Skip to main content
Top
Published in: Inflammation 5/2018

01-10-2018 | ORIGINAL ARTICLE

Cyclic Tensile Strain Upregulates Pro-Inflammatory Cytokine Expression Via FAK-MAPK Signaling in Chondrocytes

Authors: Makoto Yanoshita, Naoto Hirose, Yuki Okamoto, Chikako Sumi, Mami Takano, Sayuri Nishiyama, Yuki Asakawa-Tanne, Kayo Horie, Azusa Onishi, Yuka Yamauchi, Tomomi Mitsuyoshi, Ryo Kunimatsu, Kotaro Tanimoto

Published in: Inflammation | Issue 5/2018

Login to get access

Abstract

Excessive mechanical stimulation is considered an important factor in the destruction of chondrocytes. Focal adhesion kinase (FAK) is non-receptor tyrosine kinase related to a number of different signaling proteins. Little is known about the function of FAK in chondrocytes under mechanical stimulation. In the present study, we investigated the function of FAK in mechanical signal transduction and the mechanism through which cyclic tensile strain (CTS) induces expression of inflammation-related factors. Mouse ATDC5 chondrogenic cells were subjected to CTS of 0.5 Hz to 10% cell elongation with an FAK inhibitor. The expression of genes encoding COX-2, IL-1β, and TNF-α was examined using real-time RT-PCR after CTS application with FAK inhibitor. Phosphorylation of p-38, ERK, and JNK was analyzed by Western blotting. Differences in COX-2 expression following pretreatment with FAK, p-38, ERK, and JNK inhibitors were compared by Western blotting. We found that CTS increased the expression of genes encoding COX-2, IL-1β, and TNF-α and activated the phosphorylation of FAK, p-38, ERK, and JNK. Pretreatment with an FAK inhibitor for 2 h reduced the expression of genes encoding COX-2, IL-1β, and TNF-α induced by CTS-associated inflammation and decreased phosphorylation of FAK, p-38, ERK, and JNK. Pretreatment with FAK, p-38, ERK, and JNK inhibitors markedly suppressed COX-2 and IL-1β protein expression. In conclusion, FAK appears to regulate inflammation in chondrocytes under CTS via MAPK pathways.
Appendix
Available only for authorised users
Literature
1.
go back to reference Tanaka, S., C. Hamanishi, H. Kikuchi, and K. Fukuda. 1998. Factors related to degradation of articular cartilage in osteoarthritis: A review. Seminars in Arthritis and Rheumatism 27 (6): 392–399.CrossRefPubMed Tanaka, S., C. Hamanishi, H. Kikuchi, and K. Fukuda. 1998. Factors related to degradation of articular cartilage in osteoarthritis: A review. Seminars in Arthritis and Rheumatism 27 (6): 392–399.CrossRefPubMed
2.
go back to reference Su, S.C., K. Tanimoto, Y. Tanne, et al. 2014. Celecoxib exerts protective effects on extracellular matrix metabolism of mandibular condylar chondrocytes under excessive mechanical stress. Osteoarthritis and Cartilage 22 (6): 845–851.CrossRefPubMed Su, S.C., K. Tanimoto, Y. Tanne, et al. 2014. Celecoxib exerts protective effects on extracellular matrix metabolism of mandibular condylar chondrocytes under excessive mechanical stress. Osteoarthritis and Cartilage 22 (6): 845–851.CrossRefPubMed
3.
go back to reference Zheng, W., Z. Tao, C. Chen, C. Zhang, H. Zhang, X. Ying, and H. Chen. 2017. Plumbagin prevents IL-1beta-induced inflammatory response in human osteoarthritis chondrocytes and prevents the progression of osteoarthritis in mice. Inflammation 40 (3): 849–860.CrossRefPubMed Zheng, W., Z. Tao, C. Chen, C. Zhang, H. Zhang, X. Ying, and H. Chen. 2017. Plumbagin prevents IL-1beta-induced inflammatory response in human osteoarthritis chondrocytes and prevents the progression of osteoarthritis in mice. Inflammation 40 (3): 849–860.CrossRefPubMed
4.
