Skip to main content
Top
Published in: Inflammation 2/2018

01-03-2018 | ORIGINAL ARTICLE

Rosmarinic Acid Mitigates Lipopolysaccharide-Induced Neuroinflammatory Responses through the Inhibition of TLR4 and CD14 Expression and NF-κB and NLRP3 Inflammasome Activation

Authors: Yicong Wei, Jianxiong Chen, Yonghong Hu, Wei Lu, Xiaoqin Zhang, Ruiguo Wang, Kedan Chu

Published in: Inflammation | Issue 2/2018

Login to get access

Abstract

The excessive activation of microglia plays a key role in the pathogenesis of neurodegenerative diseases. The neuroprotective properties of rosmarinic acid have been reported in a variety of disease models both in vitro and in vivo; however, the mechanism underlying its anti-neuroinflammatory activity has not been clearly elucidated. In the present study, we evaluated the anti-inflammatory effects of rosmarinic acid in conditions of neuroinflammatory injury in vitro and in vivo. The results indicated that rosmarinic acid reduced the expression of CD11b, a marker of microglia and macrophages, in the brain and dramatically inhibited the levels of inflammatory cytokines and mediators, such as TNFα, IL-6, IL-1β, COX-2, and iNOS, in a dose-dependent manner both in vitro and in vivo. Consistent with these results, the expression levels of TLR4 and CD14 and the phosphorylation of JNK were also reduced. Further study showed that rosmarinic acid suppresses the activation of the NF-κB pathway and NLRP3 inflammasome, which may contribute to its anti-inflammatory effects. These results suggest that rosmarinic acid significantly reduced TLR4 and CD14 expression and NF-κB and NLRP3 inflammasome activation, which is involved in anti-neuroinflammation.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Brown, G.C., and J.J. Neher. 2010. Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Molecular Neurobiology 41: 242–247.CrossRefPubMed Brown, G.C., and J.J. Neher. 2010. Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Molecular Neurobiology 41: 242–247.CrossRefPubMed
3.
go back to reference Benakis, C., L. Garcia-Bonilla, C. Iadecola, and J. Anrather. 2014. The role of microglia and myeloid immune cells in acute cerebral ischemia. Frontiers in Cellular Neuroscience 8: 461.PubMed Benakis, C., L. Garcia-Bonilla, C. Iadecola, and J. Anrather. 2014. The role of microglia and myeloid immune cells in acute cerebral ischemia. Frontiers in Cellular Neuroscience 8: 461.PubMed
4.
go back to reference Lee, Y., S.R. Lee, S.S. Choi, H.G. Yeo, K.T. Chang, and H.J. Lee. 2014. Therapeutically targeting neuroinflammation and microglia after acute ischemic stroke. BioMed Research International 2014: 297241.PubMedPubMedCentral Lee, Y., S.R. Lee, S.S. Choi, H.G. Yeo, K.T. Chang, and H.J. Lee. 2014. Therapeutically targeting neuroinflammation and microglia after acute ischemic stroke. BioMed Research International 2014: 297241.PubMedPubMedCentral
5.
go back to reference Collins, T., and M.I. Cybulsky. 2001. NF-kappaB: Pivotal mediator or innocent bystander in atherogenesis? Journal of Clinical Investigation 107: 255–264.CrossRefPubMedPubMedCentral Collins, T., and M.I. Cybulsky. 2001. NF-kappaB: Pivotal mediator or innocent bystander in atherogenesis? Journal of Clinical Investigation 107: 255–264.CrossRefPubMedPubMedCentral
6.
go back to reference Beninson, L.A., and M. Fleshner. 2015. Exosomes in fetal bovine serum dampen primary macrophage IL-1beta response to lipopolysaccharide (LPS) challenge. Immunology Letters 163: 187–192.CrossRefPubMed Beninson, L.A., and M. Fleshner. 2015. Exosomes in fetal bovine serum dampen primary macrophage IL-1beta response to lipopolysaccharide (LPS) challenge. Immunology Letters 163: 187–192.CrossRefPubMed
