Skip to main content
Top
Published in: Inflammation 1/2018

01-02-2018 | ORIGINAL ARTICLE

Protection by mTOR Inhibition on Zymosan-Induced Systemic Inflammatory Response and Oxidative/Nitrosative Stress: Contribution of mTOR/MEK1/ERK1/2/IKKβ/IκB-α/NF-κB Signalling Pathway

Authors: Seyhan Sahan-Firat, Meryem Temiz-Resitoglu, Demet Sinem Guden, Sefika Pinar Kucukkavruk, Bahar Tunctan, Ayse Nihal Sari, Zumrut Kocak, Kafait U. Malik

Published in: Inflammation | Issue 1/2018

Login to get access

Abstract

Mammalian target of rapamycin (mTOR), a serine/threonine kinase regulate variety of cellular functions including cell growth, differentiation, cell survival, metabolism, and stress response, is now appreciated to be a central regulator of immune responses. Because mTOR inhibitors enhanced the anti-inflammatory activities of regulatory T cells and decreased the production of proinflammatory cytokines by macrophages, mTOR has been a pharmacological target for inflammatory diseases. In this study, we examined the role of mTOR in the production of proinflammatory and vasodilator mediators in zymosan-induced non-septic shock model in rats. To elucidate the mechanism by which mTOR contributes to non-septic shock, we have examined the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system caused by mTOR/mitogen-activated protein kinase kinase (MEK1)/extracellular signal-regulated kinase (ERK1/2)/inhibitor κB kinase (IKKβ)/inhibitor of κB (IκB-α)/nuclear factor-κB (NF-κB) signalling pathway activation. After 1 h of zymosan (500 mg/kg, i.p.) administration to rats, mean arterial blood pressure (MAP) was decreased and heart rate (HR) was increased. These changes were associated with increased expression and/or activities of ribosomal protein S6, MEK1, ERK1/2, IKKβ, IκB-α and NF-κB p65, and NADPH oxidase system activity in cardiovascular and renal tissues. Rapamycin (1 mg/kg, i.p.), a selective mTOR inhibitor, reversed these zymosan-induced changes in these tissues. These observations suggest that activation of mTOR/MEK1/ERK1/2/IKKβ/IκB-α/NF-κB signalling pathway with proinflammatory and vasodilator mediator formation and NADPH oxidase system activity contributes to systemic inflammation in zymosan-induced non-septic shock. Thus, mTOR may be an optimal target for the treatment of the diseases characterized by the severe systemic inflammatory response.
Literature
1.
go back to reference Botwinski, C.A. 2001. Systemic inflammatory response syndrome. Neonatal Network 20: 218.CrossRef Botwinski, C.A. 2001. Systemic inflammatory response syndrome. Neonatal Network 20: 218.CrossRef
2.
go back to reference Di Paola, R., E. Mazzon, C. Muia, C. Crisafulli, T. Genovese, P. Di Bella, E. Esposito, M. Menegazzi, R. Meli, H. Suzuki, and S. Cuzzocrea. 2006. Green tea polyphenol extract attenuates zymosan-induced non-septic shock in mice. Shock 26: 402–409.CrossRefPubMed Di Paola, R., E. Mazzon, C. Muia, C. Crisafulli, T. Genovese, P. Di Bella, E. Esposito, M. Menegazzi, R. Meli, H. Suzuki, and S. Cuzzocrea. 2006. Green tea polyphenol extract attenuates zymosan-induced non-septic shock in mice. Shock 26: 402–409.CrossRefPubMed
3.
go back to reference Cuzzocrea, S., G. de Sarro, G. Costantino, E. Mazzon, R. Laura, E. Ciriaco, A. de Sarro, and A.P. Caputi. 1999. Role of interleukin-6 in a non-septic shock model induced by zymosan. European Cytokine Network 10: 191–203.PubMed Cuzzocrea, S., G. de Sarro, G. Costantino, E. Mazzon, R. Laura, E. Ciriaco, A. de Sarro, and A.P. Caputi. 1999. Role of interleukin-6 in a non-septic shock model induced by zymosan. European Cytokine Network 10: 191–203.PubMed
4.
go back to reference Mondello, S., M. Galuppo, E. Mazzon, D. Italiano, P. Mondello, C. Aloisi, and S. Cuzzocrea. 2011. Glutamine treatment attenuates the development of organ injury induced by zymosan administration in mice. European Journal of Pharmacology 658: 28–40.CrossRefPubMed Mondello, S., M. Galuppo, E. Mazzon, D. Italiano, P. Mondello, C. Aloisi, and S. Cuzzocrea. 2011. Glutamine treatment attenuates the development of organ injury induced by zymosan administration in mice. European Journal of Pharmacology 658: 28–40.CrossRefPubMed
5.
go back to reference Cuzzocrea, S., A. Filippelli, B. Zingarelli, M. Falciani, A.P. Caputi, and F. Rossi. 1997. Role of nitric oxide in a non-septic shock model induced by zymosan in the rat. Shock 7: 351–358.CrossRefPubMed Cuzzocrea, S., A. Filippelli, B. Zingarelli, M. Falciani, A.P. Caputi, and F. Rossi. 1997. Role of nitric oxide in a non-septic shock model induced by zymosan in the rat. Shock 7: 351–358.CrossRefPubMed
6.
go back to reference Underhill, D.M. 2003. Macrophage recognition of zymosan particles. Journal of Endotoxin Research 9: 176–180.CrossRefPubMed Underhill, D.M. 2003. Macrophage recognition of zymosan particles. Journal of Endotoxin Research 9: 176–180.CrossRefPubMed
7.
go back to reference Takeuchi, O., and S. Akira. 2001. Toll-like receptors; their physiological role and signal transduction system. International Immunopharmacology 1: 625–635.CrossRefPubMed Takeuchi, O., and S. Akira. 2001. Toll-like receptors; their physiological role and signal transduction system. International Immunopharmacology 1: 625–635.CrossRefPubMed
8.
go back to reference Liu, Y., J. Li, Y. Liu, P. Wang, and H. Jia. 2016. Inhibition of zymosan-induced cytokine and chemokine expression in human corneal fibroblasts by triptolide. International Journal of Ophthalmology 9 (1): 9–14.PubMedPubMedCentral Liu, Y., J. Li, Y. Liu, P. Wang, and H. Jia. 2016. Inhibition of zymosan-induced cytokine and chemokine expression in human corneal fibroblasts by triptolide. International Journal of Ophthalmology 9 (1): 9–14.PubMedPubMedCentral
9.
go back to reference Nomi, N., K. Kimura, and T. Nishida. 2010. Release of ınterleukins 6 and 8 ınduced by zymosan and mediated by MAP kinase and NF-κB signaling pathways in human corneal fibroblasts. Investigative Ophthalmology&Visual Scince 51 (6): 2955–2559.CrossRef Nomi, N., K. Kimura, and T. Nishida. 2010. Release of ınterleukins 6 and 8 ınduced by zymosan and mediated by MAP kinase and NF-κB signaling pathways in human corneal fibroblasts. Investigative Ophthalmology&Visual Scince 51 (6): 2955–2559.CrossRef
10.
go back to reference Di Paola, R., M. Galuppo, E. Mazzon, I. Paterniti, P. Bramanti, and S. Cuzzocrea. 2010. PD98059, a specific MAP kinase inhibitor, attenuates multiple organ dysfunction syndrome/failure (MODS) induced by zymosan in mice. Pharmacological Research 61: 175–187.CrossRefPubMed Di Paola, R., M. Galuppo, E. Mazzon, I. Paterniti, P. Bramanti, and S. Cuzzocrea. 2010. PD98059, a specific MAP kinase inhibitor, attenuates multiple organ dysfunction syndrome/failure (MODS) induced by zymosan in mice. Pharmacological Research 61: 175–187.CrossRefPubMed
11.