go back to reference Benito, M.J., D.J. Veale, O. FitzGerald, W. van den Berg, and B. Bresnihan. 2005. Synovial tissue inflammation in early and late osteoarthritis. Annals of the Rheumatic Diseases 64 (9): 1263–1267.CrossRefPubMedPubMedCentral Benito, M.J., D.J. Veale, O. FitzGerald, W. van den Berg, and B. Bresnihan. 2005. Synovial tissue inflammation in early and late osteoarthritis. Annals of the Rheumatic Diseases 64 (9): 1263–1267.CrossRefPubMedPubMedCentral
5.
go back to reference Campbell, I.D., and M.J. Humphries. 2011. Integrin structure, activation, and interactions. Cold Spring Harbor Perspectives in Biology 3 (3). Campbell, I.D., and M.J. Humphries. 2011. Integrin structure, activation, and interactions. Cold Spring Harbor Perspectives in Biology 3 (3).
6.
go back to reference Luo, D.Y., R. Wazir, Y. Tian, X. Yue, T.Q. Wei, and K.J. Wang. 2013. Integrin alphav mediates contractility whereas integrin alpha4 regulates proliferation of human bladder smooth muscle cells via FAK pathway under physiological stretch. The Journal of Urology 190 (4): 1421–1429.CrossRefPubMed Luo, D.Y., R. Wazir, Y. Tian, X. Yue, T.Q. Wei, and K.J. Wang. 2013. Integrin alphav mediates contractility whereas integrin alpha4 regulates proliferation of human bladder smooth muscle cells via FAK pathway under physiological stretch. The Journal of Urology 190 (4): 1421–1429.CrossRefPubMed
7.
go back to reference Luu, N.T., K.E. Glen, S. Egginton, et al. 2013. Integrin-substrate interactions underlying shear-induced inhibition of the inflammatory response of endothelial cells. Thrombosis and Haemostasis 109 (2): 298–308.CrossRefPubMed Luu, N.T., K.E. Glen, S. Egginton, et al. 2013. Integrin-substrate interactions underlying shear-induced inhibition of the inflammatory response of endothelial cells. Thrombosis and Haemostasis 109 (2): 298–308.CrossRefPubMed
8.
go back to reference Parsons, J.T. 2003. Focal adhesion kinase: The first ten years. Journal of Cell Science 116 (8): 1409–1416.CrossRefPubMed Parsons, J.T. 2003. Focal adhesion kinase: The first ten years. Journal of Cell Science 116 (8): 1409–1416.CrossRefPubMed
9.
go back to reference Bursell, L., A. Woods, C.G. James, D. Pala, A. Leask, and F. Beier. 2007. Src kinase inhibition promotes the chondrocyte phenotype. Arthritis Research & Therapy 9 (5): R105.CrossRef Bursell, L., A. Woods, C.G. James, D. Pala, A. Leask, and F. Beier. 2007. Src kinase inhibition promotes the chondrocyte phenotype. Arthritis Research & Therapy 9 (5): R105.CrossRef
10.
go back to reference Hou, C., Z. Zhang, Z. Zhang, et al. 2015. Presence and function of microRNA-92a in chondrogenic ATDC5 and adipose-derived mesenchymal stem cells. Molecular Medicine Reports 12 (4): 4877–4886.CrossRefPubMedPubMedCentral Hou, C., Z. Zhang, Z. Zhang, et al. 2015. Presence and function of microRNA-92a in chondrogenic ATDC5 and adipose-derived mesenchymal stem cells. Molecular Medicine Reports 12 (4): 4877–4886.CrossRefPubMedPubMedCentral
11.
go back to reference Schlaepfer, D.D., C.R. Hauck, and D.J. Sieg. 1999. Signaling through focal adhesion kinase. Progress in Biophysics and Molecular Biology 71 (3–4): 435–478.CrossRefPubMed Schlaepfer, D.D., C.R. Hauck, and D.J. Sieg. 1999. Signaling through focal adhesion kinase. Progress in Biophysics and Molecular Biology 71 (3–4): 435–478.CrossRefPubMed
12.
go back to reference Yang, M., L.W. Xiao, E.Y. Liao, Q.J. Wang, B.B. Wang, and J.X. Lei. 2014. The role of integrin-β/FAK in cyclic mechanical stimulation in MG-63 cells. International Journal of Clinical and Experimental Pathology 7 (11): 7451–7459.PubMedPubMedCentral Yang, M., L.W. Xiao, E.Y. Liao, Q.J. Wang, B.B. Wang, and J.X. Lei. 2014. The role of integrin-β/FAK in cyclic mechanical stimulation in MG-63 cells. International Journal of Clinical and Experimental Pathology 7 (11): 7451–7459.PubMedPubMedCentral
13.
