Skip to main content
Top
Published in: Inflammation 3/2017

01-06-2017 | ORIGINAL ARTICLE

Plumbagin Prevents IL-1β-Induced Inflammatory Response in Human Osteoarthritis Chondrocytes and Prevents the Progression of Osteoarthritis in Mice

Authors: Wenhao Zheng, Zhenyu Tao, Chunhui Chen, Chuanxu Zhang, Hui Zhang, Xiaozhou Ying, Hua Chen

Published in: Inflammation | Issue 3/2017

Login to get access

Abstract

Inflammation and inflammatory cytokines have been reported to play vital roles in the development of osteoarthritis (OA). Plumbagin, a quinonoid compound extracted from the roots of medicinal herbs of the Plumbago genus, has been reported to have anti-inflammatory effects. However, the anti-inflammatory effects of plumbagin on OA have not been reported. This study aimed to assess the effects of plumbagin on human OA chondrocytes and in a mouse model of OA induced by destabilization of the medial meniscus (DMM). In vitro, human OA chondrocytes were pretreated with plumbagin (2, 5, 10 μM) for 2 h and subsequently stimulated with IL-1β for 24 h. Production of NO, PGE2, MMP-1, MMP-3, and MMP-13 was evaluated by the Griess reagent and ELISAs. The messenger RNA (mRNA) expression of COX-2, iNOS, MMP-1, MMP-3, MMP-13, aggrecan, and collagen-II was measured by real-time PCR. The protein expression of COX-2, iNOS, p65, p-p65, IκBα, and p-IκBα was detected by Western blot. The protein expression of collagen-II was evaluated by immunofluorescence. In vivo, the severity of OA was determined by histological analysis. We found that plumbagin significantly inhibited the IL-1β-induced production of NO and PGE2; expression of COX-2, iNOS, MMP-1, MMP-3, and MMP-13; and degradation of aggrecan and collagen-II. Furthermore, plumbagin dramatically suppressed IL-1β-stimulated NF-κB activation. In vivo, treatment of plumbagin not only prevented the destruction of cartilage and the thickening of subchondral bone but also relieved synovitis in mice OA models. Taken together, these results suggest that plumbagin may be a potential agent in the treatment of OA.
Literature
1.
go back to reference Bitton, R. 2009. The economic burden of osteoarthritis. The American Journal of Managed Care 15: S230–235.PubMed Bitton, R. 2009. The economic burden of osteoarthritis. The American Journal of Managed Care 15: S230–235.PubMed
2.
go back to reference Loeser, R.F. 2009. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthritis and Cartilage 17: 971–979.CrossRefPubMedPubMedCentral Loeser, R.F. 2009. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthritis and Cartilage 17: 971–979.CrossRefPubMedPubMedCentral
3.
go back to reference Niu, J., Y.Q. Zhang, J. Torner, M. Nevitt, C.E. Lewis, P. Aliabadi, et al. 2009. Is obesity a risk factor for progressive radiographic knee osteoarthritis? Arthritis and Rheumatism 61: 329–335.CrossRefPubMedPubMedCentral Niu, J., Y.Q. Zhang, J. Torner, M. Nevitt, C.E. Lewis, P. Aliabadi, et al. 2009. Is obesity a risk factor for progressive radiographic knee osteoarthritis? Arthritis and Rheumatism 61: 329–335.CrossRefPubMedPubMedCentral
4.
go back to reference Lane, N.E., and M.C. Nevitt. 2002. Osteoarthritis, bone mass, and fractures: how are they related? Arthritis and Rheumatism 46: 1–4.CrossRefPubMed Lane, N.E., and M.C. Nevitt. 2002. Osteoarthritis, bone mass, and fractures: how are they related? Arthritis and Rheumatism 46: 1–4.CrossRefPubMed
5.
go back to reference Bonnet, C.S., and D.A. Walsh. 2005. Osteoarthritis, angiogenesis and inflammation. Rheumatology (Oxford) 44: 7–16.CrossRef Bonnet, C.S., and D.A. Walsh. 2005. Osteoarthritis, angiogenesis and inflammation. Rheumatology (Oxford) 44: 7–16.CrossRef
6.
