Skip to main content
Top
Published in: Inflammation 4/2018

01-08-2018 | ORIGINAL ARTICLE

Inflammatory Response of Pulmonary Artery Smooth Muscle Cells Exposed to Oxidative and Biophysical Stress

Authors: Joanna Costa, Yan Zhu, Timothy Cox, Paul Fawcett, Thomas Shaffer, Deepthi Alapati

Published in: Inflammation | Issue 4/2018

Login to get access

Abstract

Pulmonary hypertension in the neonate requires treatment with oxygen and positive pressure ventilation, both known to induce lung injury. The direct response of pulmonary artery smooth muscle cells, the most abundant cells in the artery wall, to the stress of positive pressure and hyperoxia has not been previously studied. Pulmonary artery smooth muscle cells were cultured in temperature- and pressure-controlled air-tight chambers under conditions of positive pressure or hyperoxia for 24 h. Control cells were cultured in room air under atmospheric pressure. After the exposure period, culture medium was collected and samples were analyzed by ELISA, Human Cytokine 25-Plex Panel using a Luminex 200 analyzer and Western blot. Secretion of various inflammatory mediators, specifically IL-6, IL-8, IL-2R, MIP-1β, MCP-1, IP-10, IL-7, IL-1RA, and IFN-α, was higher in the positive pressure and hyperoxia groups compared with control. The level of cyclin D1 was decreased in the hyperoxia and positive pressure group compared with control. Levels of fibronectin and α-smooth muscle actin were not different among the groups. Pulmonary artery smooth muscle cells directly produce multiple inflammatory mediators in response to oxidative and biophysical stress in vitro, which may be part of a cascade that leads to the vascular and perivascular changes in pulmonary hypertension.
Literature
1.
go back to reference Angus, D.C., W.T. Linde-Zwirble, G. Clermont, M.F. Griffin, and R.H. Clark. 2001. Epidemiology of neonatal respiratory failure in the United States: projections from California and New York. American Journal of Respiratory and Critical Care Medicine 164: 1154–1160.CrossRefPubMed Angus, D.C., W.T. Linde-Zwirble, G. Clermont, M.F. Griffin, and R.H. Clark. 2001. Epidemiology of neonatal respiratory failure in the United States: projections from California and New York. American Journal of Respiratory and Critical Care Medicine 164: 1154–1160.CrossRefPubMed
2.
go back to reference Subhedar, N.V., and N.J. Shaw. 2000. Changes in pulmonary arterial pressure in preterm infants with chronic lung disease. Archives of Disease in Childhood. Fetal and Neonatal Edition 82: F243–F247.CrossRefPubMedPubMedCentral Subhedar, N.V., and N.J. Shaw. 2000. Changes in pulmonary arterial pressure in preterm infants with chronic lung disease. Archives of Disease in Childhood. Fetal and Neonatal Edition 82: F243–F247.CrossRefPubMedPubMedCentral
5.
go back to reference Mecham, R.P., L.A. Whitehouse, D.S. Wrenn, W.C. Parks, G.L. Griffin, R.M. Senior, et al. 1987. Smooth muscle-mediated connective tissue remodeling in pulmonary hypertension. Science 237: 423–426.CrossRefPubMed Mecham, R.P., L.A. Whitehouse, D.S. Wrenn, W.C. Parks, G.L. Griffin, R.M. Senior, et al. 1987. Smooth muscle-mediated connective tissue remodeling in pulmonary hypertension. Science 237: 423–426.CrossRefPubMed
6.
go back to reference Stenmark, K.R., K.A. Fagan, and M.G. Frid. 2006. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circulation Research 99: 675–691.CrossRefPubMed Stenmark, K.R., K.A. Fagan, and M.G. Frid. 2006. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circulation Research 99: 675–691.CrossRefPubMed