go back to reference Planas-Rigol, E., N. Terrades-Garcia, M. Corbera-Bellalta, E. Lozano, M.A. Alba, M. Segarra, G. Espígol-Frigolé, S. Prieto-González, J. Hernández-Rodríguez, S. Preciado, R. Lavilla, and M.C. Cid. 2017. Endothelin-1 promotes vascular smooth muscle cell migration across the artery wall: A mechanism contributing to vascular remodelling and intimal hyperplasia in giant-cell arteritis. Annals of the Rheumatic Diseases 76 (9): 1624–1634.CrossRefPubMed Planas-Rigol, E., N. Terrades-Garcia, M. Corbera-Bellalta, E. Lozano, M.A. Alba, M. Segarra, G. Espígol-Frigolé, S. Prieto-González, J. Hernández-Rodríguez, S. Preciado, R. Lavilla, and M.C. Cid. 2017. Endothelin-1 promotes vascular smooth muscle cell migration across the artery wall: A mechanism contributing to vascular remodelling and intimal hyperplasia in giant-cell arteritis. Annals of the Rheumatic Diseases 76 (9): 1624–1634.CrossRefPubMed
14.
go back to reference Shi, Z.D., H. Wang, and J.M. Tarbell. 2011. Heparan sulfate proteoglycans mediate interstitial flow mechanotransduction regulating MMP-13 expression and cell motility via FAK-ERK in 3D collagen. PLoS One 6 (1): e15956.CrossRefPubMedPubMedCentral Shi, Z.D., H. Wang, and J.M. Tarbell. 2011. Heparan sulfate proteoglycans mediate interstitial flow mechanotransduction regulating MMP-13 expression and cell motility via FAK-ERK in 3D collagen. PLoS One 6 (1): e15956.CrossRefPubMedPubMedCentral
15.
go back to reference Zhou, J., W. Lin, H. Chen, Y. Fan, and C. Yang. 2016. TRESK contributes to pain threshold changes by mediating apoptosis via MAPK pathway in the spinal cord. Neuroscience 339: 622–633.CrossRefPubMed Zhou, J., W. Lin, H. Chen, Y. Fan, and C. Yang. 2016. TRESK contributes to pain threshold changes by mediating apoptosis via MAPK pathway in the spinal cord. Neuroscience 339: 622–633.CrossRefPubMed
16.
go back to reference Johnson, G.L., and R. Lapadat. 2002. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298 (5600): 1911–1912.CrossRefPubMed Johnson, G.L., and R. Lapadat. 2002. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298 (5600): 1911–1912.CrossRefPubMed
17.
go back to reference Nayak, P.S., Y. Wang, T. Najrana, L.M. Priolo, M. Rios, S.K. Shaw, and J. Sanchez-Esteban. 2015. Mechanotransduction via TRPV4 regulates inflammation and differentiation in fetal mouse distal lung epithelial cells. Respiratory Research 16: 60.CrossRefPubMedPubMedCentral Nayak, P.S., Y. Wang, T. Najrana, L.M. Priolo, M. Rios, S.K. Shaw, and J. Sanchez-Esteban. 2015. Mechanotransduction via TRPV4 regulates inflammation and differentiation in fetal mouse distal lung epithelial cells. Respiratory Research 16: 60.CrossRefPubMedPubMedCentral
18.
go back to reference Kaneko, K., M. Ito, Y. Naoe, A. Lacy-Hulbert, and K. Ikeda. 2014. Integrin alphav in the mechanical response of osteoblast lineage cells. Biochemical and Biophysical Research Communications 447 (2): 352–357.CrossRefPubMedPubMedCentral Kaneko, K., M. Ito, Y. Naoe, A. Lacy-Hulbert, and K. Ikeda. 2014. Integrin alphav in the mechanical response of osteoblast lineage cells. Biochemical and Biophysical Research Communications 447 (2): 352–357.CrossRefPubMedPubMedCentral
19.
