Skip to main content
Top
Published in: Inflammation 4/2018

01-08-2018 | ORIGINAL ARTICLE

Paeonol Reduces the Nucleocytoplasmic Transportation of HMGB1 by Upregulating HDAC3 in LPS-Induced RAW264.7 Cells

Authors: Qin Xu, Xia Liu, Liyan Mei, Quan Wen, Jing Chen, Jifei Miao, Hang Lei, Huina Huang, Dongfeng Chen, Shaohui Du, Aijun Liu, Saixia Zhang, Jianhong Zhou, Rudong Deng, Yiwei Li, Chun Li, Hui Li

Published in: Inflammation | Issue 4/2018

Login to get access

Abstract

Extracellular high mobility group box 1 (HMGB1) is a lethal pro-inflammatory mediator in endotoxin shock. Hyperacetylation of HMGB1, regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), changes its subcellular localization and secretion to the extracellular matrix. Paeonol (2′-hydroxy-4′-methoxyacetophenone), one of the main active components of Paeonia suffruticosa, exerts anti-inflammatory effects. Our previous study demonstrated that Paeonol inhibited the relocation and secretion of HMGB1 in lipopolysaccharide (LPS)-activated RAW264.7 cells. However, it is still unclear whether Paeonol can regulate HATs/HDACs, which are responsible for the translocation of HMGB1 from nucleus to cytoplasm. To answer this question, P300 (a transcriptional coactivator with HATs) and HDAC3 were investigated using RT-qPCR and western blotting. The results showed that HMGB1 translocated from the nucleus to the cytoplasm, accompanied by upregulation of P300 and downregulation of HDAC3 in LPS-induced RAW264.7 cells. Paeonol, however, reversed the expression of P300 and HDAC3 significantly, suggesting that Paeonol may be involved in the acetylation of HMGB1 by regulating P300/HDAC3. Then, the effect of HDAC3 on the nucleocytoplasmic transportation of HMGB1 by HDAC3-SiRNA was evaluated. The results demonstrated that the inhibition of HDAC3 resulted in the nucleocytoplasmic translocation of HMGB1, with or without LPS stimulation. Moreover, Paeonol had no effect on the translocation of HMGB1 following ablation of HDAC3. These findings support the hypothesis that Paeonol can inhibit the translocation and secretion of HMGB1 in LPS-induced RAW264.7 cells by upregulating the expression of HDAC3. Paeonol may therefore be a valuable candidate as an HMGB1-targeting drug for inflammatory diseases via upregulation of HDAC3.
Literature
1.
go back to reference Wang, H.C., O. Bloom, M.H. Zhang, J.M. Vishnubhakat, M. Ombrellino, J.T. Che, A. Frazier, et al. 1999. HMG-1 as a late mediator of endotoxin lethality in mice. Science 285: 248–251.CrossRefPubMed Wang, H.C., O. Bloom, M.H. Zhang, J.M. Vishnubhakat, M. Ombrellino, J.T. Che, A. Frazier, et al. 1999. HMG-1 as a late mediator of endotoxin lethality in mice. Science 285: 248–251.CrossRefPubMed
2.
go back to reference Kang, R., R.C. Chen, Q.H. Zhang, W. Hou, S. Wu, L.Z. Cao, J. Huang, et al. 2014. HMGB1 in health and disease. Molecular Aspects of Medicine 40: 1–116.CrossRefPubMed Kang, R., R.C. Chen, Q.H. Zhang, W. Hou, S. Wu, L.Z. Cao, J. Huang, et al. 2014. HMGB1 in health and disease. Molecular Aspects of Medicine 40: 1–116.CrossRefPubMed
3.
go back to reference Wang, X., C. Liu, and G. Wang. 2016. Propofol protects rats and human alveolar epithelial cells against lipopolysaccharide-induced acute lung injury via inhibiting HMGB1 expression. Inflammation 39: 1004–1016.PubMed Wang, X., C. Liu, and G. Wang. 2016. Propofol protects rats and human alveolar epithelial cells against lipopolysaccharide-induced acute lung injury via inhibiting HMGB1 expression. Inflammation 39: 1004–1016.PubMed
4.
