Skip to main content
Top
Published in: Inflammation 4/2018

Open Access 01-08-2018 | ORIGINAL ARTICLE

NLRP3 Inflammasome Activation Regulates Aged RBC Clearance

Authors: Li Qin, Zhao Fengyong, Zhang Jiamin, Yang Qixiu, Lu Geming, Xia Rongwei, Zhu Ziyan

Published in: Inflammation | Issue 4/2018

Login to get access

Abstract

The NLR family pyrin domain-containing protein 3 (NLRP3) inflammasome is triggered by various stimuli. Whether the NLRP3 inflammasome is activated during the monocyte clearing of aged or damaged erythrocytes is unknown. This work aimed to determine whether the NLRP3 inflammasome is activated during the THP-1 cell engulfing of aged erythrocytes. In the study, THP-1 cells were treated with PMA and then coincubated with untreated red blood cells (RBCs), 42 °C-treated RBCs, immunoglobulin G (IgG) anti-D-sensitized RBCs, Rhnull/Rhmod RBC sample, hemoglobin, and RBC ghost. The activation of the NLRP3 inflammasome and production of some proinflammatory cytokines were determined using immunoblotting, cytometric bead array, and digital PCR. An NLRP3 inflammasome inhibitor was also used to evaluate the alteration of the NLRP3 activation and RBC clearance rate. The untreated RBCs, 42 °C-incubated RBCs, IgG-opsonized RBCs, Rhnull/Rhmod RBCs, RBC ghosts, and hemoglobin induced the THP-1-cell-mediated activation of the NLRP3 inflammasome and the production of inflammatory cytokines. The RBC clearance rate exhibited a positive correlation with the expression of proinflammatory cytokines. The NLRP3 inflammasome inhibitor reduced the NLRP3 activation and RBC phagocytosis rate. The NLRP3 inflammasome was activated during the clearance of the aged erythrocytes through unopsonized and opsonized pathways. However, the mechanism of such phenomenon needs to be further elucidated. Such mechanism may provide new insight into the assessment of the safety of transfusing long-storage RBC based on cytokine levels.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hod, E.A., and S.L. Spitalnik. 2012. Stored red blood cell transfusions: iron, inflammation, immunity, and infection. Transfusion Clinique et Biologique 19 (3): 84–89.CrossRefPubMedPubMedCentral Hod, E.A., and S.L. Spitalnik. 2012. Stored red blood cell transfusions: iron, inflammation, immunity, and infection. Transfusion Clinique et Biologique 19 (3): 84–89.CrossRefPubMedPubMedCentral
2.
go back to reference Oldenborg, P.A., A. Zheleznyak, Y.F. Fang, C.F. Lagenaur, H.D. Gresham, and F.P. Lindberg. 2000. Role of CD47 as a marker of self on red blood cells. Science 288 (5473): 2051–2054.CrossRefPubMed Oldenborg, P.A., A. Zheleznyak, Y.F. Fang, C.F. Lagenaur, H.D. Gresham, and F.P. Lindberg. 2000. Role of CD47 as a marker of self on red blood cells. Science 288 (5473): 2051–2054.CrossRefPubMed
3.
go back to reference Lutz, H.U., P. Stammler, and S. Fasler. 1993. Preferential formation of C3b-IgG complexes in vitro and in vivo from nascent C3b and naturally occurring anti-band 3 antibodies. The Journal of Biological Chemistry 268 (23): 17418–17426.PubMed Lutz, H.U., P. Stammler, and S. Fasler. 1993. Preferential formation of C3b-IgG complexes in vitro and in vivo from nascent C3b and naturally occurring anti-band 3 antibodies. The Journal of Biological Chemistry 268 (23): 17418–17426.PubMed
4.
go back to reference Reinhold, M.I., F.P. Lindberg, D. Plas, et al. 1995. In vivo expression of alternatively spliced forms of integrin-associated protein (CD47). Journal of Cell Science 108 (Pt 11): 3419–3425.PubMed Reinhold, M.I., F.P. Lindberg, D. Plas, et al. 1995. In vivo expression of alternatively spliced forms of integrin-associated protein (CD47). Journal of Cell Science 108 (Pt 11): 3419–3425.PubMed
5.