12.
go back to reference Di, R., M.T. Huang, and C.T. Ho. 2011. Anti-inflammatory activities of mogrosides from Momordica grosvenori in murine macrophages and a murine ear edema model. Journal of Agricultural and Food Chemistry 59: 7474–7481.CrossRefPubMed Di, R., M.T. Huang, and C.T. Ho. 2011. Anti-inflammatory activities of mogrosides from Momordica grosvenori in murine macrophages and a murine ear edema model. Journal of Agricultural and Food Chemistry 59: 7474–7481.CrossRefPubMed
13.
go back to reference Chung, W.Y., J.H. Park, M.J. Kim, H.O. Kim, J.K. Hwang, S.K. Lee, and K.K. Park. 2007. Xanthorrhizol inhibits 12-Otetradecanoylphorbol-13-acetate-induced acute inflammation and two-stage mouse skin carcinogenesis by blocking the expression of ornithine decarboxylase, cyclooxygenase-2 and inducible nitric oxide synthase through mitogen-activated protein kinases and/or the nuclear factor-kB. Carcinogenesis 28: 1224–1231.CrossRefPubMed Chung, W.Y., J.H. Park, M.J. Kim, H.O. Kim, J.K. Hwang, S.K. Lee, and K.K. Park. 2007. Xanthorrhizol inhibits 12-Otetradecanoylphorbol-13-acetate-induced acute inflammation and two-stage mouse skin carcinogenesis by blocking the expression of ornithine decarboxylase, cyclooxygenase-2 and inducible nitric oxide synthase through mitogen-activated protein kinases and/or the nuclear factor-kB. Carcinogenesis 28: 1224–1231.CrossRefPubMed
14.
go back to reference Ho, Y.S., C.S. Lai, H.I. Liu, S.Y. Ho, C. Tai, M.H. Pan, and Y.J. Wang. 2007. Dihydrolipoic acid inhibits skin tumor promotion through anti-inflammation and anti-oxidation. Biochemical Pharmacology 73: 1786–1795.CrossRefPubMed Ho, Y.S., C.S. Lai, H.I. Liu, S.Y. Ho, C. Tai, M.H. Pan, and Y.J. Wang. 2007. Dihydrolipoic acid inhibits skin tumor promotion through anti-inflammation and anti-oxidation. Biochemical Pharmacology 73: 1786–1795.CrossRefPubMed
15.
go back to reference Yamakawa, T., S. Eguchi, T. Matsumoto, Y. Yamakawa, K. Numaguchi, I. Miyata, C.M. Reynolds, E.D. Motley, and T. Inagami. 1999. Intracellular signalling in rat cultured vascular smooth muscle cells: roles of nuclear factor-kappaB and p38 mitogen-activated protein kinase on tumor necrosis factor-alpha production. Endocrinology 140: 3562–3572.CrossRefPubMed Yamakawa, T., S. Eguchi, T. Matsumoto, Y. Yamakawa, K. Numaguchi, I. Miyata, C.M. Reynolds, E.D. Motley, and T. Inagami. 1999. Intracellular signalling in rat cultured vascular smooth muscle cells: roles of nuclear factor-kappaB and p38 mitogen-activated protein kinase on tumor necrosis factor-alpha production. Endocrinology 140: 3562–3572.CrossRefPubMed
16.
go back to reference Folmer, F., M. Jaspars, M. Dicato, and M. Diederich. 2008. Marine natural products as targeted modulators of the transcription factor NF-kB. Biochemical Pharmacology 75: 603–617.CrossRefPubMed Folmer, F., M. Jaspars, M. Dicato, and M. Diederich. 2008. Marine natural products as targeted modulators of the transcription factor NF-kB. Biochemical Pharmacology 75: 603–617.CrossRefPubMed
17.
go back to reference Korkmaz, B., E. Ozveren, C.K. Buharalioglu, and B. Tunctan. 2006. Extracellular signal-regulated kinase (ERK1/2) contributes to endotoxin induced hyporeactivity via nitric oxide and prostacyclin production in rat aorta. Pharmacology 78: 123–128.CrossRefPubMed Korkmaz, B., E. Ozveren, C.K. Buharalioglu, and B. Tunctan. 2006. Extracellular signal-regulated kinase (ERK1/2) contributes to endotoxin induced hyporeactivity via nitric oxide and prostacyclin production in rat aorta. Pharmacology 78: 123–128.CrossRefPubMed
18.
go back to reference Tunctan, B., B. Korkmaz, Z.N. Dogruer, L. Tamer, U. Atik, and C.K. Buharalioglu. 2007. Inhibition of extracellular signal-regulated kinase (ERK1/2) activity reverses endotoxin-ınduced hypotension via decreased nitric oxide production in rats. Pharmacological Research 56: 56–64.CrossRefPubMed Tunctan, B., B. Korkmaz, Z.N. Dogruer, L. Tamer, U. Atik, and C.K. Buharalioglu. 2007. Inhibition of extracellular signal-regulated kinase (ERK1/2) activity reverses endotoxin-ınduced hypotension via decreased nitric oxide production in rats. Pharmacological Research 56: 56–64.CrossRefPubMed
19.
go back to reference Korkmaz, B., T. Cuez, C.K. Buharalioglu, A.T. Demiryurek, S. Sahan-Firat, A.N. Sari, and B. Tunctan. 2012. Contribution of MEK1/ERK1/2/iNOS pathway to oxidative stress and decreased caspase-3 activity in endotoxemic rats. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry 11: 243–252.CrossRef Korkmaz, B., T. Cuez, C.K. Buharalioglu, A.T. Demiryurek, S. Sahan-Firat, A.N. Sari, and B. Tunctan. 2012. Contribution of MEK1/ERK1/2/iNOS pathway to oxidative stress and decreased caspase-3 activity in endotoxemic rats. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry 11: 243–252.CrossRef
20.
go back to reference Vera, S., R. Martínez, J.G. Gormaz, A. Gajardo, F. Galleguillos, and R. Rodrigo. 2015. Novel relationships between oxidative stress and angiogenesis-related factors in sepsis: new biomarkers and therapies. Annals of Medicine 47: 289–300.CrossRefPubMed Vera, S., R. Martínez, J.G. Gormaz, A. Gajardo, F. Galleguillos, and R. Rodrigo. 2015. Novel relationships between oxidative stress and angiogenesis-related factors in sepsis: new biomarkers and therapies. Annals of Medicine 47: 289–300.CrossRefPubMed
21.
go back to reference Irani, K. 2000. Oxidant signalling in vascular cell growth, death, and survival: a review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signalling. Circulation Research 87: 179–183.CrossRefPubMed Irani, K. 2000. Oxidant signalling in vascular cell growth, death, and survival: a review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signalling. Circulation Research 87: 179–183.CrossRefPubMed
22.
