.
go back to reference Sonnino, R.E., J.M. Riddle, and A.S. Besser. 1988. Small bowel transplantation in the rat: Ultrastructural changes during the early phases of rejection. Journal of Investigative Surgery 1 (3): 181–191.PubMedCrossRef Sonnino, R.E., J.M. Riddle, and A.S. Besser. 1988. Small bowel transplantation in the rat: Ultrastructural changes during the early phases of rejection. Journal of Investigative Surgery 1 (3): 181–191.PubMedCrossRef
108.
go back to reference Mumme, C. 1940. Zur Klinik und Pathologie der Endokarditis und Aortitisfibroplastica sowie Thromboendarteritis obliterans mit hochgradiger Eosinophilie im Blut, Knochenmark und in den Organen. Zeitschrift für Klinische Medizin 138 (1): 22. Mumme, C. 1940. Zur Klinik und Pathologie der Endokarditis und Aortitisfibroplastica sowie Thromboendarteritis obliterans mit hochgradiger Eosinophilie im Blut, Knochenmark und in den Organen. Zeitschrift für Klinische Medizin 138 (1): 22.
109.
go back to reference McKay, D.G., A.N. Whitaker, and V. Cruse. 1969. Studies of catecholamine shock. II. An experimental model of microangiopathic hemolysis. The American Journal of Pathology 56 (2): 177–200.PubMedPubMedCentral McKay, D.G., A.N. Whitaker, and V. Cruse. 1969. Studies of catecholamine shock. II. An experimental model of microangiopathic hemolysis. The American Journal of Pathology 56 (2): 177–200.PubMedPubMedCentral
110.
go back to reference McKay, D.G., and A.N. Whitaker. 1969. Studies of catecholamine shock. I. Disseminated intravascular coagulation. The American Journal of Pathology 56 (2): 153–176.PubMedPubMedCentral McKay, D.G., and A.N. Whitaker. 1969. Studies of catecholamine shock. I. Disseminated intravascular coagulation. The American Journal of Pathology 56 (2): 153–176.PubMedPubMedCentral
111.
go back to reference Effenberger-Neidnicht, K., Bornmann, S., Jägers, J., Patyk, V., Kirsch, M. 2018. Microvascular stasis and hemolysis: Coincidence or causality? Unpublished results. Effenberger-Neidnicht, K., Bornmann, S., Jägers, J., Patyk, V., Kirsch, M. 2018. Microvascular stasis and hemolysis: Coincidence or causality? Unpublished results.
112.
go back to reference Effenberger-Neidnicht, K., S. Bornmann, M. Hartmann, J. Jägers, M. Oude Lansink, and H. De Groot. 2015. Is there an association between cell-free hemoglobin and the congestion of capillaries in small intestines during endotoxemia? Infection 43 (Supplement 1): S16–S17. Effenberger-Neidnicht, K., S. Bornmann, M. Hartmann, J. Jägers, M. Oude Lansink, and H. De Groot. 2015. Is there an association between cell-free hemoglobin and the congestion of capillaries in small intestines during endotoxemia? Infection 43 (Supplement 1): S16–S17.
113.
go back to reference Hanssen, S.J., T. Lubbers, C.M. Hodin, F.W. Prinzen, W.A. Buurman, and M.J. Jacobs. 2011. Hemolysis results in impaired intestinal microcirculation and intestinal epithelial cell injury. World Journal of Gastroenterology 17 (2): 213–218.PubMedPubMedCentralCrossRef Hanssen, S.J., T. Lubbers, C.M. Hodin, F.W. Prinzen, W.A. Buurman, and M.J. Jacobs. 2011. Hemolysis results in impaired intestinal microcirculation and intestinal epithelial cell injury. World Journal of Gastroenterology 17 (2): 213–218.PubMedPubMedCentralCrossRef
114.