go back to reference Veillette, A., E. Thibaudeau, and S. Latour. 1998. High expression of inhibitory receptor SHPS-1 and its association with protein-tyrosine phosphatase SHP-1 in macrophages. The Journal of Biological Chemistry 273 (35): 22719–22728.CrossRefPubMed Veillette, A., E. Thibaudeau, and S. Latour. 1998. High expression of inhibitory receptor SHPS-1 and its association with protein-tyrosine phosphatase SHP-1 in macrophages. The Journal of Biological Chemistry 273 (35): 22719–22728.CrossRefPubMed
6.
go back to reference Anniss, A.M., and R.L. Sparrow. 2002. Expression of CD47 (integrin-associated protein) decreases on red blood cells during storage. Transfusion and Apheresis Science 27 (3): 233–238.CrossRefPubMed Anniss, A.M., and R.L. Sparrow. 2002. Expression of CD47 (integrin-associated protein) decreases on red blood cells during storage. Transfusion and Apheresis Science 27 (3): 233–238.CrossRefPubMed
7.
go back to reference Simak, J., and M.P. Gelderman. 2006. Cell membrane microparticles in blood and blood products: potentially pathogenic agents and diagnostic markers. Transfusion Medicine Reviews 20 (1): 1–26.CrossRefPubMed Simak, J., and M.P. Gelderman. 2006. Cell membrane microparticles in blood and blood products: potentially pathogenic agents and diagnostic markers. Transfusion Medicine Reviews 20 (1): 1–26.CrossRefPubMed
8.
go back to reference Kriebardis, A.G., M.H. Antonelou, K.E. Stamoulis, E. Economou-Petersen, L.H. Margaritis, and I.S. Papassideri. 2008. RBC-derived vesicles during storage: ultrastructure, protein composition, oxidation, and signaling components. Transfusion 48 (9): 1943–1953.CrossRefPubMed Kriebardis, A.G., M.H. Antonelou, K.E. Stamoulis, E. Economou-Petersen, L.H. Margaritis, and I.S. Papassideri. 2008. RBC-derived vesicles during storage: ultrastructure, protein composition, oxidation, and signaling components. Transfusion 48 (9): 1943–1953.CrossRefPubMed
9.
go back to reference Olsson, M., A. Nilsson, and P.A. Oldenborg. 2007. Dose-dependent inhibitory effect of CD47 in macrophage uptake of IgG-opsonized murine erythrocytes. Biochemical and Biophysical Research Communications 352 (1): 193–197.CrossRefPubMed Olsson, M., A. Nilsson, and P.A. Oldenborg. 2007. Dose-dependent inhibitory effect of CD47 in macrophage uptake of IgG-opsonized murine erythrocytes. Biochemical and Biophysical Research Communications 352 (1): 193–197.CrossRefPubMed
10.
go back to reference Lutz, H.U. 2004. Innate immune and non-immune mediators of erythrocyte clearance. Cellular and Molecular Biology (Noisy-le-Grand, France) 50 (2): 107–116. Lutz, H.U. 2004. Innate immune and non-immune mediators of erythrocyte clearance. Cellular and Molecular Biology (Noisy-le-Grand, France) 50 (2): 107–116.
11.
go back to reference Taylor, P.R., L. Martinez-Pomares, M. Stacey, H.H. Lin, G.D. Brown, and S. Gordon. 2005. Macrophage receptors and immune recognition. Annual Review of Immunology 23: 901–944.CrossRefPubMed Taylor, P.R., L. Martinez-Pomares, M. Stacey, H.H. Lin, G.D. Brown, and S. Gordon. 2005. Macrophage receptors and immune recognition. Annual Review of Immunology 23: 901–944.CrossRefPubMed
12.
go back to reference Alblas, J., H. Honing, C.R. de Lavalette, et al. 2005. Signal regulatory protein alpha ligation induces macrophage nitric oxide production through JAK/STAT- and phosphatidylinositol 3-kinase/Rac1/NAPDH oxidase/H2O2-dependent pathways. Molecular and Cellular Biology 25 (16): 7181–7192.CrossRefPubMedPubMedCentral Alblas, J., H. Honing, C.R. de Lavalette, et al. 2005. Signal regulatory protein alpha ligation induces macrophage nitric oxide production through JAK/STAT- and phosphatidylinositol 3-kinase/Rac1/NAPDH oxidase/H2O2-dependent pathways. Molecular and Cellular Biology 25 (16): 7181–7192.CrossRefPubMedPubMedCentral
13.