go back to reference Imai, Y., K. Kuba, G.G. Neely, R. Yaghubian-Malhami, T. Perkmann, G. van Loo, M. Ermolaeva, R. Veldhuizen, Y.H. Leung, H. Wang, H. Liu, Y. Sun, M. Pasparakis, M. Kopf, C. Mech, S. Bavari, J.S. Peiris, A.S. Slutsky, S. Akira, M. Hultqvist, R. Holmdahl, J. Nicholls, C. Jiang, C.J. Binder, and J.M. Penninger. 2008. Identification of oxidative stress and Toll-like receptor 4 signalling as a key pathway of acute lung injury. Cell 133: 235–249.CrossRefPubMed Imai, Y., K. Kuba, G.G. Neely, R. Yaghubian-Malhami, T. Perkmann, G. van Loo, M. Ermolaeva, R. Veldhuizen, Y.H. Leung, H. Wang, H. Liu, Y. Sun, M. Pasparakis, M. Kopf, C. Mech, S. Bavari, J.S. Peiris, A.S. Slutsky, S. Akira, M. Hultqvist, R. Holmdahl, J. Nicholls, C. Jiang, C.J. Binder, and J.M. Penninger. 2008. Identification of oxidative stress and Toll-like receptor 4 signalling as a key pathway of acute lung injury. Cell 133: 235–249.CrossRefPubMed
23.
go back to reference Hayashi, F., T.K. Means, and A.D. Luster. 2003. Toll-like receptors stimulate human neutrophil function. Blood 102: 2660–2669.CrossRefPubMed Hayashi, F., T.K. Means, and A.D. Luster. 2003. Toll-like receptors stimulate human neutrophil function. Blood 102: 2660–2669.CrossRefPubMed
24.
go back to reference Elsori, D.H., V.P. Yakubenko, T. Roome, P.S. Thiagarajan, A. Bhattacharjee, S.P. Yadav, and M.K. Cathcart. 2011. Protein kinase C d is a critical component of Dectin-1 signalling in primary human monocytes. Journal of Leukocyte Biology 90: 599–611.CrossRefPubMedPubMedCentral Elsori, D.H., V.P. Yakubenko, T. Roome, P.S. Thiagarajan, A. Bhattacharjee, S.P. Yadav, and M.K. Cathcart. 2011. Protein kinase C d is a critical component of Dectin-1 signalling in primary human monocytes. Journal of Leukocyte Biology 90: 599–611.CrossRefPubMedPubMedCentral
25.
go back to reference Washo-Stultz, D., N. Hoglen, H. Bernstein, C. Bernstein, and C.M. Payne. 1999. Role of nitric oxide and peroxynitrite in bile salt-induced apoptosis: relevance to colon carcinogenesis. Nutrition and Cancer 35: 180–188.CrossRefPubMed Washo-Stultz, D., N. Hoglen, H. Bernstein, C. Bernstein, and C.M. Payne. 1999. Role of nitric oxide and peroxynitrite in bile salt-induced apoptosis: relevance to colon carcinogenesis. Nutrition and Cancer 35: 180–188.CrossRefPubMed
26.
go back to reference Ayala, A., M. Perl, F. Venet, J. Lomas-Neira, R. Swan, and C.S. Chung. 2008. Apoptosis in sepsis: mechanisms, clinical impact and potential therapeutic targets. Current Pharmaceutical Design 14: 1853–1859.CrossRefPubMed Ayala, A., M. Perl, F. Venet, J. Lomas-Neira, R. Swan, and C.S. Chung. 2008. Apoptosis in sepsis: mechanisms, clinical impact and potential therapeutic targets. Current Pharmaceutical Design 14: 1853–1859.CrossRefPubMed
27.
go back to reference Dahlgren, C., and A. Karlsson. 1999. Respiratory burst in human neutrophils. Journal of Immunological Methods 232: 3–14.CrossRefPubMed Dahlgren, C., and A. Karlsson. 1999. Respiratory burst in human neutrophils. Journal of Immunological Methods 232: 3–14.CrossRefPubMed
28.
go back to reference Cuzzocrea, S., P.K. Chatterjee, E. Mazzon, I. Serraino, L. Dugo, T. Centorrino, A. Barbera, A. Ciccolo, F. Fulia, M.C. McDonald, A.P. Caputi, and C. Thiemermann. 2002. Effects of calpain inhibitor I on multiple organ failure induced by zymosan in the rat. Critical Care Medicine 30: 2284–2294.CrossRefPubMed Cuzzocrea, S., P.K. Chatterjee, E. Mazzon, I. Serraino, L. Dugo, T. Centorrino, A. Barbera, A. Ciccolo, F. Fulia, M.C. McDonald, A.P. Caputi, and C. Thiemermann. 2002. Effects of calpain inhibitor I on multiple organ failure induced by zymosan in the rat. Critical Care Medicine 30: 2284–2294.CrossRefPubMed
29.
30.
go back to reference Gomez-Cambronero, J., J. Horn, C.C. Paul, and M.A. Baumann. 2003. Granulocyte-macrophage colony-stimulating factor is a chemoattractant cytokine for human neutrophils: involvement of the ribosomal p70 S6 kinase signalling pathway. Journal of Immunology 171: 6846–6855.CrossRef Gomez-Cambronero, J., J. Horn, C.C. Paul, and M.A. Baumann. 2003. Granulocyte-macrophage colony-stimulating factor is a chemoattractant cytokine for human neutrophils: involvement of the ribosomal p70 S6 kinase signalling pathway. Journal of Immunology 171: 6846–6855.CrossRef
31.
go back to reference Kim, M.S., H.S. Kuehn, D.D. Metcalfe, and A.M. Gilfillan. 2008. Activation and function of the mTORC1 pathway in mast cells. Journal of Immunology 180: 4586–4595.CrossRef Kim, M.S., H.S. Kuehn, D.D. Metcalfe, and A.M. Gilfillan. 2008. Activation and function of the mTORC1 pathway in mast cells. Journal of Immunology 180: 4586–4595.CrossRef
32.
go back to reference Weichhart, T., and M.D. Saemann. 2009. The multiple facets of mTOR in immunity. Trends in Immunology 30: 218–226.CrossRefPubMed Weichhart, T., and M.D. Saemann. 2009. The multiple facets of mTOR in immunity. Trends in Immunology 30: 218–226.CrossRefPubMed
33.
go back to reference Xie, L., F. Sun, J. Wang, X. Mao, L. Xie, S.H. Yang, D.M. Su, J.W. Simpkins, D.A. Greenberg, and K. Jin. 2014. mTOR signalling inhibition modulates macrophage/microglia-mediated neuroinflammation and secondary injury via regulatory T cells after focal ischemia. The Journal of Immunology 192: 6009–6019.CrossRefPubMedPubMedCentral Xie, L., F. Sun, J. Wang, X. Mao, L. Xie, S.H. Yang, D.M. Su, J.W. Simpkins, D.A. Greenberg, and K. Jin. 2014. mTOR signalling inhibition modulates macrophage/microglia-mediated neuroinflammation and secondary injury via regulatory T cells after focal ischemia. The Journal of Immunology 192: 6009–6019.CrossRefPubMedPubMedCentral
34.