go back to reference de Haan, J.J., I. Vermeulen Windsant, T. Lubbers, S.J. Hanssen, M. Hadfoune, F.W. Prinzen, J.W. Greve, and W.A. Buurman. 2013. Prevention of hemolysis-induced organ damage by nutritional activation of the vagal anti-inflammatory reflex. Critical Care Medicine 41 (11): e361–e367.PubMedCrossRef de Haan, J.J., I. Vermeulen Windsant, T. Lubbers, S.J. Hanssen, M. Hadfoune, F.W. Prinzen, J.W. Greve, and W.A. Buurman. 2013. Prevention of hemolysis-induced organ damage by nutritional activation of the vagal anti-inflammatory reflex. Critical Care Medicine 41 (11): e361–e367.PubMedCrossRef
115.
go back to reference Vermeulen Windsant, I.C., M.G. Snoeijs, S.J. Hanssen, S. Altintas, J.H. Heijmans, T.A. Koeppel, G.W. Schurink, W.A. Buurman, and M.J. Jacobs. 2010. Hemolysis is associated with acute kidney injury during major aortic surgery. Kidney International 77 (10): 913–920.PubMedCrossRef Vermeulen Windsant, I.C., M.G. Snoeijs, S.J. Hanssen, S. Altintas, J.H. Heijmans, T.A. Koeppel, G.W. Schurink, W.A. Buurman, and M.J. Jacobs. 2010. Hemolysis is associated with acute kidney injury during major aortic surgery. Kidney International 77 (10): 913–920.PubMedCrossRef
116.
go back to reference Vinchi, F., S. Gastaldi, L. Silengo, F. Altruda, and E. Tolosano. 2008. Hemopexin prevents endothelial damage and liver congestion in a mouse model of heme overload. The American Journal of Pathology 173 (1): 289–299.PubMedPubMedCentralCrossRef Vinchi, F., S. Gastaldi, L. Silengo, F. Altruda, and E. Tolosano. 2008. Hemopexin prevents endothelial damage and liver congestion in a mouse model of heme overload. The American Journal of Pathology 173 (1): 289–299.PubMedPubMedCentralCrossRef
117.
go back to reference Van Cromphaut, S.J., I. Vanhorebeck, and G. Van den Berghe. 2008. Glucose metabolism and insulin resistance in sepsis. Current Pharmaceutical Design 14 (19): 1887–1899.PubMedCrossRef Van Cromphaut, S.J., I. Vanhorebeck, and G. Van den Berghe. 2008. Glucose metabolism and insulin resistance in sepsis. Current Pharmaceutical Design 14 (19): 1887–1899.PubMedCrossRef
118.
go back to reference Doursout, M.F., T. Oguchi, U.M. Fischer, Y. Liang, B. Chelly, C.J. Hartley, and J.E. Chelly. 2008. Distribution of NOS isoforms in a porcine endotoxin shock model. Shock 29 (6): 692–702.PubMedPubMedCentral Doursout, M.F., T. Oguchi, U.M. Fischer, Y. Liang, B. Chelly, C.J. Hartley, and J.E. Chelly. 2008. Distribution of NOS isoforms in a porcine endotoxin shock model. Shock 29 (6): 692–702.PubMedPubMedCentral
119.
go back to reference Feig, S.A., G.B. Segel, S.B. Shohet, and D.G. Nathan. 1972. Energy metabolism in human erythrocytes: Effects of glucose depletion. The Journal of Clinical Investigation 51: 1547–1554.PubMedPubMedCentralCrossRef Feig, S.A., G.B. Segel, S.B. Shohet, and D.G. Nathan. 1972. Energy metabolism in human erythrocytes: Effects of glucose depletion. The Journal of Clinical Investigation 51: 1547–1554.PubMedPubMedCentralCrossRef
120.
go back to reference Van Wijk, R., and W.W. Van Solinge. 2005. The energy-less red blood cell is lost: Erythrocytes enzyme abnormalities of glucolysis. Blood 106 (13): 4034–4042.PubMedCrossRef Van Wijk, R., and W.W. Van Solinge. 2005. The energy-less red blood cell is lost: Erythrocytes enzyme abnormalities of glucolysis. Blood 106 (13): 4034–4042.PubMedCrossRef
121.
go back to reference Jägers, J., S. Brauckmann, M. Kirsch, and K. Effenberger-Neidnicht. 2018. Moderate glucose supply reduces hemolysis during systemic inflammation. Journal of Inflammation Research 11: 87–94.PubMedPubMedCentralCrossRef Jägers, J., S. Brauckmann, M. Kirsch, and K. Effenberger-Neidnicht. 2018. Moderate glucose supply reduces hemolysis during systemic inflammation. Journal of Inflammation Research 11: 87–94.PubMedPubMedCentralCrossRef
122.