8.
go back to reference Wang, Q., P. Lin, P. Li, L. Fen, Q. Ren, X. Xie, and J. Xu. 2017. Ghrelin protects the heart against ischemia/reperfusion injury via inhibition of TLR4/NLRP3 inflammasome pathway. Life Sciences. 186: 50–58.CrossRefPubMed Wang, Q., P. Lin, P. Li, L. Fen, Q. Ren, X. Xie, and J. Xu. 2017. Ghrelin protects the heart against ischemia/reperfusion injury via inhibition of TLR4/NLRP3 inflammasome pathway. Life Sciences. 186: 50–58.CrossRefPubMed
9.
go back to reference Liu, M., Y. Zhang, J.Y. Xiong, Y. Wang, and S. Lv. 2016. Etomidate mitigates lipopolysaccharide-induced CD14 and TREM-1 expression, NF-kappaB activation, and pro-inflammatory cytokine production in rat macrophages. Inflammation 39: 327–335.CrossRefPubMed Liu, M., Y. Zhang, J.Y. Xiong, Y. Wang, and S. Lv. 2016. Etomidate mitigates lipopolysaccharide-induced CD14 and TREM-1 expression, NF-kappaB activation, and pro-inflammatory cytokine production in rat macrophages. Inflammation 39: 327–335.CrossRefPubMed
10.
go back to reference Wang, H., Y. Zhan, L. Xu, G.Z. Feuerstein, and X. Wang. 2001. Use of suppression subtractive hybridization for differential gene expression in stroke: Discovery of CD44 gene expression and localization in permanent focal stroke in rats. Stroke 32: 1020–1027.CrossRefPubMed Wang, H., Y. Zhan, L. Xu, G.Z. Feuerstein, and X. Wang. 2001. Use of suppression subtractive hybridization for differential gene expression in stroke: Discovery of CD44 gene expression and localization in permanent focal stroke in rats. Stroke 32: 1020–1027.CrossRefPubMed
11.
go back to reference Wang, X., L. Xu, H. Wang, Y. Zhan, E. Pure, and G.Z. Feuerstein. 2002. CD44 deficiency in mice protects brain from cerebral ischemia injury. Journal of Neurochemistry 83: 1172–1179.CrossRefPubMed Wang, X., L. Xu, H. Wang, Y. Zhan, E. Pure, and G.Z. Feuerstein. 2002. CD44 deficiency in mice protects brain from cerebral ischemia injury. Journal of Neurochemistry 83: 1172–1179.CrossRefPubMed
12.
go back to reference Beschorner, R., H.J. Schluesener, F. Gozalan, R. Meyermann, and J.M. Schwab. 2002. Infiltrating CD14+ monocytes and expression of CD14 by activated parenchymal microglia/macrophages contribute to the pool of CD14+ cells in ischemic brain lesions. Journal of Neuroimmunology 126: 107–115.CrossRefPubMed Beschorner, R., H.J. Schluesener, F. Gozalan, R. Meyermann, and J.M. Schwab. 2002. Infiltrating CD14+ monocytes and expression of CD14 by activated parenchymal microglia/macrophages contribute to the pool of CD14+ cells in ischemic brain lesions. Journal of Neuroimmunology 126: 107–115.CrossRefPubMed
13.
go back to reference Liu, J., Q. Chen, Z. Jian, X. Xiong, L. Shao, T. Jin, X. Zhu, and L. Wang. 2016. Daphnetin protects against cerebral ischemia/reperfusion injury in mice via inhibition of TLR4/NF-kappaB signaling pathway. BioMed Research International 2016: 2816056.PubMedPubMedCentral Liu, J., Q. Chen, Z. Jian, X. Xiong, L. Shao, T. Jin, X. Zhu, and L. Wang. 2016. Daphnetin protects against cerebral ischemia/reperfusion injury in mice via inhibition of TLR4/NF-kappaB signaling pathway. BioMed Research International 2016: 2816056.PubMedPubMedCentral
14.
go back to reference Li, X., L. Su, X. Zhang, C. Zhang, L. Wang, Y. Li, Y. Zhang, T. He, X. Zhu, and L. Cui. 2017. Ulinastatin downregulates TLR4 and NF-kB expression and protects mouse brains against ischemia/reperfusion injury. Neurological Research 39: 367–373.CrossRefPubMed Li, X., L. Su, X. Zhang, C. Zhang, L. Wang, Y. Li, Y. Zhang, T. He, X. Zhu, and L. Cui. 2017. Ulinastatin downregulates TLR4 and NF-kB expression and protects mouse brains against ischemia/reperfusion injury. Neurological Research 39: 367–373.CrossRefPubMed