35.
go back to reference Temiz-Resitoglu, M., S.P. Kucukkavruk, D.S. Guden, P. Cecen, A.N. Sari, B. Tunctan, A. Gorur, L. Tamer-Gumus, C.K. Buharalioglu, K.U. Malik, and S. Sahan-Firat. 2017. Activation of mTOR/IκB-α/NF-κB pathway contributes to LPS-induced hypotension and inflammation in rats. European Journal of Pharmacology 802: 7–19.CrossRefPubMed Temiz-Resitoglu, M., S.P. Kucukkavruk, D.S. Guden, P. Cecen, A.N. Sari, B. Tunctan, A. Gorur, L. Tamer-Gumus, C.K. Buharalioglu, K.U. Malik, and S. Sahan-Firat. 2017. Activation of mTOR/IκB-α/NF-κB pathway contributes to LPS-induced hypotension and inflammation in rats. European Journal of Pharmacology 802: 7–19.CrossRefPubMed
36.
go back to reference Mengke, N.S., B. Hu, Q.P. Han, Y.Y. Deng, M. Fang, D. Xie, A. Li, and H.K. Zeng. 2016. Rapamycin inhibits lipopolysaccharide-induced neuroinflammation in vitro and in vivo. Molecular Medicine Reports 14 (6): 4957–4966.CrossRefPubMedPubMedCentral Mengke, N.S., B. Hu, Q.P. Han, Y.Y. Deng, M. Fang, D. Xie, A. Li, and H.K. Zeng. 2016. Rapamycin inhibits lipopolysaccharide-induced neuroinflammation in vitro and in vivo. Molecular Medicine Reports 14 (6): 4957–4966.CrossRefPubMedPubMedCentral
37.
go back to reference Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.CrossRefPubMed Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.CrossRefPubMed
38.
go back to reference Tunctan, B., B. Korkmaz, A.N. Sari, M. Kacan, D. Unsal, M.S. Serin, C.K. Buharalioglu, S. Sahan-Firat, T. Cuez, W.H. Schunck, J.R. Falck, and K.U. Malik. 2013a. 5,14- HEDGE, a 20-HETE mimetic, reverses hypotension and improves survival in a rodent model of septic shock: contribution of soluble epoxide hydrolase, CYP2C23, MEK1/ERK1/2/IKKβ/IκB-α/NF-κB pathway, and proinflammatory cytokine formation. Prostaglandins & Other Lipid Mediators 102–103: 31–41.CrossRef Tunctan, B., B. Korkmaz, A.N. Sari, M. Kacan, D. Unsal, M.S. Serin, C.K. Buharalioglu, S. Sahan-Firat, T. Cuez, W.H. Schunck, J.R. Falck, and K.U. Malik. 2013a. 5,14- HEDGE, a 20-HETE mimetic, reverses hypotension and improves survival in a rodent model of septic shock: contribution of soluble epoxide hydrolase, CYP2C23, MEK1/ERK1/2/IKKβ/IκB-α/NF-κB pathway, and proinflammatory cytokine formation. Prostaglandins & Other Lipid Mediators 102–103: 31–41.CrossRef
39.
go back to reference Tunctan, B., A.N. Sari, M. Kacan, D. Unsal, C.K. Buharalioglu, S. Sahan-Firat, B. Korkmaz, J.R. Falck, and K.U. Malik. 2012. NS-398 reverses hypotension in endotoxemic rats: contribution of eicosanoids, NO, and peroxynitrite. Prostaglandins & Other Lipid Mediators 104-105: 93–108.CrossRef Tunctan, B., A.N. Sari, M. Kacan, D. Unsal, C.K. Buharalioglu, S. Sahan-Firat, B. Korkmaz, J.R. Falck, and K.U. Malik. 2012. NS-398 reverses hypotension in endotoxemic rats: contribution of eicosanoids, NO, and peroxynitrite. Prostaglandins & Other Lipid Mediators 104-105: 93–108.CrossRef
40.
go back to reference Green, L.C., D.A. Wagner, J. Glogowski, P.L. Skipper, J.S. Wishnok, and S.R. Tannenbaum. 1982. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Analytical Biochemistry 126: 131–138.CrossRefPubMed Green, L.C., D.A. Wagner, J. Glogowski, P.L. Skipper, J.S. Wishnok, and S.R. Tannenbaum. 1982. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Analytical Biochemistry 126: 131–138.CrossRefPubMed
41.
go back to reference Tunctan, B., B. Korkmaz, H. Yildirim, L. Tamer, U. Atik, and C.K. Buharalioglu. 2005. Increased production of nitric oxide contributes to renal oxidative stress in endotoxemic rat. American Journal of Infectious Diseases 1: 111–115.CrossRef Tunctan, B., B. Korkmaz, H. Yildirim, L. Tamer, U. Atik, and C.K. Buharalioglu. 2005. Increased production of nitric oxide contributes to renal oxidative stress in endotoxemic rat. American Journal of Infectious Diseases 1: 111–115.CrossRef
42.
go back to reference McGeer, P.L., and E.G. McGeer. 2008. Glial reactions in Parkinson’s disease. Movement Disorders 23: 474–483.CrossRefPubMed McGeer, P.L., and E.G. McGeer. 2008. Glial reactions in Parkinson’s disease. Movement Disorders 23: 474–483.CrossRefPubMed
43.
go back to reference Jia, W., L. Cao, S. Yang, H. Dong, Y. Zhang, H. Wei, W. Jing, L. Hou, and C. Wang. 2013. Regulatory T cells are protective in systemic inflammation response syndrome induced by zymosan in mice. PLoS One 8: e64397.CrossRefPubMedPubMedCentral Jia, W., L. Cao, S. Yang, H. Dong, Y. Zhang, H. Wei, W. Jing, L. Hou, and C. Wang. 2013. Regulatory T cells are protective in systemic inflammation response syndrome induced by zymosan in mice. PLoS One 8: e64397.CrossRefPubMedPubMedCentral
44.
go back to reference Lu, Q.Y., Y.Y. Zhou, J.B. Wang, L. Wang, L. Meng, J.K. Weng, B. Yu, and S. Quan. 2011. Preparation of rat model of systemic inflammatory response syndrome induced by zymosan. Zhejiang Da Xue Xue Bao. Yi Xue Ban 40: 641–646.PubMed Lu, Q.Y., Y.Y. Zhou, J.B. Wang, L. Wang, L. Meng, J.K. Weng, B. Yu, and S. Quan. 2011. Preparation of rat model of systemic inflammatory response syndrome induced by zymosan. Zhejiang Da Xue Xue Bao. Yi Xue Ban 40: 641–646.PubMed
45.
go back to reference Tunctan, B., B. Korkmaz, A.N. Sari, M. Kacan, D. Unsal, M.S. Serin, C.K. Buharalioglu, S. Sahan-Firat, W.H. Schunck, J.R. Falck, and K.U. Malik. 2012. A novel treatment strategy for sepsis and septic shock based on the interaction between prostanoids, nitric oxide, and 20-hydroxyeicosatetraenoic acid. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry 11: 121–150.CrossRef Tunctan, B., B. Korkmaz, A.N. Sari, M. Kacan, D. Unsal, M.S. Serin, C.K. Buharalioglu, S. Sahan-Firat, W.H. Schunck, J.R. Falck, and K.U. Malik. 2012. A novel treatment strategy for sepsis and septic shock based on the interaction between prostanoids, nitric oxide, and 20-hydroxyeicosatetraenoic acid. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry 11: 121–150.CrossRef
46.