go back to reference Wang, W.J., S.J. Yin, and R.Q. Rong. 2015. PKR and HMGB1 expression and function in rheumatoid arthritis. Genetics and Molecular Research 14: 17864–17870.CrossRefPubMed Wang, W.J., S.J. Yin, and R.Q. Rong. 2015. PKR and HMGB1 expression and function in rheumatoid arthritis. Genetics and Molecular Research 14: 17864–17870.CrossRefPubMed
5.
go back to reference Shim, E.J., E. Chun, H.S. Lee, B.R. Bang, T.W. Kim, S.H. Cho, K.U. Min, and H.W. Park. 2012. The role of high-mobility group box-1 (HMGB1) in the pathogenesis of asthma. Clinical and Experimental Allergy 42: 958–965.CrossRefPubMed Shim, E.J., E. Chun, H.S. Lee, B.R. Bang, T.W. Kim, S.H. Cho, K.U. Min, and H.W. Park. 2012. The role of high-mobility group box-1 (HMGB1) in the pathogenesis of asthma. Clinical and Experimental Allergy 42: 958–965.CrossRefPubMed
7.
go back to reference Huebener, P., J.P. Pradere, C. Hernandez, G.Y. Gwak, J.M. Caviglia, X. Mu, J.D. Loike, R.E. Jenkins, D.J. Antoine, and R.F. Schwabe. 2015. The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis. The Journal of Clinical Investigation 125: 539–550.CrossRefPubMed Huebener, P., J.P. Pradere, C. Hernandez, G.Y. Gwak, J.M. Caviglia, X. Mu, J.D. Loike, R.E. Jenkins, D.J. Antoine, and R.F. Schwabe. 2015. The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis. The Journal of Clinical Investigation 125: 539–550.CrossRefPubMed
8.
go back to reference Sims, G.P., D.C. Rowe, S.T. Rietdijk, R. Herbst, and A.J. Coyle. 2010. HMGB1 and RAGE in inflammation and cancer. Annual Review of Immunology 28: 367–388.CrossRefPubMed Sims, G.P., D.C. Rowe, S.T. Rietdijk, R. Herbst, and A.J. Coyle. 2010. HMGB1 and RAGE in inflammation and cancer. Annual Review of Immunology 28: 367–388.CrossRefPubMed
9.
go back to reference Yu, M., H. Wang, A. Ding, D.T. Golenbock, E. Latz, C.J. Czura, M.J. Fenton, K.J. Tracey, and H. Yang. 2006. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock 26: 174–179.CrossRefPubMed Yu, M., H. Wang, A. Ding, D.T. Golenbock, E. Latz, C.J. Czura, M.J. Fenton, K.J. Tracey, and H. Yang. 2006. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock 26: 174–179.CrossRefPubMed
10.
go back to reference Bonaldi, T., F. Talamo, P. Scaffidi, D. Ferrera, A. Porto, A. Bachi, A. Rubartelli, A. Agresti, and M.E. Bianchi. 2003. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. The EMBO Journal 22: 5551–5560.CrossRefPubMedPubMedCentral Bonaldi, T., F. Talamo, P. Scaffidi, D. Ferrera, A. Porto, A. Bachi, A. Rubartelli, A. Agresti, and M.E. Bianchi. 2003. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. The EMBO Journal 22: 5551–5560.CrossRefPubMedPubMedCentral
11.
go back to reference Gardella, S., C. Andrei, D. Ferrera, L.V. Lotti, M.R. Torrisi, M.E. Bianchi, and A. Rubartelli. 2002. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Reports 3: 995–1001.CrossRefPubMedPubMedCentral Gardella, S., C. Andrei, D. Ferrera, L.V. Lotti, M.R. Torrisi, M.E. Bianchi, and A. Rubartelli. 2002. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Reports 3: 995–1001.CrossRefPubMedPubMedCentral
12.
go back to reference Adcock, I.M., K. Ito, and P.J. Barnes. 2005. Histone deacetylation: an important mechanism in inflammatory lung diseases. COPD 2: 445–455.CrossRefPubMed Adcock, I.M., K. Ito, and P.J. Barnes. 2005. Histone deacetylation: an important mechanism in inflammatory lung diseases. COPD 2: 445–455.CrossRefPubMed
13.
go back to reference Leus, N.G.J., M.R.H. Zwinderman, and F.J. Dekker. 2016. Histone deacetylase 3 (HDAC 3) as emerging drug target in NF-kappa B-mediated inflammation. Current Opinion in Chemical Biology 33: 160–168.CrossRefPubMedPubMedCentral Leus, N.G.J., M.R.H. Zwinderman, and F.J. Dekker. 2016. Histone deacetylase 3 (HDAC 3) as emerging drug target in NF-kappa B-mediated inflammation. Current Opinion in Chemical Biology 33: 160–168.CrossRefPubMedPubMedCentral