15.
go back to reference Ghaffari, H., M. Venkataramana, G.B. Jalali, N.S. Chandra, A. Nataraju, N.P. Geetha, and H.S. Prakash. 2014. Rosmarinic acid mediated neuroprotective effects against H2O2-induced neuronal cell damage in N2A cells. Life Sciences 113: 7–13.CrossRefPubMed Ghaffari, H., M. Venkataramana, G.B. Jalali, N.S. Chandra, A. Nataraju, N.P. Geetha, and H.S. Prakash. 2014. Rosmarinic acid mediated neuroprotective effects against H2O2-induced neuronal cell damage in N2A cells. Life Sciences 113: 7–13.CrossRefPubMed
16.
go back to reference Du, T., L. Li, N. Song, J. Xie, and H. Jiang. 2010. Rosmarinic acid antagonized 1-methyl-4-phenylpyridinium (MPP+)-induced neurotoxicity in MES23.5 dopaminergic cells. International Journal of Toxicology 29: 625–633.CrossRefPubMed Du, T., L. Li, N. Song, J. Xie, and H. Jiang. 2010. Rosmarinic acid antagonized 1-methyl-4-phenylpyridinium (MPP+)-induced neurotoxicity in MES23.5 dopaminergic cells. International Journal of Toxicology 29: 625–633.CrossRefPubMed
17.
go back to reference Yang, E.J., S.K. Ku, W. Lee, S. Lee, T. Lee, K.S. Song, and J.S. Bae. 2013. Barrier protective effects of rosmarinic acid on HMGB1-induced inflammatory responses in vitro and in vivo. Journal of Cellular Physiology 228: 975–982.CrossRefPubMed Yang, E.J., S.K. Ku, W. Lee, S. Lee, T. Lee, K.S. Song, and J.S. Bae. 2013. Barrier protective effects of rosmarinic acid on HMGB1-induced inflammatory responses in vitro and in vivo. Journal of Cellular Physiology 228: 975–982.CrossRefPubMed
18.
go back to reference Rocha, J., M. Eduardo-Figueira, A. Barateiro, A. Fernandes, D. Brites, R. Bronze, C.M. Duarte, A.T. Serra, R. Pinto, M. Freitas, E. Fernandes, B. Silva-Lima, H. Mota-Filipe, and B. Sepodes. 2015. Anti-inflammatory effect of rosmarinic acid and an extract of Rosmarinus officinalis in rat models of local and systemic inflammation. Basic & Clinical Pharmacology & Toxicology 116: 398–413.CrossRef Rocha, J., M. Eduardo-Figueira, A. Barateiro, A. Fernandes, D. Brites, R. Bronze, C.M. Duarte, A.T. Serra, R. Pinto, M. Freitas, E. Fernandes, B. Silva-Lima, H. Mota-Filipe, and B. Sepodes. 2015. Anti-inflammatory effect of rosmarinic acid and an extract of Rosmarinus officinalis in rat models of local and systemic inflammation. Basic & Clinical Pharmacology & Toxicology 116: 398–413.CrossRef
19.
go back to reference Luan, H., Z. Kan, Y. Xu, C. Lv, and W. Jiang. 2013. Rosmarinic acid protects against experimental diabetes with cerebral ischemia: Relation to inflammation response. Journal of Neuroinflammation 10: 28.CrossRefPubMedPubMedCentral Luan, H., Z. Kan, Y. Xu, C. Lv, and W. Jiang. 2013. Rosmarinic acid protects against experimental diabetes with cerebral ischemia: Relation to inflammation response. Journal of Neuroinflammation 10: 28.CrossRefPubMedPubMedCentral
20.
go back to reference Wu, F., Q. Zou, X. Ding, D. Shi, X. Zhu, W. Hu, L. Liu, and H. Zhou. 2016. Complement component C3a plays a critical role in endothelial activation and leukocyte recruitment into the brain. Journal of Neuroinflammation 13: 23.CrossRefPubMedPubMedCentral Wu, F., Q. Zou, X. Ding, D. Shi, X. Zhu, W. Hu, L. Liu, and H. Zhou. 2016. Complement component C3a plays a critical role in endothelial activation and leukocyte recruitment into the brain. Journal of Neuroinflammation 13: 23.CrossRefPubMedPubMedCentral
21.