go back to reference Abramson, S.B., M. Attur, A.R. Amin, and R. Clancy. 2001. Nitric oxide and inflammatory mediators in the perpetuation of osteoarthritis. Current Rheumatology Reports 3: 535–541.CrossRefPubMed Abramson, S.B., M. Attur, A.R. Amin, and R. Clancy. 2001. Nitric oxide and inflammatory mediators in the perpetuation of osteoarthritis. Current Rheumatology Reports 3: 535–541.CrossRefPubMed
7.
go back to reference Kobayashi, M., G.R. Squires, A. Mousa, M. Tanzer, D.J. Zukor, J. Antoniou, et al. 2005. Role of interleukin-1 and tumor necrosis factor alpha in matrix degradation of human osteoarthritic cartilage. Arthritis and Rheumatism 52: 128–135.CrossRefPubMed Kobayashi, M., G.R. Squires, A. Mousa, M. Tanzer, D.J. Zukor, J. Antoniou, et al. 2005. Role of interleukin-1 and tumor necrosis factor alpha in matrix degradation of human osteoarthritic cartilage. Arthritis and Rheumatism 52: 128–135.CrossRefPubMed
8.
go back to reference Eymard, F., A. Pigenet, D. Citadelle, C.H. Flouzat-Lachaniette, A. Poignard, C. Benelli, et al. 2014. Induction of an inflammatory and prodegradative phenotype in autologous fibroblast-like synoviocytes by the infrapatellar fat pad from patients with knee osteoarthritis. Arthritis & Rhematology 66: 2165–2174.CrossRef Eymard, F., A. Pigenet, D. Citadelle, C.H. Flouzat-Lachaniette, A. Poignard, C. Benelli, et al. 2014. Induction of an inflammatory and prodegradative phenotype in autologous fibroblast-like synoviocytes by the infrapatellar fat pad from patients with knee osteoarthritis. Arthritis & Rhematology 66: 2165–2174.CrossRef
9.
go back to reference Chaganti, R.K., E. Purdue, T.P. Sculco, and L.A. Mandl. 2014. Elevation of serum tumor necrosis factor alpha in patients with periprosthetic osteolysis: a case–control study. Clinical Orthopaedics and Related Research 472: 584–589.CrossRefPubMed Chaganti, R.K., E. Purdue, T.P. Sculco, and L.A. Mandl. 2014. Elevation of serum tumor necrosis factor alpha in patients with periprosthetic osteolysis: a case–control study. Clinical Orthopaedics and Related Research 472: 584–589.CrossRefPubMed
10.
go back to reference Tilak, J.C., S. Adhikari, and T.P. Devasagayam. 2004. Antioxidant properties of Plumbago zeylanica, an Indian medicinal plant and its active ingredient, plumbagin. Redox Report 9: 219–227.CrossRefPubMed Tilak, J.C., S. Adhikari, and T.P. Devasagayam. 2004. Antioxidant properties of Plumbago zeylanica, an Indian medicinal plant and its active ingredient, plumbagin. Redox Report 9: 219–227.CrossRefPubMed
11.
go back to reference Checker, R., D. Sharma, S.K. Sandur, S. Khanam, and T.B. Poduval. 2009. Anti-inflammatory effects of plumbagin are mediated by inhibition of NF-kappaB activation in lymphocytes. International Immunopharmacology 9: 949–958.CrossRefPubMed Checker, R., D. Sharma, S.K. Sandur, S. Khanam, and T.B. Poduval. 2009. Anti-inflammatory effects of plumbagin are mediated by inhibition of NF-kappaB activation in lymphocytes. International Immunopharmacology 9: 949–958.CrossRefPubMed
12.