go back to reference Men, Y.T., Y.L. Jiang, L. Chen, C.Q. Zhang, and J.D. Ye. 2017. On mechanical mechanism of damage evolution in articular cartilage. Materials Science & Engineering. C, Materials for Biological Applications 78: 79–87.CrossRef Men, Y.T., Y.L. Jiang, L. Chen, C.Q. Zhang, and J.D. Ye. 2017. On mechanical mechanism of damage evolution in articular cartilage. Materials Science & Engineering. C, Materials for Biological Applications 78: 79–87.CrossRef
20.
go back to reference Tanaka, E., M.S. Detamore, and L.G. Mercuri. 2008. Degenerative disorders of the temporomandibular joint: Etiology, diagnosis, and treatment. Journal of Dental Research 87 (4): 296–307.CrossRefPubMed Tanaka, E., M.S. Detamore, and L.G. Mercuri. 2008. Degenerative disorders of the temporomandibular joint: Etiology, diagnosis, and treatment. Journal of Dental Research 87 (4): 296–307.CrossRefPubMed
21.
go back to reference Huang, J., L.R. Ballou, and K.A. Hasty. 2007. Cyclic equibiaxial tensile strain induces both anabolic and catabolic responses in articular chondrocytes. Gene 404 (1–2): 101–109.CrossRefPubMed Huang, J., L.R. Ballou, and K.A. Hasty. 2007. Cyclic equibiaxial tensile strain induces both anabolic and catabolic responses in articular chondrocytes. Gene 404 (1–2): 101–109.CrossRefPubMed
22.
go back to reference Harada, T., K. Yoshimura, O. Yamashita, K. Ueda, N. Morikage, Y. Sawada, and K. Hamano. 2017. Focal adhesion kinase promotes the progression of aortic aneurysm by modulating macrophage behavior. Arteriosclerosis, Thrombosis, and Vascular Biology 37 (1): 156–165.CrossRefPubMed Harada, T., K. Yoshimura, O. Yamashita, K. Ueda, N. Morikage, Y. Sawada, and K. Hamano. 2017. Focal adhesion kinase promotes the progression of aortic aneurysm by modulating macrophage behavior. Arteriosclerosis, Thrombosis, and Vascular Biology 37 (1): 156–165.CrossRefPubMed
23.
go back to reference Wong, V.W., K.C. Rustad, S. Akaishi, M. Sorkin, J.P. Glotzbach, M. Januszyk, E.R. Nelson, K. Levi, J. Paterno, I.N. Vial, A.A. Kuang, M.T. Longaker, and G.C. Gurtner. 2011. Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nature Medicine 18 (1): 148–152.CrossRefPubMedPubMedCentral Wong, V.W., K.C. Rustad, S. Akaishi, M. Sorkin, J.P. Glotzbach, M. Januszyk, E.R. Nelson, K. Levi, J. Paterno, I.N. Vial, A.A. Kuang, M.T. Longaker, and G.C. Gurtner. 2011. Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nature Medicine 18 (1): 148–152.CrossRefPubMedPubMedCentral
24.
go back to reference O’Conor, C.J., N. Case, and F. Guilak. 2013. Mechanical regulation of chondrogenesis. Stem Cell Research & Therapy 4 (4): 61.CrossRef O’Conor, C.J., N. Case, and F. Guilak. 2013. Mechanical regulation of chondrogenesis. Stem Cell Research & Therapy 4 (4): 61.CrossRef
25.
go back to reference Yang, X., Y. Guan, S. Tian, Y. Wang, K. Sun, and Q. Chen. 2016. Mechanical and IL-1beta responsive miR-365 contributes to osteoarthritis development by targeting histone deacetylase 4. International Journal of Molecular Sciences 17 (4): 436.CrossRefPubMedPubMedCentral Yang, X., Y. Guan, S. Tian, Y. Wang, K. Sun, and Q. Chen. 2016. Mechanical and IL-1beta responsive miR-365 contributes to osteoarthritis development by targeting histone deacetylase 4. International Journal of Molecular Sciences 17 (4): 436.CrossRefPubMedPubMedCentral
26.