go back to reference Hendry, E.B. 1951. Delayed hemolysis of human erythrocytes in solutions of glucose. The Journal of General Physiology 35 (4): 605–616.CrossRef Hendry, E.B. 1951. Delayed hemolysis of human erythrocytes in solutions of glucose. The Journal of General Physiology 35 (4): 605–616.CrossRef
123.
go back to reference Nagel, M., S. Brauckmann, F. Moegle-Hofacker, K. Effenberger-Neidnicht, M. Hartmann, H. de Groot, and C. Mayer. 2015. Impact of bacterial endotoxin on the structure of DMPC membranes. Biochimica et Biophysica Acta, Biomembranes 1848 (10): 2271–2276.CrossRef Nagel, M., S. Brauckmann, F. Moegle-Hofacker, K. Effenberger-Neidnicht, M. Hartmann, H. de Groot, and C. Mayer. 2015. Impact of bacterial endotoxin on the structure of DMPC membranes. Biochimica et Biophysica Acta, Biomembranes 1848 (10): 2271–2276.CrossRef
124.
go back to reference Pöschl, J.M., C. Leray, P. Ruef, J.P. Cazenave, and O. Linderkamp. 2003. Endotoxin binding to erythrocyte membrane and erythrocyte deformability in human sepsis and in vitro. Critical Care Medicine 31 (3): 924–928.PubMedCrossRef Pöschl, J.M., C. Leray, P. Ruef, J.P. Cazenave, and O. Linderkamp. 2003. Endotoxin binding to erythrocyte membrane and erythrocyte deformability in human sepsis and in vitro. Critical Care Medicine 31 (3): 924–928.PubMedCrossRef
125.
go back to reference Hurd, T.C., K.S. Dasmahapatra, B.F. Rush, and G.W. Machiedo. 1988. Red blood cell deformability in human and experimental sepsis. Archives of Surgery 123: 217–220.PubMedCrossRef Hurd, T.C., K.S. Dasmahapatra, B.F. Rush, and G.W. Machiedo. 1988. Red blood cell deformability in human and experimental sepsis. Archives of Surgery 123: 217–220.PubMedCrossRef
126.
go back to reference Baskurt, O.K., D. Gelmont, and H.J. Meiselman. 1998. Red blood cell deformability in sepsis. American Journal of Respiratory and Critical Care Medicine 157: 421–427.PubMedCrossRef Baskurt, O.K., D. Gelmont, and H.J. Meiselman. 1998. Red blood cell deformability in sepsis. American Journal of Respiratory and Critical Care Medicine 157: 421–427.PubMedCrossRef
127.
go back to reference Arabski, M., K. Gwozdzinski, B. Sudak, and W. Kaca. 2008. Effects of Proteus mirabilis lipopolysaccharides with different O-polysaccharide structures on the plasma membrane of human erythrocytes. Zeitschrift für Naturforschung 63c: 460–468.CrossRef Arabski, M., K. Gwozdzinski, B. Sudak, and W. Kaca. 2008. Effects of Proteus mirabilis lipopolysaccharides with different O-polysaccharide structures on the plasma membrane of human erythrocytes. Zeitschrift für Naturforschung 63c: 460–468.CrossRef
128.
go back to reference Rubenberg, M.L., L.R.I. Baker, J.A. McBride, L.H. Sevitt, and M.C. Brain. 1968. Intravascular coagulation in a case of Clostridium perfingens septicaemia: Treatment by exchange transfusion and heparin. British Medical Journal 4: 271–274.CrossRef Rubenberg, M.L., L.R.I. Baker, J.A. McBride, L.H. Sevitt, and M.C. Brain. 1968. Intravascular coagulation in a case of Clostridium perfingens septicaemia: Treatment by exchange transfusion and heparin. British Medical Journal 4: 271–274.CrossRef
129.