go back to reference Spence, S., A. Fitzsimons, C.R. Boyd, J. Kessler, D. Fitzgerald, J. Elliott, J.N. Gabhann, S. Smith, A. Sica, E. Hams, S.P. Saunders, C.A. Jefferies, P.G. Fallon, D.F. McAuley, A. Kissenpfennig, and J.A. Johnston. 2013. Suppressors of cytokine signaling 2 and 3 diametrically control macrophage polarization. Immunity 38 (1): 66–78.CrossRefPubMed Spence, S., A. Fitzsimons, C.R. Boyd, J. Kessler, D. Fitzgerald, J. Elliott, J.N. Gabhann, S. Smith, A. Sica, E. Hams, S.P. Saunders, C.A. Jefferies, P.G. Fallon, D.F. McAuley, A. Kissenpfennig, and J.A. Johnston. 2013. Suppressors of cytokine signaling 2 and 3 diametrically control macrophage polarization. Immunity 38 (1): 66–78.CrossRefPubMed
14.
go back to reference Martinon, F., K. Burns, and J. Tschopp. 2002. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Molecular Cell 10 (2): 417–426.CrossRefPubMed Martinon, F., K. Burns, and J. Tschopp. 2002. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Molecular Cell 10 (2): 417–426.CrossRefPubMed
16.
go back to reference Franchi, L., R. Muñoz-Planillo, and G. Núñez. 2012. Sensing and reacting to microbes through the inflammasomes. Nature Immunology 13 (4): 325–332.CrossRefPubMedPubMedCentral Franchi, L., R. Muñoz-Planillo, and G. Núñez. 2012. Sensing and reacting to microbes through the inflammasomes. Nature Immunology 13 (4): 325–332.CrossRefPubMedPubMedCentral
17.
go back to reference Keller, M., A. Rüegg, S. Werner, and H.D. Beer. 2008. Active caspase-1 is a regulator of unconventional protein secretion. Cell 132 (5): 818–831.CrossRefPubMed Keller, M., A. Rüegg, S. Werner, and H.D. Beer. 2008. Active caspase-1 is a regulator of unconventional protein secretion. Cell 132 (5): 818–831.CrossRefPubMed
18.
go back to reference Chang, A., K. Ko, and M.R. Clark. 2014. The emerging role of the inflammasome in kidney diseases. Current Opinion in Nephrology and Hypertension 23 (3): 204–210.CrossRefPubMedPubMedCentral Chang, A., K. Ko, and M.R. Clark. 2014. The emerging role of the inflammasome in kidney diseases. Current Opinion in Nephrology and Hypertension 23 (3): 204–210.CrossRefPubMedPubMedCentral
19.
go back to reference Gerfaud-Valentin, M., Y. Jamilloux, J. Iwaz, and P. Sève. 2014. Adult-onset Still's disease. Autoimmunity Reviews 13 (7): 708–722.CrossRefPubMed Gerfaud-Valentin, M., Y. Jamilloux, J. Iwaz, and P. Sève. 2014. Adult-onset Still's disease. Autoimmunity Reviews 13 (7): 708–722.CrossRefPubMed
20.
go back to reference Lasithiotaki, I., I. Giannarakis, and E. Tsitoura. 2016. NLRP3 inflammasome expression in idiopathic pulmonary fibrosis and rheumatoid lung. The European Respiratory Journal 47 (3): 910–918.CrossRefPubMed Lasithiotaki, I., I. Giannarakis, and E. Tsitoura. 2016. NLRP3 inflammasome expression in idiopathic pulmonary fibrosis and rheumatoid lung. The European Respiratory Journal 47 (3): 910–918.CrossRefPubMed
22.
go back to reference Spadaro, S., F.S. Taccone, A. Fogagnolo, V. Fontana, R. Ragazzi, M. Verri, G. Valpiani, P. Greco, M. Bianconi, M. Govoni, R. Reverberi, and C.A. Volta. 2017. The effects of storage of red blood cells on the development of postoperative infections after noncardiac surgery. Transfusion 57 (11): 2727–2737.CrossRefPubMed Spadaro, S., F.S. Taccone, A. Fogagnolo, V. Fontana, R. Ragazzi, M. Verri, G. Valpiani, P. Greco, M. Bianconi, M. Govoni, R. Reverberi, and C.A. Volta. 2017. The effects of storage of red blood cells on the development of postoperative infections after noncardiac surgery. Transfusion 57 (11): 2727–2737.CrossRefPubMed
23.
go back to reference Wang, D., J. Sun, S.B. Solomon, H.G. Klein, and C. Natanson. 2012. Transfusion of older stored blood and risk of death: a meta-analysis. Transfusion 52 (6): 1184–1195.CrossRefPubMed Wang, D., J. Sun, S.B. Solomon, H.G. Klein, and C. Natanson. 2012. Transfusion of older stored blood and risk of death: a meta-analysis. Transfusion 52 (6): 1184–1195.CrossRefPubMed
24.
go back to reference Middelburg, R.A., L.M. van de Watering, E. Briët, et al. 2013. Storage time of red blood cells and mortality of transfusion recipients. Transfusion Medicine Reviews 27 (1): 36–43.CrossRefPubMed Middelburg, R.A., L.M. van de Watering, E. Briët, et al. 2013. Storage time of red blood cells and mortality of transfusion recipients. Transfusion Medicine Reviews 27 (1): 36–43.CrossRefPubMed