go back to reference Wang, C.L., H. Wang, F. Xiao, C.D. Wang, G.L. Hu, J.F. Zhu, C. Shen, B. Zuo, Y.M. Cui, D. Li, Yuan-Gao, X.L. Zhang, and X.D. Chen. 2017. Cyclic compressive stress-induced scinderin regulates progress of developmental dysplasia of the hip. Biochemical and Biophysical Research Communications 485 (2): 400–408.CrossRefPubMed Wang, C.L., H. Wang, F. Xiao, C.D. Wang, G.L. Hu, J.F. Zhu, C. Shen, B. Zuo, Y.M. Cui, D. Li, Yuan-Gao, X.L. Zhang, and X.D. Chen. 2017. Cyclic compressive stress-induced scinderin regulates progress of developmental dysplasia of the hip. Biochemical and Biophysical Research Communications 485 (2): 400–408.CrossRefPubMed
27.
go back to reference Honda, K., S. Ohno, K. Tanimoto, C. Ijuin, N. Tanaka, T. Doi, Y. Kato, and K. Tanne. 2000. The effects of high magnitude cyclic tensile load on cartilage matrix metabolism in cultured chondrocytes. European Journal of Cell Biology 79 (9): 601–609.CrossRefPubMed Honda, K., S. Ohno, K. Tanimoto, C. Ijuin, N. Tanaka, T. Doi, Y. Kato, and K. Tanne. 2000. The effects of high magnitude cyclic tensile load on cartilage matrix metabolism in cultured chondrocytes. European Journal of Cell Biology 79 (9): 601–609.CrossRefPubMed
28.
go back to reference Liu, Q., X. Hu, X. Zhang, X. Duan, P. Yang, F. Zhao, and Y. Ao. 2016. Effects of mechanical stress on chondrocyte phenotype and chondrocyte extracellular matrix expression. Scientific Reports 6: 37268.CrossRefPubMedPubMedCentral Liu, Q., X. Hu, X. Zhang, X. Duan, P. Yang, F. Zhao, and Y. Ao. 2016. Effects of mechanical stress on chondrocyte phenotype and chondrocyte extracellular matrix expression. Scientific Reports 6: 37268.CrossRefPubMedPubMedCentral
29.
go back to reference Zhu, H.F., Y.J. Liu, L.X. Chu, and W. Feng. 2011. Effects of mechanical stimulation on expression of integrin subunits in chondrocyte. Zhongguo Gu Shang 24 (3): 266–268.PubMed Zhu, H.F., Y.J. Liu, L.X. Chu, and W. Feng. 2011. Effects of mechanical stimulation on expression of integrin subunits in chondrocyte. Zhongguo Gu Shang 24 (3): 266–268.PubMed
30.
go back to reference Kim, S.J., K.H. Park, Y.G. Park, S.W. Lee, and Y.G. Kang. 2013. Compressive stress induced the up-regulation of M-CSF, RANKL, TNF-alpha expression and the down-regulation of OPG expression in PDL cells via the integrin-FAK pathway. Archives of Oral Biology 58 (6): 707–716.CrossRefPubMed Kim, S.J., K.H. Park, Y.G. Park, S.W. Lee, and Y.G. Kang. 2013. Compressive stress induced the up-regulation of M-CSF, RANKL, TNF-alpha expression and the down-regulation of OPG expression in PDL cells via the integrin-FAK pathway. Archives of Oral Biology 58 (6): 707–716.CrossRefPubMed
31.
go back to reference Yamashita, O., K. Yoshimura, A. Nagasawa, K. Ueda, N. Morikage, Y. Ikeda, and K. Hamano. 2013. Periostin links mechanical strain to inflammation in abdominal aortic aneurysm. PLoS One 8 (11): e79753.CrossRefPubMedPubMedCentral Yamashita, O., K. Yoshimura, A. Nagasawa, K. Ueda, N. Morikage, Y. Ikeda, and K. Hamano. 2013. Periostin links mechanical strain to inflammation in abdominal aortic aneurysm. PLoS One 8 (11): e79753.CrossRefPubMedPubMedCentral
32.
go back to reference Russell-Puleri, S., N.G. Dela Paz, D. Adams, et al. 2017. Fluid shear stress induces upregulation of COX-2 and PGI2 release in endothelial cells via a pathway involving PECAM-1, PI3K, FAK, and p38. American Journal of Physiology. Heart and Circulatory Physiology 312 (3): H485–H500.CrossRefPubMed Russell-Puleri, S., N.G. Dela Paz, D. Adams, et al. 2017. Fluid shear stress induces upregulation of COX-2 and PGI2 release in endothelial cells via a pathway involving PECAM-1, PI3K, FAK, and p38. American Journal of Physiology. Heart and Circulatory Physiology 312 (3): H485–H500.CrossRefPubMed
33.