8.
go back to reference Speer, C.P. 2001. New insights into the pathogenesis of pulmonary inflammation in preterm infants. Biology of the Neonate 79: 205–209.CrossRefPubMed Speer, C.P. 2001. New insights into the pathogenesis of pulmonary inflammation in preterm infants. Biology of the Neonate 79: 205–209.CrossRefPubMed
9.
go back to reference Cool, C.D., D. Kennedy, N.F. Voelkel, and R.M. Tuder. 1997. Pathogenesis and evolution of plexiform lesions in pulmonary hypertension associated with scleroderma and human immunodeficiency virus infection. Human Pathology 28: 434–442.CrossRefPubMed Cool, C.D., D. Kennedy, N.F. Voelkel, and R.M. Tuder. 1997. Pathogenesis and evolution of plexiform lesions in pulmonary hypertension associated with scleroderma and human immunodeficiency virus infection. Human Pathology 28: 434–442.CrossRefPubMed
11.
go back to reference Pinto, R.F., L. Higuchi Mde, and V.D. Aiello. 2004. Decreased numbers of T-lymphocytes and predominance of recently recruited macrophages in the walls of peripheral pulmonary arteries from 26 patients with pulmonary hypertension secondary to congenital cardiac shunts. Cardiovascular Pathology: the Official Journal of the Society for Cardiovascular Pathology 13: 268–275.CrossRef Pinto, R.F., L. Higuchi Mde, and V.D. Aiello. 2004. Decreased numbers of T-lymphocytes and predominance of recently recruited macrophages in the walls of peripheral pulmonary arteries from 26 patients with pulmonary hypertension secondary to congenital cardiac shunts. Cardiovascular Pathology: the Official Journal of the Society for Cardiovascular Pathology 13: 268–275.CrossRef
12.
go back to reference Humbert, M., G. Monti, F. Brenot, O. Sitbon, A. Portier, L. Grangeot-Keros, P. Duroux, P. Galanaud, G. Simonneau, and D. Emilie. 1995. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. American Journal of Respiratory and Critical Care Medicine 151: 1628–1631.CrossRefPubMed Humbert, M., G. Monti, F. Brenot, O. Sitbon, A. Portier, L. Grangeot-Keros, P. Duroux, P. Galanaud, G. Simonneau, and D. Emilie. 1995. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. American Journal of Respiratory and Critical Care Medicine 151: 1628–1631.CrossRefPubMed
13.
go back to reference Soon, E., A.M. Holmes, C.M. Treacy, N.J. Doughty, L. Southgate, R.D. Machado, R.C. Trembath, S. Jennings, L. Barker, P. Nicklin, C. Walker, D.C. Budd, J. Pepke-Zaba, and N.W. Morrell. 2010. Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation 122: 920–927. https://doi.org/10.1161/CIRCULATIONAHA.109.933762.CrossRefPubMed Soon, E., A.M. Holmes, C.M. Treacy, N.J. Doughty, L. Southgate, R.D. Machado, R.C. Trembath, S. Jennings, L. Barker, P. Nicklin, C. Walker, D.C. Budd, J. Pepke-Zaba, and N.W. Morrell. 2010. Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation 122: 920–927. https://​doi.​org/​10.​1161/​CIRCULATIONAHA.​109.​933762.CrossRefPubMed
14.
go back to reference Sanchez, O., E. Marcos, F. Perros, E. Fadel, L. Tu, M. Humbert, P. Dartevelle, G. Simonneau, S. Adnot, and S. Eddahibi. 2007. Role of endothelium-derived CC chemokine ligand 2 in idiopathic pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine 176: 1041–1047.CrossRefPubMed Sanchez, O., E. Marcos, F. Perros, E. Fadel, L. Tu, M. Humbert, P. Dartevelle, G. Simonneau, S. Adnot, and S. Eddahibi. 2007. Role of endothelium-derived CC chemokine ligand 2 in idiopathic pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine 176: 1041–1047.CrossRefPubMed
15.