go back to reference Ahmad, A., S. Banerjee, Z. Wang, D. Kong, and F.H. Sarkar. 2008. Plumbagin-induced apoptosis of human breast cancer cells is mediated by inactivation of NF-kappaB and Bcl-2. Journal of Cellular Biochemistry 105: 1461–1471.CrossRefPubMed Ahmad, A., S. Banerjee, Z. Wang, D. Kong, and F.H. Sarkar. 2008. Plumbagin-induced apoptosis of human breast cancer cells is mediated by inactivation of NF-kappaB and Bcl-2. Journal of Cellular Biochemistry 105: 1461–1471.CrossRefPubMed
13.
go back to reference Mossa, J.S., F.S. El-Feraly, and I. Muhammad. 2004. Antimycobacterial constituents from Juniperus procera, Ferula communis and Plumbago zeylanica and their in vitro synergistic activity with isonicotinic acid hydrazide. Phytotherapy Research 18: 934–937.CrossRefPubMed Mossa, J.S., F.S. El-Feraly, and I. Muhammad. 2004. Antimycobacterial constituents from Juniperus procera, Ferula communis and Plumbago zeylanica and their in vitro synergistic activity with isonicotinic acid hydrazide. Phytotherapy Research 18: 934–937.CrossRefPubMed
14.
go back to reference Dzoyem, J.P., J.G. Tangmouo, D. Lontsi, F.X. Etoa, and P.J. Lohoue. 2007. In vitro antifungal activity of extract and plumbagin from the stem bark of Diospyros crassiflora Hiern (Ebenaceae). Phytotherapy Research 21: 671–674.CrossRefPubMed Dzoyem, J.P., J.G. Tangmouo, D. Lontsi, F.X. Etoa, and P.J. Lohoue. 2007. In vitro antifungal activity of extract and plumbagin from the stem bark of Diospyros crassiflora Hiern (Ebenaceae). Phytotherapy Research 21: 671–674.CrossRefPubMed
15.
go back to reference Wang, T., F. Wu, Z. Jin, Z. Zhai, Y. Wang, B. Tu, et al. 2014. Plumbagin inhibits LPS-induced inflammation through the inactivation of the nuclear factor-kappa B and mitogen activated protein kinase signaling pathways in RAW 264.7 cells. Food and Chemical Toxicology 64: 177–183.CrossRefPubMed Wang, T., F. Wu, Z. Jin, Z. Zhai, Y. Wang, B. Tu, et al. 2014. Plumbagin inhibits LPS-induced inflammation through the inactivation of the nuclear factor-kappa B and mitogen activated protein kinase signaling pathways in RAW 264.7 cells. Food and Chemical Toxicology 64: 177–183.CrossRefPubMed
16.
go back to reference Chu, H., H. Yu, D. Ren, K. Zhu, and H. Huang. 2016. Plumbagin exerts protective effects in nucleus pulposus cells by attenuating hydrogen peroxide-induced oxidative stress, inflammation and apoptosis through NF-kappaB and Nrf-2. International Journal of Molecular Medicine 37: 1669–1676.PubMed Chu, H., H. Yu, D. Ren, K. Zhu, and H. Huang. 2016. Plumbagin exerts protective effects in nucleus pulposus cells by attenuating hydrogen peroxide-induced oxidative stress, inflammation and apoptosis through NF-kappaB and Nrf-2. International Journal of Molecular Medicine 37: 1669–1676.PubMed
17.
go back to reference Checker, R., R.S. Patwardhan, D. Sharma, J. Menon, M. Thoh, S.K. Sandur, et al. 2014. Plumbagin, a vitamin K3 analogue, abrogates lipopolysaccharide-induced oxidative stress, inflammation and endotoxic shock via NF-kappaB suppression. Inflammation 37: 542–554.CrossRefPubMed Checker, R., R.S. Patwardhan, D. Sharma, J. Menon, M. Thoh, S.K. Sandur, et al. 2014. Plumbagin, a vitamin K3 analogue, abrogates lipopolysaccharide-induced oxidative stress, inflammation and endotoxic shock via NF-kappaB suppression. Inflammation 37: 542–554.CrossRefPubMed
18.