go back to reference O'Sullivan, A.W., J.H. Wang, and H.P. Redmond. 2009. NF-kappa B and p38 MAPK inhibition improve survival in endotoxin shock and in a cecal ligation and puncture model of sepsis in combination with antibiotic therapy. Journal of Surgical Research 152: 46–53.CrossRefPubMed O'Sullivan, A.W., J.H. Wang, and H.P. Redmond. 2009. NF-kappa B and p38 MAPK inhibition improve survival in endotoxin shock and in a cecal ligation and puncture model of sepsis in combination with antibiotic therapy. Journal of Surgical Research 152: 46–53.CrossRefPubMed
47.
go back to reference Silva, J.D., B. Pierrat, J.L. Mary, and W. Lesslauer. 1997. Blockade of p38 mitogenactivated protein kinase pathway inhibits inducible nitric-oxide synthase expression in mouse astrocytes. The Journal of Biological Chemistry 272: 28737–28380. Silva, J.D., B. Pierrat, J.L. Mary, and W. Lesslauer. 1997. Blockade of p38 mitogenactivated protein kinase pathway inhibits inducible nitric-oxide synthase expression in mouse astrocytes. The Journal of Biological Chemistry 272: 28737–28380.
48.
go back to reference Larsen, C.M., K.A.W. Wadt, L.F. Juhl, H.U. Andersen, A.E. Karlsen, M.S.S. Su, K. Seedorf, L. Shapiro, C.A. Dinarello, and T. Mandrup-Poulsen. 1998. Interleukin-1β-induced rat pancreatic islet nitric oxide synthesis requires both the p38 and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinases. The Journal of Biological Chemistry 273: 15294–15300.CrossRefPubMed Larsen, C.M., K.A.W. Wadt, L.F. Juhl, H.U. Andersen, A.E. Karlsen, M.S.S. Su, K. Seedorf, L. Shapiro, C.A. Dinarello, and T. Mandrup-Poulsen. 1998. Interleukin-1β-induced rat pancreatic islet nitric oxide synthesis requires both the p38 and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinases. The Journal of Biological Chemistry 273: 15294–15300.CrossRefPubMed
49.
go back to reference Duan, W., J.H. Chan, C.H. Wong, B.P. Leung, and W.S. Wong. 2004. Anti-inflammatory effects of mitogen-activated protein kinase kinase inhibitor U0126 in an asthma mouse model. The Journal of Immunology 172: 7053–7059.CrossRefPubMed Duan, W., J.H. Chan, C.H. Wong, B.P. Leung, and W.S. Wong. 2004. Anti-inflammatory effects of mitogen-activated protein kinase kinase inhibitor U0126 in an asthma mouse model. The Journal of Immunology 172: 7053–7059.CrossRefPubMed
50.
go back to reference Lee, P.J., X. Zhang, P. Shan, B. Ma, C.G. Lee, and R.J. Homer. 2006. ERK1/2 mitogen-activated protein kinase selectively mediates IL-13-induced lung inflammation and remodeling in vivo. Journal of Clinical Investigation 116: 163–173.CrossRefPubMed Lee, P.J., X. Zhang, P. Shan, B. Ma, C.G. Lee, and R.J. Homer. 2006. ERK1/2 mitogen-activated protein kinase selectively mediates IL-13-induced lung inflammation and remodeling in vivo. Journal of Clinical Investigation 116: 163–173.CrossRefPubMed
51.
go back to reference Goris, R.J., W.K. Boekholtz, I.P. Van Bebber, J.K. Nuytinck, and P.H. Schillings. 1986. Multiple organ failure and sepsis without bacteria. An experimental model. Archives of Surgery 121: 897–901.CrossRefPubMed Goris, R.J., W.K. Boekholtz, I.P. Van Bebber, J.K. Nuytinck, and P.H. Schillings. 1986. Multiple organ failure and sepsis without bacteria. An experimental model. Archives of Surgery 121: 897–901.CrossRefPubMed
53.
go back to reference Cuzzocrea, S., G. Costantino, E. Mazzon, and A.P. Caputi. 1999. Protective effect of Nacetylcysteine on multiple organ failure induced by zymosan in the rat. Critical Care Medicine 27: 1524–1532.CrossRefPubMed Cuzzocrea, S., G. Costantino, E. Mazzon, and A.P. Caputi. 1999. Protective effect of Nacetylcysteine on multiple organ failure induced by zymosan in the rat. Critical Care Medicine 27: 1524–1532.CrossRefPubMed
54.
go back to reference Goris, R.J., I.P. Van Bebber, R.M. Mollen, and J.P. Koopman. 1991. Does selective decontamination of the gastrointestinal tract prevent multiple organ failure? An experimental study. Archives of Surgery 126: 561–565.CrossRefPubMed Goris, R.J., I.P. Van Bebber, R.M. Mollen, and J.P. Koopman. 1991. Does selective decontamination of the gastrointestinal tract prevent multiple organ failure? An experimental study. Archives of Surgery 126: 561–565.CrossRefPubMed
55.
go back to reference Demling, R., U. Nayak, K. Ikegami, and C. LaLonde. 1994. Comparison between lung and liver lipid peroxidation and mortality after zymosan peritonitis in the rat. Shock 2: 222–227.CrossRefPubMed Demling, R., U. Nayak, K. Ikegami, and C. LaLonde. 1994. Comparison between lung and liver lipid peroxidation and mortality after zymosan peritonitis in the rat. Shock 2: 222–227.CrossRefPubMed
56.
go back to reference Van Bebber, I.P., W.K. Boekholz, R.J. Goris, P.H. Schillings, H.P. Dinges, S. Bahrami, H. Redl, and G. Schlag. 1989. Neutrophil function and lipid peroxidation in a rat model of multiple organ failure. Journal of Surgical Research 47: 471–475.CrossRefPubMed Van Bebber, I.P., W.K. Boekholz, R.J. Goris, P.H. Schillings, H.P. Dinges, S. Bahrami, H. Redl, and G. Schlag. 1989. Neutrophil function and lipid peroxidation in a rat model of multiple organ failure. Journal of Surgical Research 47: 471–475.CrossRefPubMed
57.
go back to reference Zandi, E., Y. Chen, and M. Karin. 1998. Direct phosphorylation of IkappaB by IKKalpha and IKKbeta: discrimination between free and NF-kappaB bound substrate. Science 281: 1360–1363.CrossRefPubMed Zandi, E., Y. Chen, and M. Karin. 1998. Direct phosphorylation of IkappaB by IKKalpha and IKKbeta: discrimination between free and NF-kappaB bound substrate. Science 281: 1360–1363.CrossRefPubMed
58.
go back to reference DiDonato, J.A., M. Hayakawa, D.M. Rothwarf, E. Zandi, and M. Karin. 1997. A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature 388: 548–554.CrossRefPubMed DiDonato, J.A., M. Hayakawa, D.M. Rothwarf, E. Zandi, and M. Karin. 1997. A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature 388: 548–554.CrossRefPubMed
59.
go back to reference Mercurio, F., H. Zhu, B.W. Murray, A. Shevchenko, B.L. Bennett, J. Li, D.B. Young, M. Barbosa, M. Mann, A. Manning, and A. Rao. 1997. IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 278: 860–866.CrossRefPubMed Mercurio, F., H. Zhu, B.W. Murray, A. Shevchenko, B.L. Bennett, J. Li, D.B. Young, M. Barbosa, M. Mann, A. Manning, and A. Rao. 1997. IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 278: 860–866.CrossRefPubMed
60.