25.
go back to reference Alexander, P.E., R. Barty, Y. Fei, P.O. Vandvik, M. Pai, R.A.C. Siemieniuk, N.M. Heddle, N. Blumberg, S.L. McLeod, J. Liu, J.W. Eikelboom, and G.H. Guyatt. 2016. Transfusion of fresher vs older red blood cells in hospitalized patients: a systematic review and meta-analysis. Blood 127 (4): 400–410.CrossRefPubMed Alexander, P.E., R. Barty, Y. Fei, P.O. Vandvik, M. Pai, R.A.C. Siemieniuk, N.M. Heddle, N. Blumberg, S.L. McLeod, J. Liu, J.W. Eikelboom, and G.H. Guyatt. 2016. Transfusion of fresher vs older red blood cells in hospitalized patients: a systematic review and meta-analysis. Blood 127 (4): 400–410.CrossRefPubMed
26.
go back to reference Bütikofer, P., F.A. Kuypers, C.M. Xu, et al. 1989. Enrichment of two glycosyl-phosphatidylinositol-anchored proteins, acetylcholinesterase and decay accelerating factor, in vesicles released from human red blood cells. Blood 74 (5): 1481–1485.PubMed Bütikofer, P., F.A. Kuypers, C.M. Xu, et al. 1989. Enrichment of two glycosyl-phosphatidylinositol-anchored proteins, acetylcholinesterase and decay accelerating factor, in vesicles released from human red blood cells. Blood 74 (5): 1481–1485.PubMed
27.
go back to reference Ishikawa-Sekigami, T., Y. Kaneko, H. Okazawa, T. Tomizawa, J. Okajo, Y. Saito, C. Okuzawa, M. Sugawara-Yokoo, U. Nishiyama, H. Ohnishi, T. Matozaki, and Y. Nojima. 2006. SHPS-1 promotes the survival of circulating erythrocytes through inhibition of phagocytosis by splenic macrophages. Blood 107 (1): 341–348.CrossRefPubMed Ishikawa-Sekigami, T., Y. Kaneko, H. Okazawa, T. Tomizawa, J. Okajo, Y. Saito, C. Okuzawa, M. Sugawara-Yokoo, U. Nishiyama, H. Ohnishi, T. Matozaki, and Y. Nojima. 2006. SHPS-1 promotes the survival of circulating erythrocytes through inhibition of phagocytosis by splenic macrophages. Blood 107 (1): 341–348.CrossRefPubMed
28.
go back to reference Zhou, J., Q. Li, and Z.Y. Zhu. 2011. Role of CD47-SIRPα signaling in the senescence and clearance of human red blood cells. Current Immunology. 31 (5): 409–414 (In Chinese). Zhou, J., Q. Li, and Z.Y. Zhu. 2011. Role of CD47-SIRPα signaling in the senescence and clearance of human red blood cells. Current Immunology. 31 (5): 409–414 (In Chinese).
29.
go back to reference Vos, G.H., D. Vos, R.L. Kirk, et al. 1961. A sample of blood with no detectable Rh antigens. Lancet 1 (7167): 14–15.CrossRefPubMed Vos, G.H., D. Vos, R.L. Kirk, et al. 1961. A sample of blood with no detectable Rh antigens. Lancet 1 (7167): 14–15.CrossRefPubMed
30.
go back to reference Chown, B., M. Lewis, H. Kaita, and B. Lowen. 1972. An unlinked modifier of Rh blood groups: effects when heterozygous and when homozygous. American Journal of Human Genetics 24 (6 Pt 1): 623–637.PubMedPubMedCentral Chown, B., M. Lewis, H. Kaita, and B. Lowen. 1972. An unlinked modifier of Rh blood groups: effects when heterozygous and when homozygous. American Journal of Human Genetics 24 (6 Pt 1): 623–637.PubMedPubMedCentral
31.
go back to reference Arndt, P.A., and G. Garratty. 2004. Rh(null) red blood cells with reduced CD47 do not show increased interactions with peripheral blood monocytes. British Journal of Haematology 125 (3): 412–414.CrossRefPubMed Arndt, P.A., and G. Garratty. 2004. Rh(null) red blood cells with reduced CD47 do not show increased interactions with peripheral blood monocytes. British Journal of Haematology 125 (3): 412–414.CrossRefPubMed
Metadata
Title
NLRP3 Inflammasome Activation Regulates Aged RBC Clearance
Authors
Li Qin
Zhao Fengyong
Zhang Jiamin
Yang Qixiu
Lu Geming
Xia Rongwei
Zhu Ziyan
Publication date
01-08-2018
Publisher
Springer US
Published in
Inflammation / Issue 4/2018
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0784-9

Other articles of this Issue 4/2018

Inflammation 4/2018 Go to the issue