go back to reference Luo, P., Y.F. Wong, L. Ge, Z.F. Zhang, Y. Liu, L. Liu, et al. 2010. Anti-inflammatory and analgesic effect of plumbagin through inhibition of nuclear factor-kappaB activation. The Journal of Pharmacology and Experimental Therapeutics 335: 735–742.CrossRefPubMed Luo, P., Y.F. Wong, L. Ge, Z.F. Zhang, Y. Liu, L. Liu, et al. 2010. Anti-inflammatory and analgesic effect of plumbagin through inhibition of nuclear factor-kappaB activation. The Journal of Pharmacology and Experimental Therapeutics 335: 735–742.CrossRefPubMed
19.
go back to reference Palmieri, B., D. Lodi, and S. Capone. 2010. Osteoarthritis and degenerative joint disease: local treatment options update. Acta Biomed 81: 94–100.PubMed Palmieri, B., D. Lodi, and S. Capone. 2010. Osteoarthritis and degenerative joint disease: local treatment options update. Acta Biomed 81: 94–100.PubMed
20.
go back to reference Au, R.Y., T.K. Al-Talib, A.Y. Au, P.V. Phan, and C.G. Frondoza. 2007. Avocado soybean unsaponifiables (ASU) suppress TNF-alpha, IL-1beta, COX-2, iNOS gene expression, and prostaglandin E2 and nitric oxide production in articular chondrocytes and monocyte/macrophages. Osteoarthritis and Cartilage 15: 1249–1255.CrossRefPubMed Au, R.Y., T.K. Al-Talib, A.Y. Au, P.V. Phan, and C.G. Frondoza. 2007. Avocado soybean unsaponifiables (ASU) suppress TNF-alpha, IL-1beta, COX-2, iNOS gene expression, and prostaglandin E2 and nitric oxide production in articular chondrocytes and monocyte/macrophages. Osteoarthritis and Cartilage 15: 1249–1255.CrossRefPubMed
22.
go back to reference Vasheghani, F., Y. Zhang, Y.H. Li, M. Blati, H. Fahmi, B. Lussier, et al. 2015. PPARgamma deficiency results in severe, accelerated osteoarthritis associated with aberrant mTOR signalling in the articular cartilage. Annals of the Rheumatic Diseases 74: 569–578.CrossRefPubMedPubMedCentral Vasheghani, F., Y. Zhang, Y.H. Li, M. Blati, H. Fahmi, B. Lussier, et al. 2015. PPARgamma deficiency results in severe, accelerated osteoarthritis associated with aberrant mTOR signalling in the articular cartilage. Annals of the Rheumatic Diseases 74: 569–578.CrossRefPubMedPubMedCentral
23.
go back to reference Pritzker, K.P., S. Gay, S.A. Jimenez, K. Ostergaard, J.P. Pelletier, P.A. Revell, et al. 2006. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis and Cartilage 14: 13–29.CrossRefPubMed Pritzker, K.P., S. Gay, S.A. Jimenez, K. Ostergaard, J.P. Pelletier, P.A. Revell, et al. 2006. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis and Cartilage 14: 13–29.CrossRefPubMed
24.
go back to reference Lewis, J.S., W.C. Hembree, B.D. Furman, L. Tippets, D. Cattel, J.L. Huebner, et al. 2011. Acute joint pathology and synovial inflammation is associated with increased intra-articular fracture severity in the mouse knee. Osteoarthritis and Cartilage 19: 864–873.CrossRefPubMedPubMedCentral Lewis, J.S., W.C. Hembree, B.D. Furman, L. Tippets, D. Cattel, J.L. Huebner, et al. 2011. Acute joint pathology and synovial inflammation is associated with increased intra-articular fracture severity in the mouse knee. Osteoarthritis and Cartilage 19: 864–873.CrossRefPubMedPubMedCentral
25.