14.
go back to reference Marmorstein, R., and S.Y. Roth. 2001. Histone acetyltransferases: function, structure, and catalysis. Current Opinion in Genetics & Development 11: 155–161.CrossRef Marmorstein, R., and S.Y. Roth. 2001. Histone acetyltransferases: function, structure, and catalysis. Current Opinion in Genetics & Development 11: 155–161.CrossRef
15.
go back to reference Roth, S.Y., J.M. Denu, and C.D. Allis. 2001. Histone acetyltransferases. Annual Review of Biochemistry 70: 81–120.CrossRefPubMed Roth, S.Y., J.M. Denu, and C.D. Allis. 2001. Histone acetyltransferases. Annual Review of Biochemistry 70: 81–120.CrossRefPubMed
16.
go back to reference Dhupar, R., J.R. Klune, J. Evankovich, J. Cardinal, M. Zhang, M. Ross, N. Murase, D.A. Geller, T.R. Billiar, and A. Tsung. 2011. Interferon regulatory factor 1 mediates acetylation and release of high mobility group box 1 from hepatocytes during murine liver ischemia-reperfusion injury. Shock 35: 293–301.CrossRefPubMed Dhupar, R., J.R. Klune, J. Evankovich, J. Cardinal, M. Zhang, M. Ross, N. Murase, D.A. Geller, T.R. Billiar, and A. Tsung. 2011. Interferon regulatory factor 1 mediates acetylation and release of high mobility group box 1 from hepatocytes during murine liver ischemia-reperfusion injury. Shock 35: 293–301.CrossRefPubMed
17.
go back to reference Zou, J.Y., and F.T. Crews. 2014. Release of neuronal HMGB1 by ethanol through decreased HDAC activity activates brain neuroimmune signaling. PLoS One 9: e87915.CrossRefPubMedPubMedCentral Zou, J.Y., and F.T. Crews. 2014. Release of neuronal HMGB1 by ethanol through decreased HDAC activity activates brain neuroimmune signaling. PLoS One 9: e87915.CrossRefPubMedPubMedCentral
18.
go back to reference Zou, J., and F. Crews. 2013. Ethanol and Hdac inhibitors trigger Hmgb1 release from neuronal cells activating innate immune signaling in brain. Alcoholism-Clinical and Experimental Research 37: 125a.CrossRef Zou, J., and F. Crews. 2013. Ethanol and Hdac inhibitors trigger Hmgb1 release from neuronal cells activating innate immune signaling in brain. Alcoholism-Clinical and Experimental Research 37: 125a.CrossRef
19.
go back to reference Baneljee, S., T. Rakshit, S. Sett, and R. Mukhopadhyay. 2015. Interactions of histone acetyltransferase p300 with the nuclear proteins histone and HMGB1, as revealed by single molecule atomic force spectroscopy. Journal of Physical Chemistry B 119: 13278–13287.CrossRef Baneljee, S., T. Rakshit, S. Sett, and R. Mukhopadhyay. 2015. Interactions of histone acetyltransferase p300 with the nuclear proteins histone and HMGB1, as revealed by single molecule atomic force spectroscopy. Journal of Physical Chemistry B 119: 13278–13287.CrossRef
20.
go back to reference Zhang, X., S. Ouyang, X. Kong, Z. Liang, J. Lu, K. Zhu, D. Zhao, M. Zheng, H. Jiang, X. Liu, R. Marmorstein, and C. Luo. 2014. Catalytic mechanism of histone acetyltransferase p300: from the proton transfer to acetylation reaction. Journal of Physical Chemistry B 118: 2009–2019.CrossRefPubMed Zhang, X., S. Ouyang, X. Kong, Z. Liang, J. Lu, K. Zhu, D. Zhao, M. Zheng, H. Jiang, X. Liu, R. Marmorstein, and C. Luo. 2014. Catalytic mechanism of histone acetyltransferase p300: from the proton transfer to acetylation reaction. Journal of Physical Chemistry B 118: 2009–2019.CrossRefPubMed
21.
