Skip to main content
Top
Published in: Inflammation 1/2018

01-02-2018 | ORIGINAL ARTICLE

Propofol Attenuates Inflammatory Response in LPS-Activated Microglia by Regulating the miR-155/SOCS1 Pathway

Authors: Xinxun Zheng, Hongbing Huang, Jianjun Liu, Minghua Li, Min Liu, Tao Luo

Published in: Inflammation | Issue 1/2018

Login to get access

Abstract

Propofol is a widely used intravenous anesthetic agent with potential neuroprotective effect in diverse models of neuronal injury, including ischemic stroke and traumatic brain injury. However, few studies have been carried out to determine the effects and molecular mechanisms of propofol in classic microglial activation (M1 activation) related to neuronal injury. This study explored the anti-inflammatory effects of propofol in LPS-activated BV2 microglia. Propofol potently decreased the pro-inflammatory mediators, such as nitric oxide, TNF-α, and IL-6, at both the transcriptional and translational levels. Furthermore, propofol suppressed the expression of miR-155 in LPS-activated cells. Knockdown of miR-155 attenuated the anti-inflammatory effect of propofol in cells after LPS exposure. miR-155 was also confirmed as a negative regulator of SOCS1 expression. The inhibitory effect of propofol on LPS-induced inflammation involved the upregulation of SOCS1. Overall, these results suggest that propofol can suppress the neuroinflammatory response of microglia to LPS through the regulation of the miR-155/SOCS1 pathway.
Literature
1.
go back to reference Kettenmann, H., U.K. Hanisch, M. Noda, and A. Verkhratsky. 2011. Physiology of microglia. Physiological Reviews 91 (2): 461–553.CrossRefPubMed Kettenmann, H., U.K. Hanisch, M. Noda, and A. Verkhratsky. 2011. Physiology of microglia. Physiological Reviews 91 (2): 461–553.CrossRefPubMed
2.
go back to reference Hanisch, U.K., and H. Kettenmann. 2007. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nature Neuroscience 10 (11): 1387–1394.CrossRefPubMed Hanisch, U.K., and H. Kettenmann. 2007. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nature Neuroscience 10 (11): 1387–1394.CrossRefPubMed
3.
go back to reference Wang, D., R. Couture, and Y. Hong. 2014. Activated microglia in the spinal cord underlies diabetic neuropathic pain. European Journal of Pharmacology 728: 59–66.CrossRefPubMed Wang, D., R. Couture, and Y. Hong. 2014. Activated microglia in the spinal cord underlies diabetic neuropathic pain. European Journal of Pharmacology 728: 59–66.CrossRefPubMed
4.
go back to reference Graeber, M.B., W. Li, and M.L. Rodriguez. 2011. Role of microglia in CNS inflammation. FEBS Letters 585 (23): 3798–3805.CrossRefPubMed Graeber, M.B., W. Li, and M.L. Rodriguez. 2011. Role of microglia in CNS inflammation. FEBS Letters 585 (23): 3798–3805.CrossRefPubMed
5.
go back to reference Cunningham, C. 2013. Microglia and neurodegeneration: the role of systemic inflammation. Glia 61 (1): 71–90.CrossRefPubMed Cunningham, C. 2013. Microglia and neurodegeneration: the role of systemic inflammation. Glia 61 (1): 71–90.CrossRefPubMed
6.
go back to reference Ishikawa, M., S. Tanaka, M. Arai, Y. Genda, and A. Sakamoto. 2012. Differences in microRNA changes of healthy rat liver between sevoflurane and propofol anesthesia. Anesthesiology 117 (6): 1245–1252.CrossRefPubMed Ishikawa, M., S. Tanaka, M. Arai, Y. Genda, and A. Sakamoto. 2012. Differences in microRNA changes of healthy rat liver between sevoflurane and propofol anesthesia. Anesthesiology 117 (6): 1245–1252.CrossRefPubMed
7.
go back to reference Chen, Y., S.J. Won, Y. Xu, and R.A. Swanson. 2014. Targeting microglial activation in stroke therapy: pharmacological tools and gender effects. Current Medicinal Chemistry 21 (19): 2146–2155.CrossRefPubMedPubMedCentral Chen, Y., S.J. Won, Y. Xu, and R.A. Swanson. 2014. Targeting microglial activation in stroke therapy: pharmacological tools and gender effects. Current Medicinal Chemistry 21 (19): 2146–2155.CrossRefPubMedPubMedCentral