go back to reference Bonassar, L.J., J.D. Sandy, M.W. Lark, A.H. Plaas, E.H. Frank, and A.J. Grodzinsky. 1997. Inhibition of cartilage degradation and changes in physical properties induced by IL-1beta and retinoic acid using matrix metalloproteinase inhibitors. Archives of Biochemistry and Biophysics 344: 404–412.CrossRefPubMed Bonassar, L.J., J.D. Sandy, M.W. Lark, A.H. Plaas, E.H. Frank, and A.J. Grodzinsky. 1997. Inhibition of cartilage degradation and changes in physical properties induced by IL-1beta and retinoic acid using matrix metalloproteinase inhibitors. Archives of Biochemistry and Biophysics 344: 404–412.CrossRefPubMed
26.
go back to reference Sasaki, K., T. Hattori, T. Fujisawa, K. Takahashi, H. Inoue, and M. Takigawa. 1998. Nitric oxide mediates interleukin-1-induced gene expression of matrix metalloproteinases and basic fibroblast growth factor in cultured rabbit articular chondrocytes. Journal of Biochemistry 123: 431–439.CrossRefPubMed Sasaki, K., T. Hattori, T. Fujisawa, K. Takahashi, H. Inoue, and M. Takigawa. 1998. Nitric oxide mediates interleukin-1-induced gene expression of matrix metalloproteinases and basic fibroblast growth factor in cultured rabbit articular chondrocytes. Journal of Biochemistry 123: 431–439.CrossRefPubMed
27.
go back to reference Goggs, R., S.D. Carter, G. Schulze-Tanzil, M. Shakibaei, and A. Mobasheri. 2003. Apoptosis and the loss of chondrocyte survival signals contribute to articular cartilage degradation in osteoarthritis. The Veterinary Journal 166: 140–158.CrossRefPubMed Goggs, R., S.D. Carter, G. Schulze-Tanzil, M. Shakibaei, and A. Mobasheri. 2003. Apoptosis and the loss of chondrocyte survival signals contribute to articular cartilage degradation in osteoarthritis. The Veterinary Journal 166: 140–158.CrossRefPubMed
28.
go back to reference Li, N., M.A. Rivera-Bermudez, M. Zhang, J. Tejada, S.S. Glasson, L.A. Collins-Racie, et al. 2010. LXR modulation blocks prostaglandin E2 production and matrix degradation in cartilage and alleviates pain in a rat osteoarthritis model. Proceedings of the National Academy of Sciences of the United States of America 107: 3734–3739.CrossRefPubMedPubMedCentral Li, N., M.A. Rivera-Bermudez, M. Zhang, J. Tejada, S.S. Glasson, L.A. Collins-Racie, et al. 2010. LXR modulation blocks prostaglandin E2 production and matrix degradation in cartilage and alleviates pain in a rat osteoarthritis model. Proceedings of the National Academy of Sciences of the United States of America 107: 3734–3739.CrossRefPubMedPubMedCentral
29.
go back to reference Wang, Y., L. Li de, X.B. Zhang, Y.H. Duan, Z.H. Wu, D.S. Hao, et al. 2013. Increase of TNFalpha-stimulated osteoarthritic chondrocytes apoptosis and decrease of matrix metalloproteinases 9 by NF-kappaB inhibition. Biomedical and Environmental Sciences 26: 277–283.PubMed Wang, Y., L. Li de, X.B. Zhang, Y.H. Duan, Z.H. Wu, D.S. Hao, et al. 2013. Increase of TNFalpha-stimulated osteoarthritic chondrocytes apoptosis and decrease of matrix metalloproteinases 9 by NF-kappaB inhibition. Biomedical and Environmental Sciences 26: 277–283.PubMed
30.
go back to reference Brinckerhoff, C.E., and L.M. Matrisian. 2002. Matrix metalloproteinases: a tail of a frog that became a prince. Nature Reviews Molecular Cell Biology 3: 207–214.CrossRefPubMed Brinckerhoff, C.E., and L.M. Matrisian. 2002. Matrix metalloproteinases: a tail of a frog that became a prince. Nature Reviews Molecular Cell Biology 3: 207–214.CrossRefPubMed
31.