go back to reference Wang, D., J. Shi, S. Lv, W. Xu, J. Li, W. Ge, C. Xiao, D. Geng, and Y. Liu. 2015. Artesunate attenuates lipopolysaccharide-stimulated proinflammatory responses by suppressing TLR4, MyD88 expression, and NF-kappaB activation in microglial cells. Inflammation 38: 1925–1932.CrossRefPubMed Wang, D., J. Shi, S. Lv, W. Xu, J. Li, W. Ge, C. Xiao, D. Geng, and Y. Liu. 2015. Artesunate attenuates lipopolysaccharide-stimulated proinflammatory responses by suppressing TLR4, MyD88 expression, and NF-kappaB activation in microglial cells. Inflammation 38: 1925–1932.CrossRefPubMed
22.
go back to reference Wei, Y., H. Hong, X. Zhang, W. Lai, Y. Wang, K. Chu, J. Brown, G. Hong, and L. Chen. 2017. Salidroside inhibits inflammation through PI3K/Akt/HIF signaling after focal cerebral ischemia in rats. Inflammation 40: 1297–1309.CrossRefPubMed Wei, Y., H. Hong, X. Zhang, W. Lai, Y. Wang, K. Chu, J. Brown, G. Hong, and L. Chen. 2017. Salidroside inhibits inflammation through PI3K/Akt/HIF signaling after focal cerebral ischemia in rats. Inflammation 40: 1297–1309.CrossRefPubMed
23.
go back to reference Lee, C.M., D.S. Lee, W.K. Jung, J.S. Yoo, M.J. Yim, Y.H. Choi, S. Park, S.K. Seo, J.S. Choi, Y.M. Lee, W.S. Park, and I.W. Choi. 2016. Benzyl isothiocyanate inhibits inflammasome activation in E. coli LPS-stimulated BV2 cells. International Journal of Molecular Medicine 38: 912–918.CrossRefPubMed Lee, C.M., D.S. Lee, W.K. Jung, J.S. Yoo, M.J. Yim, Y.H. Choi, S. Park, S.K. Seo, J.S. Choi, Y.M. Lee, W.S. Park, and I.W. Choi. 2016. Benzyl isothiocyanate inhibits inflammasome activation in E. coli LPS-stimulated BV2 cells. International Journal of Molecular Medicine 38: 912–918.CrossRefPubMed
25.
27.
go back to reference Iuvone, T., D. De Filippis, G. Esposito, A. D’Amico, and A.A. Izzo. 2006. The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-beta peptide-induced neurotoxicity. Journal of Pharmacology and Experimental Therapeutics 317: 1143–1149.CrossRefPubMed Iuvone, T., D. De Filippis, G. Esposito, A. D’Amico, and A.A. Izzo. 2006. The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-beta peptide-induced neurotoxicity. Journal of Pharmacology and Experimental Therapeutics 317: 1143–1149.CrossRefPubMed
28.
go back to reference Hasanein, P., and A.K. Mahtaj. 2015. Ameliorative effect of rosmarinic acid on scopolamine-induced memory impairment in rats. Neuroscience Letters 585: 23–27.CrossRefPubMed Hasanein, P., and A.K. Mahtaj. 2015. Ameliorative effect of rosmarinic acid on scopolamine-induced memory impairment in rats. Neuroscience Letters 585: 23–27.CrossRefPubMed
29.
go back to reference Hasanein, P., R. Seifi, M.R. Hajinezhad, and A. Emamjomeh. 2017. Rosmarinic acid protects against chronic ethanol-induced learning and memory deficits in rats. Nutritional Neuroscience 20: 547–554.CrossRefPubMed Hasanein, P., R. Seifi, M.R. Hajinezhad, and A. Emamjomeh. 2017. Rosmarinic acid protects against chronic ethanol-induced learning and memory deficits in rats. Nutritional Neuroscience 20: 547–554.CrossRefPubMed
30.
go back to reference Zdarilova, A., A. Svobodova, V. Simanek, and J. Ulrichova. 2009. Prunella vulgaris extract and rosmarinic acid suppress lipopolysaccharide-induced alteration in human gingival fibroblasts. Toxicology In Vitro 23: 386–392.CrossRefPubMed Zdarilova, A., A. Svobodova, V. Simanek, and J. Ulrichova. 2009. Prunella vulgaris extract and rosmarinic acid suppress lipopolysaccharide-induced alteration in human gingival fibroblasts. Toxicology In Vitro 23: 386–392.CrossRefPubMed
31.