go back to reference Volman, T.J., T. Hendriks, A.A. Verhofstad, B.J. Kullberg, and R.J. Goris. 2002. Improved survival of TNF-deficient mice during the zymosan-induced multiple organ dysfunction syndrome. Shock 17: 468–472.CrossRefPubMed Volman, T.J., T. Hendriks, A.A. Verhofstad, B.J. Kullberg, and R.J. Goris. 2002. Improved survival of TNF-deficient mice during the zymosan-induced multiple organ dysfunction syndrome. Shock 17: 468–472.CrossRefPubMed
61.
go back to reference Jansen, M.J., T. Hendriks, R. Hermsen, J.W. Van der Meer, and R.J. Goris. 1998. A monoclonal antibody against tumour necrosis factor-alpha improves survival in experimental multiple organ dysfunction syndrome. Cytokine 10: 904–910.CrossRefPubMed Jansen, M.J., T. Hendriks, R. Hermsen, J.W. Van der Meer, and R.J. Goris. 1998. A monoclonal antibody against tumour necrosis factor-alpha improves survival in experimental multiple organ dysfunction syndrome. Cytokine 10: 904–910.CrossRefPubMed
62.
go back to reference Aikawa, N., Y. Shinozawa, K. Ishibiki, O. Abe, S. Yamamoto, and M. Motegi. 1987. Clinical analysis of multiple organ failure in burned patients. Burns, Including Thermal Injury 13: 103–109.CrossRefPubMed Aikawa, N., Y. Shinozawa, K. Ishibiki, O. Abe, S. Yamamoto, and M. Motegi. 1987. Clinical analysis of multiple organ failure in burned patients. Burns, Including Thermal Injury 13: 103–109.CrossRefPubMed
63.
go back to reference Von Asmuth, E.J., J.G. Maessen, C.J. van der Linden, and W.A. Buurman. 1990. Tumour necrosis factor alpha (TNF-alpha) and interleukin 6 in a zymosan-induced shock model. Scandinavian Journal of Immunology 32: 313–319.CrossRef Von Asmuth, E.J., J.G. Maessen, C.J. van der Linden, and W.A. Buurman. 1990. Tumour necrosis factor alpha (TNF-alpha) and interleukin 6 in a zymosan-induced shock model. Scandinavian Journal of Immunology 32: 313–319.CrossRef
64.
go back to reference Petit, F., G.J. Bagby, and C.H. Lang. 1995. Tumor necrosis factor mediates zymosan-induced increase in glucose flux and insulin resistance. American Journal of Physiology 268: 219–228. Petit, F., G.J. Bagby, and C.H. Lang. 1995. Tumor necrosis factor mediates zymosan-induced increase in glucose flux and insulin resistance. American Journal of Physiology 268: 219–228.
65.
go back to reference Mirzoeva, O.K., D. Das, L.M. Heiser, S. Bhattacharya, D. Siwak, R. Gendelman, N. Bayani, N.J. Wang, R.M. Neve, Y. Guan, Z. Hu, Z. Knight, H.S. Feiler, P. Gascard, B. Parvin, P.T. Spellman, K.M. Shokat, A.J. Wyrobek, M.J. Bissell, F. McCormick, W.L. Kuo, G.B. Mills, J.W. Gray, and W.M. Korn. 2009. Basal subtype and MAPK/ERK kinase (MEK)-phosphoinositide 3-kinase feedback signaling determine susceptibility of breast cancer cells to MEK inhibition. Cancer Resarch 69 (2): 565–572.CrossRef Mirzoeva, O.K., D. Das, L.M. Heiser, S. Bhattacharya, D. Siwak, R. Gendelman, N. Bayani, N.J. Wang, R.M. Neve, Y. Guan, Z. Hu, Z. Knight, H.S. Feiler, P. Gascard, B. Parvin, P.T. Spellman, K.M. Shokat, A.J. Wyrobek, M.J. Bissell, F. McCormick, W.L. Kuo, G.B. Mills, J.W. Gray, and W.M. Korn. 2009. Basal subtype and MAPK/ERK kinase (MEK)-phosphoinositide 3-kinase feedback signaling determine susceptibility of breast cancer cells to MEK inhibition. Cancer Resarch 69 (2): 565–572.CrossRef
66.
go back to reference Carracedo, A., L. Ma, J. Teruya-Feldstein, F. Rojo, L. Salmena, A. Alimonti, A. Egia, A.T. Sasaki, G. Thomas, S.C. Kozma, A. Papa, C. Nardella, L.C. Cantley, J. Baselga, and P.P. Pandolfi. 2008. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. The Journal of the Clinical Investigation 118 (9): 3065–3074. Carracedo, A., L. Ma, J. Teruya-Feldstein, F. Rojo, L. Salmena, A. Alimonti, A. Egia, A.T. Sasaki, G. Thomas, S.C. Kozma, A. Papa, C. Nardella, L.C. Cantley, J. Baselga, and P.P. Pandolfi. 2008. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. The Journal of the Clinical Investigation 118 (9): 3065–3074.
67.
go back to reference Zhong, Lian-Mei, Yi Zong, Sun Lin, Jia-Zhi Guo, Wei Zhang, Ying He, Rui Song, Wen-Min Wang, Chun-Jie Xiao, and Lu. Di. 2012. Resveratrol ınhibits ınflammatory responses via the mammalian target of rapamycin signaling pathway in cultured LPS-stimulated microglial cells. PLoS One 7 (2): e32195.CrossRefPubMedPubMedCentral Zhong, Lian-Mei, Yi Zong, Sun Lin, Jia-Zhi Guo, Wei Zhang, Ying He, Rui Song, Wen-Min Wang, Chun-Jie Xiao, and Lu. Di. 2012. Resveratrol ınhibits ınflammatory responses via the mammalian target of rapamycin signaling pathway in cultured LPS-stimulated microglial cells. PLoS One 7 (2): e32195.CrossRefPubMedPubMedCentral
68.
go back to reference Chen, L.J., Y.L. Xu, B. Song, H.M. Yu, G.Y. Oudit, R. Xu, Z.Z. Zhang, H.Y. Jin, Q. Chang, D.L. Zhu, and J.C. Zhong. 2016. Angiotensin-converting enzyme 2 ameliorates renal fibrosis by blocking the activation of mTOR/ERK signaling in apolipoprotein E-deficient mice. Peptides 79: 49–57.CrossRefPubMed Chen, L.J., Y.L. Xu, B. Song, H.M. Yu, G.Y. Oudit, R. Xu, Z.Z. Zhang, H.Y. Jin, Q. Chang, D.L. Zhu, and J.C. Zhong. 2016. Angiotensin-converting enzyme 2 ameliorates renal fibrosis by blocking the activation of mTOR/ERK signaling in apolipoprotein E-deficient mice. Peptides 79: 49–57.CrossRefPubMed
69.