go back to reference Tetlow, L.C., D.J. Adlam, and D.E. Woolley. 2001. Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthritis and Rheumatism 44: 585–594.CrossRefPubMed Tetlow, L.C., D.J. Adlam, and D.E. Woolley. 2001. Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthritis and Rheumatism 44: 585–594.CrossRefPubMed
32.
go back to reference Yoshihara, Y., H. Nakamura, K. Obata, H. Yamada, T. Hayakawa, K. Fujikawa, et al. 2000. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis. Annals of the Rheumatic Diseases 59: 455–461.CrossRefPubMedPubMedCentral Yoshihara, Y., H. Nakamura, K. Obata, H. Yamada, T. Hayakawa, K. Fujikawa, et al. 2000. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis. Annals of the Rheumatic Diseases 59: 455–461.CrossRefPubMedPubMedCentral
33.
go back to reference So, J.S., M.K. Song, H.K. Kwon, C.G. Lee, C.S. Chae, A. Sahoo, et al. 2011. Lactobacillus casei enhances type II collagen/glucosamine-mediated suppression of inflammatory responses in experimental osteoarthritis. Life Sciences 88: 358–366.CrossRefPubMed So, J.S., M.K. Song, H.K. Kwon, C.G. Lee, C.S. Chae, A. Sahoo, et al. 2011. Lactobacillus casei enhances type II collagen/glucosamine-mediated suppression of inflammatory responses in experimental osteoarthritis. Life Sciences 88: 358–366.CrossRefPubMed
34.
go back to reference Suh, H.J., H. Lee, B.J. Min, S.U. Jung, and E.Y. Jung. 2016. Effects of gangliosides from deer bone extract on the gene expressions of matrix metalloproteinases and collagen type II in interleukin-1beta-induced osteoarthritic chondrocytes. Nutrition for Research and Practice 10: 569–574.CrossRef Suh, H.J., H. Lee, B.J. Min, S.U. Jung, and E.Y. Jung. 2016. Effects of gangliosides from deer bone extract on the gene expressions of matrix metalloproteinases and collagen type II in interleukin-1beta-induced osteoarthritic chondrocytes. Nutrition for Research and Practice 10: 569–574.CrossRef
35.
go back to reference Oeckinghaus, A., and S. Ghosh. 2009. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harbor Perspectives in Biology 1: a000034.CrossRefPubMedPubMedCentral Oeckinghaus, A., and S. Ghosh. 2009. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harbor Perspectives in Biology 1: a000034.CrossRefPubMedPubMedCentral
36.
go back to reference Rigoglou, S., and A.G. Papavassiliou. 2013. The NF-kappaB signalling pathway in osteoarthritis. The International Journal of Biochemistry & Cell Biology 45: 2580–2584.CrossRef Rigoglou, S., and A.G. Papavassiliou. 2013. The NF-kappaB signalling pathway in osteoarthritis. The International Journal of Biochemistry & Cell Biology 45: 2580–2584.CrossRef
37.
go back to reference Roman-Blas, J.A., and S.A. Jimenez. 2006. NF-kappaB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthritis and Cartilage 14: 839–848.CrossRefPubMed Roman-Blas, J.A., and S.A. Jimenez. 2006. NF-kappaB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthritis and Cartilage 14: 839–848.CrossRefPubMed
38.
go back to reference Wang, S.N., G.P. Xie, C.H. Qin, Y.R. Chen, K.R. Zhang, X. Li, et al. 2015. Aucubin prevents interleukin-1 beta induced inflammation and cartilage matrix degradation via inhibition of NF-kappaB signaling pathway in rat articular chondrocytes. International Immunopharmacology 24: 408–415.CrossRefPubMed Wang, S.N., G.P. Xie, C.H. Qin, Y.R. Chen, K.R. Zhang, X. Li, et al. 2015. Aucubin prevents interleukin-1 beta induced inflammation and cartilage matrix degradation via inhibition of NF-kappaB signaling pathway in rat articular chondrocytes. International Immunopharmacology 24: 408–415.CrossRefPubMed
39.