go back to reference Lin, S., and K. Mequanint. 2012. The role of Ras-ERK-IL-1beta signaling pathway in upregulation of elastin expression by human coronary artery smooth muscle cells cultured in 3D scaffolds. Biomaterials 33 (29): 7047–7056.CrossRefPubMed Lin, S., and K. Mequanint. 2012. The role of Ras-ERK-IL-1beta signaling pathway in upregulation of elastin expression by human coronary artery smooth muscle cells cultured in 3D scaffolds. Biomaterials 33 (29): 7047–7056.CrossRefPubMed
34.
go back to reference Mon, N.N., H. Hasegawa, A.A. Thant, P. Huang, Y. Tanimura, T. Senga, and M. Hamaguchi. 2006. A role for focal adhesion kinase signaling in tumor necrosis factor-alpha-dependent matrix metalloproteinase-9 production in a cholangiocarcinoma cell line, CCKS1. Cancer Research 66 (13): 6778–6784.CrossRefPubMed Mon, N.N., H. Hasegawa, A.A. Thant, P. Huang, Y. Tanimura, T. Senga, and M. Hamaguchi. 2006. A role for focal adhesion kinase signaling in tumor necrosis factor-alpha-dependent matrix metalloproteinase-9 production in a cholangiocarcinoma cell line, CCKS1. Cancer Research 66 (13): 6778–6784.CrossRefPubMed
35.
go back to reference Zhang, P., Y.J. Li, L.Y. Guo, G.F. Wang, K. Lu, and E.L. Yue. 2015. Focal adhesion kinase activation is required for TNF-alpha-induced production of matrix metalloproteinase-2 and proinflammatory cytokines in cultured human periodontal ligament fibroblasts. European Journal of Oral Sciences 123 (4): 249–253.CrossRefPubMed Zhang, P., Y.J. Li, L.Y. Guo, G.F. Wang, K. Lu, and E.L. Yue. 2015. Focal adhesion kinase activation is required for TNF-alpha-induced production of matrix metalloproteinase-2 and proinflammatory cytokines in cultured human periodontal ligament fibroblasts. European Journal of Oral Sciences 123 (4): 249–253.CrossRefPubMed
36.
go back to reference Liu, X.H., L.L. Pan, Y.L. Jia, D. Wu, Q.H. Xiong, Y. Wang, and Y.Z. Zhu. 2013. A novel compound DSC suppresses lipopolysaccharide-induced inflammatory responses by inhibition of Akt/NF-kappaB signalling in macrophages. European Journal of Pharmacology 708 (1–3): 8–13.CrossRefPubMed Liu, X.H., L.L. Pan, Y.L. Jia, D. Wu, Q.H. Xiong, Y. Wang, and Y.Z. Zhu. 2013. A novel compound DSC suppresses lipopolysaccharide-induced inflammatory responses by inhibition of Akt/NF-kappaB signalling in macrophages. European Journal of Pharmacology 708 (1–3): 8–13.CrossRefPubMed
37.
go back to reference Binion, D.G., M.F. Otterson, and P. Rafiee. 2008. Curcumin inhibits VEGF-mediated angiogenesis in human intestinal microvascular endothelial cells through COX-2 and MAPK inhibition. Gut 57 (11): 1509–1517.CrossRefPubMedPubMedCentral Binion, D.G., M.F. Otterson, and P. Rafiee. 2008. Curcumin inhibits VEGF-mediated angiogenesis in human intestinal microvascular endothelial cells through COX-2 and MAPK inhibition. Gut 57 (11): 1509–1517.CrossRefPubMedPubMedCentral
38.
go back to reference Li, S., M. Kim, Y.L. Hu, et al. 1997. Fluid shear stress activation of focal adhesion kinase. Linking to mitogen-activated protein kinases. The Journal of Biological Chemistry 272 (48): 30455–30462.CrossRefPubMed Li, S., M. Kim, Y.L. Hu, et al. 1997. Fluid shear stress activation of focal adhesion kinase. Linking to mitogen-activated protein kinases. The Journal of Biological Chemistry 272 (48): 30455–30462.CrossRefPubMed
39.