go back to reference Cuzzocrea, S., R. Di Paola, E. Mazzon, C. Crisafulli, T. Genovese, C. Muia, M. Abdelrahman, E. Esposito, and C. Thiemermann. 2007. Glycogen synthase kinase 3″ inhibition reduces the development of nonseptic shock induced by zymosan in mice. Shock 27: 97–107.CrossRefPubMed Cuzzocrea, S., R. Di Paola, E. Mazzon, C. Crisafulli, T. Genovese, C. Muia, M. Abdelrahman, E. Esposito, and C. Thiemermann. 2007. Glycogen synthase kinase 3″ inhibition reduces the development of nonseptic shock induced by zymosan in mice. Shock 27: 97–107.CrossRefPubMed
70.
go back to reference Cuzzocrea, S., B. Zingarelli, L. Sautebin, A. Rizzo, C. Crisafulli, G.M. Campo, G. Costantino, G. Calapai, F. Nava, M. Di Rosa, and A.P. Caputi. 1997. Multiple organ failure following zymosan induced peritonitis is mediated by nitric oxide. Shock 8: 268–275.CrossRefPubMed Cuzzocrea, S., B. Zingarelli, L. Sautebin, A. Rizzo, C. Crisafulli, G.M. Campo, G. Costantino, G. Calapai, F. Nava, M. Di Rosa, and A.P. Caputi. 1997. Multiple organ failure following zymosan induced peritonitis is mediated by nitric oxide. Shock 8: 268–275.CrossRefPubMed
71.
go back to reference Cuzzocrea, S., R. Di Paola, E. Mazzon, N.S.A. Patel, T. Genovese, C. Muià, C. Crisafulli, A.P. Caputi, and C. Thiemermann. 2006. Erythropoietin reduces the development of nonseptic shock induced by zymosan in mice. Critical Care Medicine 34: 1168–1174.CrossRefPubMed Cuzzocrea, S., R. Di Paola, E. Mazzon, N.S.A. Patel, T. Genovese, C. Muià, C. Crisafulli, A.P. Caputi, and C. Thiemermann. 2006. Erythropoietin reduces the development of nonseptic shock induced by zymosan in mice. Critical Care Medicine 34: 1168–1174.CrossRefPubMed
72.
go back to reference Mainous, M.R., W. Ertel, I.H. Chaudry, and E.A. Deitch. 1995. The gut: a cytokine generating organ in systemic inflammation? Shock 4: 193–199.CrossRefPubMed Mainous, M.R., W. Ertel, I.H. Chaudry, and E.A. Deitch. 1995. The gut: a cytokine generating organ in systemic inflammation? Shock 4: 193–199.CrossRefPubMed
73.
go back to reference Masferrer, J.L., B.S. Zweifel, P.T. Manning, S.D. Hauser, K.M. Leahy, W.G. Smith, P.C. Isakson, and K. Seibert. 1994. Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic. Proceedings of the National Academy of Sciences 91: 3228–3232.CrossRef Masferrer, J.L., B.S. Zweifel, P.T. Manning, S.D. Hauser, K.M. Leahy, W.G. Smith, P.C. Isakson, and K. Seibert. 1994. Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic. Proceedings of the National Academy of Sciences 91: 3228–3232.CrossRef
74.
go back to reference Tomlinson, A., I. Appleton, A.R. Moore, D.W. Gilroy, D. Willis, J.A. Mitchell, and D.A. Willoughby. 1994. Cyclo-oxygenase and nitric oxide synthase isoforms in rat carrageenin-induced pleurisy. British Journal of Pharmacology 113: 693–698.CrossRefPubMedPubMedCentral Tomlinson, A., I. Appleton, A.R. Moore, D.W. Gilroy, D. Willis, J.A. Mitchell, and D.A. Willoughby. 1994. Cyclo-oxygenase and nitric oxide synthase isoforms in rat carrageenin-induced pleurisy. British Journal of Pharmacology 113: 693–698.CrossRefPubMedPubMedCentral
75.
go back to reference Vane, J.R., J.A. Mitchell, I. Appleton, A. Tomlison, D. Bishop-Bailey, J. Croxtall, and D.A. Willoughby. 1994. Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proceedings of the National Academy of Sciences USA 91: 2046–2050.CrossRef Vane, J.R., J.A. Mitchell, I. Appleton, A. Tomlison, D. Bishop-Bailey, J. Croxtall, and D.A. Willoughby. 1994. Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proceedings of the National Academy of Sciences USA 91: 2046–2050.CrossRef
76.
go back to reference Kang, R.Y., J. Freire Moar, E. Sigal, and C.Q. Chu. 1996. Expression of cyclooxygenase-2 in human and an animal model of rheumatoid arthritis. British Journal of Rheumatology 35: 711–718.CrossRefPubMed Kang, R.Y., J. Freire Moar, E. Sigal, and C.Q. Chu. 1996. Expression of cyclooxygenase-2 in human and an animal model of rheumatoid arthritis. British Journal of Rheumatology 35: 711–718.CrossRefPubMed
77.
go back to reference Lundy, S.R., R.L. Dowling, T.M. Stevens, J.S. Kerr, W.M. Mackin, and K.R. Gans. 1990. Kinetics of phospholipase A2, arachidonic acid, and eicosanoid appearance in mouse zymosan peritonitis. Journal of Immunology 144: 2671–2677. Lundy, S.R., R.L. Dowling, T.M. Stevens, J.S. Kerr, W.M. Mackin, and K.R. Gans. 1990. Kinetics of phospholipase A2, arachidonic acid, and eicosanoid appearance in mouse zymosan peritonitis. Journal of Immunology 144: 2671–2677.
78.
go back to reference Rao, T.S., J.L. Currie, A.F. Shaffer, and P.C. Isakson. 1994. In vivo characterization of zymosan-induced mouse peritoneal inflammation. Journal of Pharmacology and Experimental Therapeutics 269: 917–925.PubMed Rao, T.S., J.L. Currie, A.F. Shaffer, and P.C. Isakson. 1994. In vivo characterization of zymosan-induced mouse peritoneal inflammation. Journal of Pharmacology and Experimental Therapeutics 269: 917–925.PubMed
79.
go back to reference Yuhki, K., F. Ushikubi, H. Naraba, A. Ueno, H. Kato, F. Kojima, S. Narumiya, Y. Sugimoto, M. Matsushita, and S. Oh-ishi. 2008. Prostaglandin I2 plays a key role in zymosan-induced mouse pleurisy. Journal of Pharmacology and Experımental Therapeutics 325: 601–609.CrossRefPubMed Yuhki, K., F. Ushikubi, H. Naraba, A. Ueno, H. Kato, F. Kojima, S. Narumiya, Y. Sugimoto, M. Matsushita, and S. Oh-ishi. 2008. Prostaglandin I2 plays a key role in zymosan-induced mouse pleurisy. Journal of Pharmacology and Experımental Therapeutics 325: 601–609.CrossRefPubMed
80.
go back to reference Kang-Birken, S.L., and J.T. Dipiro. 2008. Sepsis and septic shock. In Pharmacotherapy, ed. J.T. Dipiro, R.L. Talbert, G.C. Yee, G.R. Matzke, B.G. Wells, and L.M. Posey, 7th ed., 1943–1944. United States of America: McGraw-Hill Companies, Inc. Kang-Birken, S.L., and J.T. Dipiro. 2008. Sepsis and septic shock. In Pharmacotherapy, ed. J.T. Dipiro, R.L. Talbert, G.C. Yee, G.R. Matzke, B.G. Wells, and L.M. Posey, 7th ed., 1943–1944. United States of America: McGraw-Hill Companies, Inc.