go back to reference Jacob, H.S. 1966. Abnormalities in the physiology of the erythrocyte membrane in hereditary spherocytosis. The American Journal of Medicine 41 (5): 734–743.PubMedCrossRef Jacob, H.S. 1966. Abnormalities in the physiology of the erythrocyte membrane in hereditary spherocytosis. The American Journal of Medicine 41 (5): 734–743.PubMedCrossRef
130.
go back to reference Macfarlane, M.G., and B.C.J.G. Knight. 1941. The bacterial chemistry of bacterial toxins: I. The lecithinase activity of Cl. welchii toxins. The Biochemical Journal 35 (8–9): 884–902.PubMedPubMedCentralCrossRef Macfarlane, M.G., and B.C.J.G. Knight. 1941. The bacterial chemistry of bacterial toxins: I. The lecithinase activity of Cl. welchii toxins. The Biochemical Journal 35 (8–9): 884–902.PubMedPubMedCentralCrossRef
131.
go back to reference Pastene, B., E. Gregoire, V. Blasco, and J. Albanese. 2014. Alpha and theta toxin Clostridium perfringens infection complicated by septic shock and hemolysis. Annales Françaises d'Anesthésie et de Réanimation 33: 548–553.CrossRef Pastene, B., E. Gregoire, V. Blasco, and J. Albanese. 2014. Alpha and theta toxin Clostridium perfringens infection complicated by septic shock and hemolysis. Annales Françaises d'Anesthésie et de Réanimation 33: 548–553.CrossRef
132.
go back to reference Parker, M.W., and S.C. Feil. 2005. Pore-forming protein toxins: From structure to function. Progress in Biophysics and Molecular Biology 88 (1): 91–142.PubMedCrossRef Parker, M.W., and S.C. Feil. 2005. Pore-forming protein toxins: From structure to function. Progress in Biophysics and Molecular Biology 88 (1): 91–142.PubMedCrossRef
133.
go back to reference Tilley, S.J., and H.R. Saibil. 2006. The mechanism of pore formation by bacterial toxins. Current Opinion in Structural Biology 16 (2): 230–236.PubMedCrossRef Tilley, S.J., and H.R. Saibil. 2006. The mechanism of pore formation by bacterial toxins. Current Opinion in Structural Biology 16 (2): 230–236.PubMedCrossRef
134.
go back to reference Aroian, R., and F.G. van der Goot. 2007. Pore-forming toxins and cellular non-immune defenses (CNIDs). Current Opinion in Microbiology 10 (1): 57–61.PubMedCrossRef Aroian, R., and F.G. van der Goot. 2007. Pore-forming toxins and cellular non-immune defenses (CNIDs). Current Opinion in Microbiology 10 (1): 57–61.PubMedCrossRef
135.
go back to reference Gonzalez, M.R., M. Bischofberger, L. Pernot, F.G. van der Goot, and B. Freche. 2008. Bacterial pore-forming toxins: The (w)hole story? Cellular and Molecular Life Sciences 65 (3): 493–507.PubMedCrossRef Gonzalez, M.R., M. Bischofberger, L. Pernot, F.G. van der Goot, and B. Freche. 2008. Bacterial pore-forming toxins: The (w)hole story? Cellular and Molecular Life Sciences 65 (3): 493–507.PubMedCrossRef
136.
go back to reference Libertin, C.R., R. Dumitru, and D.S. Stein. 1992. The hemolysin/bacteriocin produced by enterococcus is a marker of pathogenicity. Diagnostic Microbiology and Infectious Disease 15: 115–120.PubMedCrossRef Libertin, C.R., R. Dumitru, and D.S. Stein. 1992. The hemolysin/bacteriocin produced by enterococcus is a marker of pathogenicity. Diagnostic Microbiology and Infectious Disease 15: 115–120.PubMedCrossRef
137.
go back to reference Skals, M., N.R. Jorgensen, J. Leipziger, and H.A. Praetorius. 2009. Alpha-hemolysin from Escherichia coli uses endogenous amplification through P2X receptor activation to induce hemolysis. PNAS 106 (10): 4030–4035.PubMedCrossRef Skals, M., N.R. Jorgensen, J. Leipziger, and H.A. Praetorius. 2009. Alpha-hemolysin from Escherichia coli uses endogenous amplification through P2X receptor activation to induce hemolysis. PNAS 106 (10): 4030–4035.PubMedCrossRef
138.