go back to reference Norata, G.D., E. Callegari, H. Inoue, et al. 2004. HDL3 induces cyclooxygenase-2 expression and prostacyclin release in human endothelial cells via a p38 MAPK/CRE-dependent pathway: Effects on COX-2/PGI-synthase coupling. Arteriosclerosis, Thrombosis, and Vascular Biology 24 (5): 871–877.CrossRefPubMed Norata, G.D., E. Callegari, H. Inoue, et al. 2004. HDL3 induces cyclooxygenase-2 expression and prostacyclin release in human endothelial cells via a p38 MAPK/CRE-dependent pathway: Effects on COX-2/PGI-synthase coupling. Arteriosclerosis, Thrombosis, and Vascular Biology 24 (5): 871–877.CrossRefPubMed
40.
go back to reference Zaric, J., and C. Ruegg. 2005. Integrin-mediated adhesion and soluble ligand binding stabilize COX-2 protein levels in endothelial cells by inducing expression and preventing degradation. The Journal of Biological Chemistry 280 (2): 1077–1085.CrossRefPubMed Zaric, J., and C. Ruegg. 2005. Integrin-mediated adhesion and soluble ligand binding stabilize COX-2 protein levels in endothelial cells by inducing expression and preventing degradation. The Journal of Biological Chemistry 280 (2): 1077–1085.CrossRefPubMed
41.
go back to reference Garonna, E., K.M. Botham, G.M. Birdsey, A.M. Randi, R.R. Gonzalez-Perez, and C.P.D. Wheeler-Jones. 2011. Vascular endothelial growth factor receptor-2 couples cyclo-oxygenase-2 with pro-angiogenic actions of leptin on human endothelial cells. PLoS One 6 (4): e18823.CrossRefPubMedPubMedCentral Garonna, E., K.M. Botham, G.M. Birdsey, A.M. Randi, R.R. Gonzalez-Perez, and C.P.D. Wheeler-Jones. 2011. Vascular endothelial growth factor receptor-2 couples cyclo-oxygenase-2 with pro-angiogenic actions of leptin on human endothelial cells. PLoS One 6 (4): e18823.CrossRefPubMedPubMedCentral
42.
go back to reference Su, Y.P., C.N. Chen, H.I. Chang, et al. 2017. Low shear stress attenuates COX-2 expression induced by Resistin in human osteoarthritic chondrocytes. Journal of Cellular Physiology 232 (6): 1448–1457.CrossRefPubMed Su, Y.P., C.N. Chen, H.I. Chang, et al. 2017. Low shear stress attenuates COX-2 expression induced by Resistin in human osteoarthritic chondrocytes. Journal of Cellular Physiology 232 (6): 1448–1457.CrossRefPubMed
43.
go back to reference Cheng, K., P. Xia, Q. Lin, S. Shen, M. Gao, S. Ren, and X. Li. 2014. Effects of low-intensity pulsed ultrasound on integrin-FAK-PI3K/Akt mechanochemical transduction in rabbit osteoarthritis chondrocytes. Ultrasound in Medicine & Biology 40 (7): 1609–1618.CrossRef Cheng, K., P. Xia, Q. Lin, S. Shen, M. Gao, S. Ren, and X. Li. 2014. Effects of low-intensity pulsed ultrasound on integrin-FAK-PI3K/Akt mechanochemical transduction in rabbit osteoarthritis chondrocytes. Ultrasound in Medicine & Biology 40 (7): 1609–1618.CrossRef
Metadata
Title
Cyclic Tensile Strain Upregulates Pro-Inflammatory Cytokine Expression Via FAK-MAPK Signaling in Chondrocytes
Authors
Makoto Yanoshita
Naoto Hirose
Yuki Okamoto
Chikako Sumi
Mami Takano
Sayuri Nishiyama
Yuki Asakawa-Tanne
Kayo Horie
Azusa Onishi
Yuka Yamauchi
Tomomi Mitsuyoshi
Ryo Kunimatsu
Kotaro Tanimoto
Publication date
01-10-2018
Publisher
Springer US
Published in
Inflammation / Issue 5/2018
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0805-8

Other articles of this Issue 5/2018

Inflammation 5/2018 Go to the issue