81.
go back to reference Tunctan, B., B. Korkmaz, A.N. Sari, M. Kacan, D. Unsal, M.S. Serin, C.K. Buharalioglu, S. Sahan-Firat, T. Cuez, W. Schunck, V.L. Manthati, J.R. Falck, and K.U. Malik. 2013. Contribution of iNOS/sGC/PKG pathway, COX-2, CYP4A1, and gp91phox to the protective effect of 5,14-HEDGE, a 20-HETE mimetic, against vasodilation, hypotension, tachycardia, and inflammation in a rat model of septic shock. Nitric Oxide 33: 18–41.CrossRefPubMed Tunctan, B., B. Korkmaz, A.N. Sari, M. Kacan, D. Unsal, M.S. Serin, C.K. Buharalioglu, S. Sahan-Firat, T. Cuez, W. Schunck, V.L. Manthati, J.R. Falck, and K.U. Malik. 2013. Contribution of iNOS/sGC/PKG pathway, COX-2, CYP4A1, and gp91phox to the protective effect of 5,14-HEDGE, a 20-HETE mimetic, against vasodilation, hypotension, tachycardia, and inflammation in a rat model of septic shock. Nitric Oxide 33: 18–41.CrossRefPubMed
82.
go back to reference Makni-Maalej, K., M. Chiandotto, M. Hurtado-Nedelec, S. Bedouhene, M. Gougerot-Pocidalo, P. My-Chan Dang, and J. El-Benna. 2013. Zymosan induces NADPH oxidase activation in human neutrophils by inducing the phosphorylation of p47phox and the activation of Rac2: involvement of protein tyrosine kinases, PI3Kinase, PKC, ERK1/2 and p38MAPkinase. Biochemical Pharmacology 85: 92–100.CrossRefPubMed Makni-Maalej, K., M. Chiandotto, M. Hurtado-Nedelec, S. Bedouhene, M. Gougerot-Pocidalo, P. My-Chan Dang, and J. El-Benna. 2013. Zymosan induces NADPH oxidase activation in human neutrophils by inducing the phosphorylation of p47phox and the activation of Rac2: involvement of protein tyrosine kinases, PI3Kinase, PKC, ERK1/2 and p38MAPkinase. Biochemical Pharmacology 85: 92–100.CrossRefPubMed
84.
go back to reference Damas, J., G. Remacle-Volon, and V. Bourdon. 1993. Platelet–activating factor and vascular effects of zymosan in rats. European Journal of Pharmacology 231: 231–236.CrossRefPubMed Damas, J., G. Remacle-Volon, and V. Bourdon. 1993. Platelet–activating factor and vascular effects of zymosan in rats. European Journal of Pharmacology 231: 231–236.CrossRefPubMed
85.
go back to reference Mainous, M., T. Patrick, and D. Rodney. 1991. Studies of route, magnitude and time course of bacterial translocation in a model of systemic inflammation. Archives of Surgery 126: 33–39.CrossRefPubMed Mainous, M., T. Patrick, and D. Rodney. 1991. Studies of route, magnitude and time course of bacterial translocation in a model of systemic inflammation. Archives of Surgery 126: 33–39.CrossRefPubMed
86.
go back to reference Bedard, K., and K.H. Krause. 2007. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiological Reviews 87: 245–313.CrossRefPubMed Bedard, K., and K.H. Krause. 2007. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiological Reviews 87: 245–313.CrossRefPubMed
87.
go back to reference Esposito, E., and S. Cuzzocrea. 2009. Superoxide, NO, peroxynitrite and PARP in circulatory shock and inflammation. Frontiers in Bioscience 14: 263–296.CrossRef Esposito, E., and S. Cuzzocrea. 2009. Superoxide, NO, peroxynitrite and PARP in circulatory shock and inflammation. Frontiers in Bioscience 14: 263–296.CrossRef
88.
go back to reference Di Paola, R., E. Esposito, E. Mazzon, T. Genovese, C. Muia, C. Crisafulli, G. Malleo, E. Sessa, R. Meli, and S. Cuzzocrea. 2006. Absence of peroxisome proliferators-activated receptors (PPAR) alpha enhanced the multiple organ failure induced by zymosan. Shock 26: 477–484.CrossRefPubMed Di Paola, R., E. Esposito, E. Mazzon, T. Genovese, C. Muia, C. Crisafulli, G. Malleo, E. Sessa, R. Meli, and S. Cuzzocrea. 2006. Absence of peroxisome proliferators-activated receptors (PPAR) alpha enhanced the multiple organ failure induced by zymosan. Shock 26: 477–484.CrossRefPubMed
89.
go back to reference Cuzzocrea, S., E. Mazzon, R. Di Paola, E. Esposito, H. Macarthur, G.M. Matuschak, and D. Salvemini. 2006. A role for nitric oxide-mediated peroxynitrite formation in a model of endotoxin-induced shock. Journal of Pharmacology and Experimental Therapeutics 319: 73–81.CrossRefPubMed Cuzzocrea, S., E. Mazzon, R. Di Paola, E. Esposito, H. Macarthur, G.M. Matuschak, and D. Salvemini. 2006. A role for nitric oxide-mediated peroxynitrite formation in a model of endotoxin-induced shock. Journal of Pharmacology and Experimental Therapeutics 319: 73–81.CrossRefPubMed
90.
go back to reference Bianca, R., S. d’Emmanuele di Villa Marzocco, R. Di Paola, G. Autore, A. Pinto, S. Cuzzocrea, and R. Sorrentino. 2004. Melatonin prevents lipopolysaccharide-induced hyporeactivity in rat. Journal of Pineal Research 36: 146–154.CrossRef Bianca, R., S. d’Emmanuele di Villa Marzocco, R. Di Paola, G. Autore, A. Pinto, S. Cuzzocrea, and R. Sorrentino. 2004. Melatonin prevents lipopolysaccharide-induced hyporeactivity in rat. Journal of Pineal Research 36: 146–154.CrossRef
91.
go back to reference Takakura, K., W. Xiaohong, K. Takeuchi, Y. Yasuda, and S. Fukuda. 2003. Deactivation of norepinephrine by peroxynitrite as a new pathogenesis in the hypotension of septic shock. Anesthesiology 98: 928–934.CrossRefPubMed Takakura, K., W. Xiaohong, K. Takeuchi, Y. Yasuda, and S. Fukuda. 2003. Deactivation of norepinephrine by peroxynitrite as a new pathogenesis in the hypotension of septic shock. Anesthesiology 98: 928–934.CrossRefPubMed
Metadata
Title
Protection by mTOR Inhibition on Zymosan-Induced Systemic Inflammatory Response and Oxidative/Nitrosative Stress: Contribution of mTOR/MEK1/ERK1/2/IKKβ/IκB-α/NF-κB Signalling Pathway
Authors
Seyhan Sahan-Firat
Meryem Temiz-Resitoglu
Demet Sinem Guden
Sefika Pinar Kucukkavruk
Bahar Tunctan
Ayse Nihal Sari
Zumrut Kocak
Kafait U. Malik
Publication date
01-02-2018
Publisher
Springer US
Published in
Inflammation / Issue 1/2018
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0686-2

Other articles of this Issue 1/2018

Inflammation 1/2018 Go to the issue