go back to reference Lou, Y., C. Wang, Q. Tang, W. Zheng, Z. Feng, X. Yu, X. Guo, and J. Wang. 2017. Paeonol inhibits IL-1beta-induced inflammation via PI3K/Akt/NF-kappaB pathways: in vivo and vitro studies. Inflammation 40: 1698–1706.CrossRefPubMed Lou, Y., C. Wang, Q. Tang, W. Zheng, Z. Feng, X. Yu, X. Guo, and J. Wang. 2017. Paeonol inhibits IL-1beta-induced inflammation via PI3K/Akt/NF-kappaB pathways: in vivo and vitro studies. Inflammation 40: 1698–1706.CrossRefPubMed
22.
go back to reference Liao, W.Y., T.H. Tsai, T.Y. Ho, Y.W. Lin, C.Y. Cheng, and C.L. Hsieh. 2016. Neuroprotective effect of paeonol mediates anti-inflammation via suppressing toll-like receptor 2 and toll-like receptor 4 signaling pathways in cerebral ischemia-reperfusion injured rats. Evidence-based Complementary and Alternative Medicine 2016: 3704647.CrossRefPubMedPubMedCentral Liao, W.Y., T.H. Tsai, T.Y. Ho, Y.W. Lin, C.Y. Cheng, and C.L. Hsieh. 2016. Neuroprotective effect of paeonol mediates anti-inflammation via suppressing toll-like receptor 2 and toll-like receptor 4 signaling pathways in cerebral ischemia-reperfusion injured rats. Evidence-based Complementary and Alternative Medicine 2016: 3704647.CrossRefPubMedPubMedCentral
23.
go back to reference Chen, N., D. Liu, L.W. Soromou, J. Sun, W. Zhong, W. Guo, M. Huo, H. Li, S. Guan, Z. Chen, and H. Feng. 2014. Paeonol suppresses lipopolysaccharide-induced inflammatory cytokines in macrophage cells and protects mice from lethal endotoxin shock. Fundamental & Clinical Pharmacology 28: 268–276.CrossRef Chen, N., D. Liu, L.W. Soromou, J. Sun, W. Zhong, W. Guo, M. Huo, H. Li, S. Guan, Z. Chen, and H. Feng. 2014. Paeonol suppresses lipopolysaccharide-induced inflammatory cytokines in macrophage cells and protects mice from lethal endotoxin shock. Fundamental & Clinical Pharmacology 28: 268–276.CrossRef
24.
go back to reference Lei, H., Q. Wen, H. Li, S. Du, J.J. Wu, J. Chen, H. Huang, et al. 2016. Paeonol inhibits lipopolysaccharide-induced HMGB1 translocation from the nucleus to the cytoplasm in RAW264.7 cells. Inflammation 39: 1177–1187.PubMed Lei, H., Q. Wen, H. Li, S. Du, J.J. Wu, J. Chen, H. Huang, et al. 2016. Paeonol inhibits lipopolysaccharide-induced HMGB1 translocation from the nucleus to the cytoplasm in RAW264.7 cells. Inflammation 39: 1177–1187.PubMed
25.
go back to reference Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods 25: 402–408.CrossRefPubMed Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods 25: 402–408.CrossRefPubMed
26.
go back to reference Nieminen, A., A. Rouhiainen, H. Tukiainen, J. Kuja-Panula, L. Kylanpaa, P. Puolakkainen, H. Rauvala, and H. Repo. 2014. HMGB1 and acetylated HMGB1 as predictive markers of severe acute pancreatitis. Pancreas 43: 1396–1396. Nieminen, A., A. Rouhiainen, H. Tukiainen, J. Kuja-Panula, L. Kylanpaa, P. Puolakkainen, H. Rauvala, and H. Repo. 2014. HMGB1 and acetylated HMGB1 as predictive markers of severe acute pancreatitis. Pancreas 43: 1396–1396.
27.
go back to reference Abraham, E., J. Arcaroli, A. Carmody, H.C. Wang, and K.J. Tracey. 2000. Cutting edge: HMG-1 as a mediator of acute lung inflammation. Journal of Immunology 165: 2950–2954.CrossRef Abraham, E., J. Arcaroli, A. Carmody, H.C. Wang, and K.J. Tracey. 2000. Cutting edge: HMG-1 as a mediator of acute lung inflammation. Journal of Immunology 165: 2950–2954.CrossRef
28.
go back to reference Wang, X., R. Sun, H. Wei, and Z. Tian. 2013. High-mobility group box 1 (HMGB1)-toll-like receptor (TLR)4-interleukin (IL)-23-IL-17A axis in drug-induced damage-associated lethal hepatitis: Interaction of gammadelta T cells with macrophages. Hepatology 57: 373–384.CrossRefPubMed Wang, X., R. Sun, H. Wei, and Z. Tian. 2013. High-mobility group box 1 (HMGB1)-toll-like receptor (TLR)4-interleukin (IL)-23-IL-17A axis in drug-induced damage-associated lethal hepatitis: Interaction of gammadelta T cells with macrophages. Hepatology 57: 373–384.CrossRefPubMed