go back to reference Al-Wali, W.I., S.J. Elvin, C.M. Mason, A. Clark, and H.S. Tranter. 1998. Comparative phenotypic characteristics of Staphylococcus aureus isolated from line and non-line associated septicaemia, CAPD peritonitis, bone/joint infections and healthy nasal carriers. Journal of Medical Microbiology 47 (3): 265–274.PubMedCrossRef Al-Wali, W.I., S.J. Elvin, C.M. Mason, A. Clark, and H.S. Tranter. 1998. Comparative phenotypic characteristics of Staphylococcus aureus isolated from line and non-line associated septicaemia, CAPD peritonitis, bone/joint infections and healthy nasal carriers. Journal of Medical Microbiology 47 (3): 265–274.PubMedCrossRef
139.
go back to reference Hacker, J., H. Hof, L. Emödy, and W. Goebel. 1986. Influence of cloned Escherichia coli hemolysin genes, S-fimbriae and serum resistance on pathogenicity in different animal models. Microbial Pathogenesis 1: 533–547.PubMedCrossRef Hacker, J., H. Hof, L. Emödy, and W. Goebel. 1986. Influence of cloned Escherichia coli hemolysin genes, S-fimbriae and serum resistance on pathogenicity in different animal models. Microbial Pathogenesis 1: 533–547.PubMedCrossRef
140.
go back to reference Lang, F., E. Gulbins, P.A. Lang, D. Zappulla, and M. Föller. 2010. Ceramide in suicidal death of erythrocytes. Cellular Physiology and Biochemistry 26: 21–28.PubMedCrossRef Lang, F., E. Gulbins, P.A. Lang, D. Zappulla, and M. Föller. 2010. Ceramide in suicidal death of erythrocytes. Cellular Physiology and Biochemistry 26: 21–28.PubMedCrossRef
141.
go back to reference Qadri, S.M., R. Bissinger, Z. Solh, and P.A. Oldenborg. 2017. Eryptosis in health and disease: A paradigm shift towards understanding the (patho)physiological implications of programmed cell death of erythrocytes. Blood Reviews 31 (6): 349–361.PubMedCrossRef Qadri, S.M., R. Bissinger, Z. Solh, and P.A. Oldenborg. 2017. Eryptosis in health and disease: A paradigm shift towards understanding the (patho)physiological implications of programmed cell death of erythrocytes. Blood Reviews 31 (6): 349–361.PubMedCrossRef
142.
go back to reference Lang, E., and F. Lang. 2015. Triggers, inhibitors, mechanisms, and significance of eryptosis: The suicidal erythrocyte death. BioMed Research International 2015: 513518.PubMedPubMedCentralCrossRef Lang, E., and F. Lang. 2015. Triggers, inhibitors, mechanisms, and significance of eryptosis: The suicidal erythrocyte death. BioMed Research International 2015: 513518.PubMedPubMedCentralCrossRef
143.
go back to reference Föller, M., S.M. Huber, and F. Lang. 2008. Erythrocyte programmed cell death. IUBMB Life 60 (10): 3.CrossRef Föller, M., S.M. Huber, and F. Lang. 2008. Erythrocyte programmed cell death. IUBMB Life 60 (10): 3.CrossRef
144.
go back to reference Lang, C.H., Z. Spolarics, A. Ottlakan, and J.J. Spitzer. 1993. Effect of high-dose endotoxin on glucose production and utilization. Metabolism 42 (10): 1351–1358.PubMedCrossRef Lang, C.H., Z. Spolarics, A. Ottlakan, and J.J. Spitzer. 1993. Effect of high-dose endotoxin on glucose production and utilization. Metabolism 42 (10): 1351–1358.PubMedCrossRef
Metadata
Title
Mechanisms of Hemolysis During Sepsis
Authors
Katharina Effenberger-Neidnicht
Matthias Hartmann
Publication date
01-10-2018
Publisher
Springer US
Published in
Inflammation / Issue 5/2018
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0810-y

Other articles of this Issue 5/2018

Inflammation 5/2018 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.