go back to reference Kallapur, S.G., and A.H. Jobe. 2006. Contribution of inflammation to lung injury and development. Archives of Disease in Childhood. Fetal and Neonatal Edition 91: F132–F135.CrossRefPubMedPubMedCentral Kallapur, S.G., and A.H. Jobe. 2006. Contribution of inflammation to lung injury and development. Archives of Disease in Childhood. Fetal and Neonatal Edition 91: F132–F135.CrossRefPubMedPubMedCentral
17.
18.
20.
go back to reference Humbert, M., N.W. Morrell, S.L. Archer, K.R. Stenmark, M.R. MacLean, I.M. Lang, B.W. Christman, E.K. Weir, O. Eickelberg, N.F. Voelkel, and M. Rabinovitch. 2004. Cellular and molecular pathobiology of pulmonary arterial hypertension. Journal of the American College of Cardiology 43: 13S–24S.CrossRefPubMed Humbert, M., N.W. Morrell, S.L. Archer, K.R. Stenmark, M.R. MacLean, I.M. Lang, B.W. Christman, E.K. Weir, O. Eickelberg, N.F. Voelkel, and M. Rabinovitch. 2004. Cellular and molecular pathobiology of pulmonary arterial hypertension. Journal of the American College of Cardiology 43: 13S–24S.CrossRefPubMed
24.
go back to reference Eddahibi, S., C. Guignabert, A.M. Barlier-Mur, L. Dewachter, E. Fadel, P. Dartevelle, M. Humbert, G. Simonneau, N. Hanoun, F. Saurini, M. Hamon, and S. Adnot. 2006. Cross talk between endothelial and smooth muscle cells in pulmonary hypertension: critical role for serotonin-induced smooth muscle hyperplasia. Circulation 113: 1857–1864.CrossRefPubMed Eddahibi, S., C. Guignabert, A.M. Barlier-Mur, L. Dewachter, E. Fadel, P. Dartevelle, M. Humbert, G. Simonneau, N. Hanoun, F. Saurini, M. Hamon, and S. Adnot. 2006. Cross talk between endothelial and smooth muscle cells in pulmonary hypertension: critical role for serotonin-induced smooth muscle hyperplasia. Circulation 113: 1857–1864.CrossRefPubMed
29.
go back to reference Rabinovitch, M., M.A. Konstam, W.J. Gamble, N. Papanicolaou, M.J. Aronovitz, S. Treves, and L. Reid. 1983. Changes in pulmonary blood flow affect vascular response to chronic hypoxia in rats. Circulation Research 52: 432–441.CrossRefPubMed Rabinovitch, M., M.A. Konstam, W.J. Gamble, N. Papanicolaou, M.J. Aronovitz, S. Treves, and L. Reid. 1983. Changes in pulmonary blood flow affect vascular response to chronic hypoxia in rats. Circulation Research 52: 432–441.CrossRefPubMed
30.
go back to reference Quinn, T.P., M. Schlueter, S.J. Soifer, and J.A. Gutierrez. 2002. Cyclic mechanical stretch induces VEGF and FGF-2 expression in pulmonary vascular smooth muscle cells. American Journal of Physiology—Lung Cellular and Molecular Physiology 282: L897–L903.CrossRefPubMed Quinn, T.P., M. Schlueter, S.J. Soifer, and J.A. Gutierrez. 2002. Cyclic mechanical stretch induces VEGF and FGF-2 expression in pulmonary vascular smooth muscle cells. American Journal of Physiology—Lung Cellular and Molecular Physiology 282: L897–L903.CrossRefPubMed
31.
go back to reference Gourh, P., F.C. Arnett, S. Assassi, F.K. Tan, M. Huang, L. Diekman, M.D. Mayes, J.D. Reveille, and S.K. Agarwal. 2009. Plasma cytokine profiles in systemic sclerosis: associations with autoantibody subsets and clinical manifestations. Arthritis Research & Therapy 11: R147. https://doi.org/10.1186/ar2821.CrossRef Gourh, P., F.C. Arnett, S. Assassi, F.K. Tan, M. Huang, L. Diekman, M.D. Mayes, J.D. Reveille, and S.K. Agarwal. 2009. Plasma cytokine profiles in systemic sclerosis: associations with autoantibody subsets and clinical manifestations. Arthritis Research & Therapy 11: R147. https://​doi.​org/​10.​1186/​ar2821.CrossRef
32.