29.
go back to reference Nogueira-Machado, J.A., C.M. Volpe, C.A. Veloso, and M.M. Chaves. 2011. HMGB1, TLR and RAGE: a functional tripod that leads to diabetic inflammation. Expert Opinion on Therapeutic Targets 15: 1023–1035.CrossRefPubMed Nogueira-Machado, J.A., C.M. Volpe, C.A. Veloso, and M.M. Chaves. 2011. HMGB1, TLR and RAGE: a functional tripod that leads to diabetic inflammation. Expert Opinion on Therapeutic Targets 15: 1023–1035.CrossRefPubMed
30.
go back to reference Sunden Cullberg, J., A. Norrby Teglund, A. Rouhiainen, H. Rauvala, G. Herman, K.J. Tracey, M.L. Lee, J. Andersson, L. Tokics, and C.J. Treutiger. 2005. Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Critical Care Medicine 33: 564–573.CrossRefPubMed Sunden Cullberg, J., A. Norrby Teglund, A. Rouhiainen, H. Rauvala, G. Herman, K.J. Tracey, M.L. Lee, J. Andersson, L. Tokics, and C.J. Treutiger. 2005. Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Critical Care Medicine 33: 564–573.CrossRefPubMed
31.
go back to reference Watson, P.J., L. Fairall, G.M. Santos, and J.W.R. Schwabe. 2012. Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature 481: 335–U114.CrossRefPubMedPubMedCentral Watson, P.J., L. Fairall, G.M. Santos, and J.W.R. Schwabe. 2012. Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature 481: 335–U114.CrossRefPubMedPubMedCentral
32.
go back to reference Millard, C.J., P.J. Watson, I. Celardo, Y. Gordiyenko, S.M. Cowley, C.V. Robinson, L. Fairall, and J.W.R. Schwabe. 2013. Class I HDACs share a common mechanism of regulation by inositol phosphates. Molecular Cell 51: 57–67.CrossRefPubMedPubMedCentral Millard, C.J., P.J. Watson, I. Celardo, Y. Gordiyenko, S.M. Cowley, C.V. Robinson, L. Fairall, and J.W.R. Schwabe. 2013. Class I HDACs share a common mechanism of regulation by inositol phosphates. Molecular Cell 51: 57–67.CrossRefPubMedPubMedCentral
33.
go back to reference Lee, H., G. Lee, H. Kim, and H. Bae. 2013. Paeonol, a major compound of moutan cortex, attenuates cisplatin-induced nephrotoxicity in mice. Evidence-based Complementary and Alternative Medicine 2013: 310989.PubMedPubMedCentral Lee, H., G. Lee, H. Kim, and H. Bae. 2013. Paeonol, a major compound of moutan cortex, attenuates cisplatin-induced nephrotoxicity in mice. Evidence-based Complementary and Alternative Medicine 2013: 310989.PubMedPubMedCentral
34.
go back to reference Choy, K.W., M.R. Mustafa, Y.S. Lau, J. Liu, D. Murugan, C.W. Lau, L. Wang, L. Zhao, and Y. Huang. 2016. Paeonol protects against endoplasmic reticulum stress-induced endothelial dysfunction via AMPK/PPAR delta signaling pathway. Biochemical Pharmacology 116: 51–62.CrossRefPubMed Choy, K.W., M.R. Mustafa, Y.S. Lau, J. Liu, D. Murugan, C.W. Lau, L. Wang, L. Zhao, and Y. Huang. 2016. Paeonol protects against endoplasmic reticulum stress-induced endothelial dysfunction via AMPK/PPAR delta signaling pathway. Biochemical Pharmacology 116: 51–62.CrossRefPubMed
Metadata
Title
Paeonol Reduces the Nucleocytoplasmic Transportation of HMGB1 by Upregulating HDAC3 in LPS-Induced RAW264.7 Cells
Authors
Qin Xu
Xia Liu
Liyan Mei
Quan Wen
Jing Chen
Jifei Miao
Hang Lei
Huina Huang
Dongfeng Chen
Shaohui Du
Aijun Liu
Saixia Zhang
Jianhong Zhou
Rudong Deng
Yiwei Li
Chun Li
Hui Li
Publication date
01-08-2018
Publisher
Springer US
Published in
Inflammation / Issue 4/2018
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0800-0

Other articles of this Issue 4/2018

Inflammation 4/2018 Go to the issue