go back to reference Chu, X., X. Ci, J. He, L. Jiang, M. Wei, Q. Cao, M. Guan, X. Xie, X. Deng, and J. He. 2012. Effects of a natural prolyl oligopeptidase inhibitor, rosmarinic acid, on lipopolysaccharide-induced acute lung injury in mice. Molecules 17: 3586–3598.CrossRefPubMed Chu, X., X. Ci, J. He, L. Jiang, M. Wei, Q. Cao, M. Guan, X. Xie, X. Deng, and J. He. 2012. Effects of a natural prolyl oligopeptidase inhibitor, rosmarinic acid, on lipopolysaccharide-induced acute lung injury in mice. Molecules 17: 3586–3598.CrossRefPubMed
32.
go back to reference Liang, Z., Y. Xu, X. Wen, H. Nie, T. Hu, X. Yang, X. Chu, J. Yang, X. Deng, and J. He. 2016. Rosmarinic acid attenuates airway inflammation and hyperresponsiveness in a murine model of asthma. Molecules 21: 769.CrossRef Liang, Z., Y. Xu, X. Wen, H. Nie, T. Hu, X. Yang, X. Chu, J. Yang, X. Deng, and J. He. 2016. Rosmarinic acid attenuates airway inflammation and hyperresponsiveness in a murine model of asthma. Molecules 21: 769.CrossRef
33.
go back to reference Lakhan, S.E., A. Kirchgessner, and M. Hofer. 2009. Inflammatory mechanisms in ischemic stroke: Therapeutic approaches. Journal of Translational Medicine 7: 97.CrossRefPubMedPubMedCentral Lakhan, S.E., A. Kirchgessner, and M. Hofer. 2009. Inflammatory mechanisms in ischemic stroke: Therapeutic approaches. Journal of Translational Medicine 7: 97.CrossRefPubMedPubMedCentral
34.
go back to reference Eliasson, M.J., Z. Huang, R.J. Ferrante, M. Sasamata, M.E. Molliver, S.H. Snyder, and M.A. Moskowitz. 1999. Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage. Journal of Neuroscience 19: 5910–5918.PubMed Eliasson, M.J., Z. Huang, R.J. Ferrante, M. Sasamata, M.E. Molliver, S.H. Snyder, and M.A. Moskowitz. 1999. Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage. Journal of Neuroscience 19: 5910–5918.PubMed
35.
go back to reference Del, Z.G., I. Ginis, J.M. Hallenbeck, C. Iadecola, X. Wang, and G.Z. Feuerstein. 2000. Inflammation and stroke: Putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathology 10: 95–112. Del, Z.G., I. Ginis, J.M. Hallenbeck, C. Iadecola, X. Wang, and G.Z. Feuerstein. 2000. Inflammation and stroke: Putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathology 10: 95–112.
36.
go back to reference Walton, K.M., R. DiRocco, B.A. Bartlett, E. Koury, V.R. Marcy, B. Jarvis, E.M. Schaefer, and R.V. Bhat. 1998. Activation of p38MAPK in microglia after ischemia. Journal of Neurochemistry 70: 1764–1767.CrossRefPubMed Walton, K.M., R. DiRocco, B.A. Bartlett, E. Koury, V.R. Marcy, B. Jarvis, E.M. Schaefer, and R.V. Bhat. 1998. Activation of p38MAPK in microglia after ischemia. Journal of Neurochemistry 70: 1764–1767.CrossRefPubMed
37.
go back to reference Lujia, Y., L. Xin, W. Shiquan, C. Yu, Z. Shuzhuo, and Z. Hong. 2014. Ceftriaxone pretreatment protects rats against cerebral ischemic injury by attenuating microglial activation-induced IL-1beta expression. International Journal of Neuroscience 124: 657–665.CrossRefPubMed Lujia, Y., L. Xin, W. Shiquan, C. Yu, Z. Shuzhuo, and Z. Hong. 2014. Ceftriaxone pretreatment protects rats against cerebral ischemic injury by attenuating microglial activation-induced IL-1beta expression. International Journal of Neuroscience 124: 657–665.CrossRefPubMed
Metadata
Title
Rosmarinic Acid Mitigates Lipopolysaccharide-Induced Neuroinflammatory Responses through the Inhibition of TLR4 and CD14 Expression and NF-κB and NLRP3 Inflammasome Activation
Authors
Yicong Wei
Jianxiong Chen
Yonghong Hu
Wei Lu
Xiaoqin Zhang
Ruiguo Wang
Kedan Chu
Publication date
01-03-2018
Publisher
Springer US
Published in
Inflammation / Issue 2/2018
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0728-9

Other articles of this Issue 2/2018

Inflammation 2/2018 Go to the issue