go back to reference Liacini, A., J. Sylvester, W.Q. Li, and M. Zafarullah. 2002. Inhibition of interleukin-1-stimulated MAP kinases, activating protein-1 (AP-1) and nuclear factor kappa B (NF-kappa B) transcription factors down-regulates matrix metalloproteinase gene expression in articular chondrocytes. Matrix Biology 21: 251–262.CrossRefPubMed Liacini, A., J. Sylvester, W.Q. Li, and M. Zafarullah. 2002. Inhibition of interleukin-1-stimulated MAP kinases, activating protein-1 (AP-1) and nuclear factor kappa B (NF-kappa B) transcription factors down-regulates matrix metalloproteinase gene expression in articular chondrocytes. Matrix Biology 21: 251–262.CrossRefPubMed
40.
go back to reference Lianxu, C., J. Hongti, and Y. Changlong. 2006. NF-kappaBp65-specific siRNA inhibits expression of genes of COX-2, NOS-2 and MMP-9 in rat IL-1beta-induced and TNF-alpha-induced chondrocytes. Osteoarthritis and Cartilage 14: 367–376.CrossRefPubMed Lianxu, C., J. Hongti, and Y. Changlong. 2006. NF-kappaBp65-specific siRNA inhibits expression of genes of COX-2, NOS-2 and MMP-9 in rat IL-1beta-induced and TNF-alpha-induced chondrocytes. Osteoarthritis and Cartilage 14: 367–376.CrossRefPubMed
41.
go back to reference Jia, Y., J. Jing, Y. Bai, Z. Li, L. Liu, J. Luo, et al. 2011. Amelioration of experimental autoimmune encephalomyelitis by plumbagin through down-regulation of JAK-STAT and NF-kappaB signaling pathways. PloS One 6: e27006.CrossRefPubMedPubMedCentral Jia, Y., J. Jing, Y. Bai, Z. Li, L. Liu, J. Luo, et al. 2011. Amelioration of experimental autoimmune encephalomyelitis by plumbagin through down-regulation of JAK-STAT and NF-kappaB signaling pathways. PloS One 6: e27006.CrossRefPubMedPubMedCentral
42.
go back to reference Zheng, W., H. Zhang, Y. Jin, Q. Wang, L. Chen, Z. Feng, et al. 2016. Butein inhibits IL-1beta-induced inflammatory response in human osteoarthritis chondrocytes and slows the progression of osteoarthritis in mice. International Immunopharmacology 42: 1–10.CrossRefPubMed Zheng, W., H. Zhang, Y. Jin, Q. Wang, L. Chen, Z. Feng, et al. 2016. Butein inhibits IL-1beta-induced inflammatory response in human osteoarthritis chondrocytes and slows the progression of osteoarthritis in mice. International Immunopharmacology 42: 1–10.CrossRefPubMed
43.
go back to reference Wei, Y., and L. Bai. 2016. Recent advances in the understanding of molecular mechanisms of cartilage degeneration, synovitis and subchondral bone changes in osteoarthritis. Connective Tissue Research 57: 245–261.CrossRefPubMed Wei, Y., and L. Bai. 2016. Recent advances in the understanding of molecular mechanisms of cartilage degeneration, synovitis and subchondral bone changes in osteoarthritis. Connective Tissue Research 57: 245–261.CrossRefPubMed
Metadata
Title
Plumbagin Prevents IL-1β-Induced Inflammatory Response in Human Osteoarthritis Chondrocytes and Prevents the Progression of Osteoarthritis in Mice
Authors
Wenhao Zheng
Zhenyu Tao
Chunhui Chen
Chuanxu Zhang
Hui Zhang
Xiaozhou Ying
Hua Chen
Publication date
01-06-2017
Publisher
Springer US
Published in
Inflammation / Issue 3/2017
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0530-8

Other articles of this Issue 3/2017

Inflammation 3/2017 Go to the issue