go back to reference Miyata, M., F. Sakuma, A. Yoshimura, H. Ishikawa, T. Nishimaki, and R. Kasukawa. 1995. Pulmonary hypertension in rats. 2. Role of interleukin-6. International Archives of Allergy and Immunology 108: 287–291.CrossRefPubMed Miyata, M., F. Sakuma, A. Yoshimura, H. Ishikawa, T. Nishimaki, and R. Kasukawa. 1995. Pulmonary hypertension in rats. 2. Role of interleukin-6. International Archives of Allergy and Immunology 108: 287–291.CrossRefPubMed
35.
go back to reference Voelkel, N.F., R.M. Tuder, J. Bridges, and W.P. Arend. 1994. Interleukin-1 receptor antagonist treatment reduces pulmonary hypertension generated in rats by monocrotaline. American Journal of Respiratory Cell and Molecular Biology 11: 664–675.CrossRefPubMed Voelkel, N.F., R.M. Tuder, J. Bridges, and W.P. Arend. 1994. Interleukin-1 receptor antagonist treatment reduces pulmonary hypertension generated in rats by monocrotaline. American Journal of Respiratory Cell and Molecular Biology 11: 664–675.CrossRefPubMed
36.
go back to reference Kirii, H., T. Niwa, Y. Yamada, H. Wada, K. Saito, Y. Iwakura, et al. 2003. Lack of interleukin-1ß decreases the severity of atherosclerosis in ApoE-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology 23: 656–660.CrossRefPubMed Kirii, H., T. Niwa, Y. Yamada, H. Wada, K. Saito, Y. Iwakura, et al. 2003. Lack of interleukin-1ß decreases the severity of atherosclerosis in ApoE-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology 23: 656–660.CrossRefPubMed
37.
go back to reference Isoda, K., M. Shiigai, N. Ishigami, T. Matsuki, R. Horai, K. Nishikawa, M. Kusuhara, Y. Nishida, Y. Iwakura, and F. Ohsuzu. 2003. Deficiency of interleukin-1 receptor antagonist promotes neointimal formation after injury. Circulation 108: 516–518.CrossRefPubMed Isoda, K., M. Shiigai, N. Ishigami, T. Matsuki, R. Horai, K. Nishikawa, M. Kusuhara, Y. Nishida, Y. Iwakura, and F. Ohsuzu. 2003. Deficiency of interleukin-1 receptor antagonist promotes neointimal formation after injury. Circulation 108: 516–518.CrossRefPubMed
39.
go back to reference Larsen, C.M., M. Faulenbach, A. Vaag, A. Volund, J.A. Ehses, B. Seifert, et al. 2007. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. New England Journal of Medicine 356: 1517–1526.CrossRefPubMed Larsen, C.M., M. Faulenbach, A. Vaag, A. Volund, J.A. Ehses, B. Seifert, et al. 2007. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. New England Journal of Medicine 356: 1517–1526.CrossRefPubMed
40.
go back to reference Lin, S.J., H.T. Yen, Y.H. Chen, H.H. Ku, F.Y. Lin, and Y.L. Chen. 2003. Expression of interleukin-1 beta and interleukin-1 receptor antagonist in oxLDL-treated human aortic smooth muscle cells and in the neointima of cholesterol-fed endothelia-denuded rabbits. Journal of Cellular Biochemistry 88: 836–847.CrossRefPubMed Lin, S.J., H.T. Yen, Y.H. Chen, H.H. Ku, F.Y. Lin, and Y.L. Chen. 2003. Expression of interleukin-1 beta and interleukin-1 receptor antagonist in oxLDL-treated human aortic smooth muscle cells and in the neointima of cholesterol-fed endothelia-denuded rabbits. Journal of Cellular Biochemistry 88: 836–847.CrossRefPubMed
Metadata
Title
Inflammatory Response of Pulmonary Artery Smooth Muscle Cells Exposed to Oxidative and Biophysical Stress
Authors
Joanna Costa
Yan Zhu
Timothy Cox
Paul Fawcett
Thomas Shaffer
Deepthi Alapati
Publication date
01-08-2018
Publisher
Springer US
Published in
Inflammation / Issue 4/2018
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0772-0

Other articles of this Issue 4/2018

Inflammation 4/2018 Go to the issue