8.
go back to reference Suk, K., and J. Ock. 2012. Chemical genetics of neuroinflammation: natural and synthetic compounds as microglial inhibitors. Inflammopharmacology 20 (3): 151–158.CrossRefPubMed Suk, K., and J. Ock. 2012. Chemical genetics of neuroinflammation: natural and synthetic compounds as microglial inhibitors. Inflammopharmacology 20 (3): 151–158.CrossRefPubMed
9.
go back to reference Nelson, L.E., T.Z. Guo, J. Lu, C.B. Saper, N.P. Franks, and M. Maze. 2002. The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway. Nature Neuroscience 5 (10): 979–984.CrossRefPubMed Nelson, L.E., T.Z. Guo, J. Lu, C.B. Saper, N.P. Franks, and M. Maze. 2002. The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway. Nature Neuroscience 5 (10): 979–984.CrossRefPubMed
10.
go back to reference Franks, N.P. 2015. Structural comparisons of ligand-gated ion channels in open, closed, and desensitized states identify a novel propofol-binding site on mammalian gamma-aminobutyric acid type A receptors. Anesthesiology 122 (4): 787–794.CrossRefPubMed Franks, N.P. 2015. Structural comparisons of ligand-gated ion channels in open, closed, and desensitized states identify a novel propofol-binding site on mammalian gamma-aminobutyric acid type A receptors. Anesthesiology 122 (4): 787–794.CrossRefPubMed
11.
go back to reference Zheng, Y.Y., Y.P. Lan, H.F. Tang, and S.M. Zhu. 2008. Propofol pretreatment attenuates aquaporin-4 over-expression and alleviates cerebral edema after transient focal brain ischemia reperfusion in rats. Anesthesia and Analgesia 107 (6): 2009–2016.CrossRefPubMed Zheng, Y.Y., Y.P. Lan, H.F. Tang, and S.M. Zhu. 2008. Propofol pretreatment attenuates aquaporin-4 over-expression and alleviates cerebral edema after transient focal brain ischemia reperfusion in rats. Anesthesia and Analgesia 107 (6): 2009–2016.CrossRefPubMed
12.
go back to reference Adembri, C., L. Venturi, A. Tani, A. Chiarugi, E. Gramigni, A. Cozzi, et al. 2006. Neuroprotective effects of propofol in models of cerebral ischemia: inhibition of mitochondrial swelling as a possible mechanism. Anesthesiology 104 (1): 80–89.CrossRefPubMed Adembri, C., L. Venturi, A. Tani, A. Chiarugi, E. Gramigni, A. Cozzi, et al. 2006. Neuroprotective effects of propofol in models of cerebral ischemia: inhibition of mitochondrial swelling as a possible mechanism. Anesthesiology 104 (1): 80–89.CrossRefPubMed
13.
go back to reference Luo, T., J. Wu, S.V. Kabadi, B. Sabirzhanov, K. Guanciale, M. Hanscom, et al. 2013. Propofol limits microglial activation after experimental brain trauma through inhibition of nicotinamide adenine dinucleotide phosphate oxidase. Anesthesiology 119 (6): 1370–1388.CrossRefPubMed Luo, T., J. Wu, S.V. Kabadi, B. Sabirzhanov, K. Guanciale, M. Hanscom, et al. 2013. Propofol limits microglial activation after experimental brain trauma through inhibition of nicotinamide adenine dinucleotide phosphate oxidase. Anesthesiology 119 (6): 1370–1388.CrossRefPubMed
14.
go back to reference Young, Y., D.K. Menon, N. Tisavipat, B.F. Matta, and J.G. Jones. 1997. Propofol neuroprotection in a rat model of ischaemia reperfusion injury. European Journal of Anaesthesiology 14 (3): 320–326.CrossRefPubMed Young, Y., D.K. Menon, N. Tisavipat, B.F. Matta, and J.G. Jones. 1997. Propofol neuroprotection in a rat model of ischaemia reperfusion injury. European Journal of Anaesthesiology 14 (3): 320–326.CrossRefPubMed
15.
16.
go back to reference Woodbury, M.E., R.W. Freilich, C.J. Cheng, H. Asai, S. Ikezu, J.D. Boucher, et al. 2015. miR-155 is essential for inflammation-induced hippocampal neurogenic dysfunction. The Journal of Neuroscience 35 (26): 9764–9781.CrossRefPubMedPubMedCentral Woodbury, M.E., R.W. Freilich, C.J. Cheng, H. Asai, S. Ikezu, J.D. Boucher, et al. 2015. miR-155 is essential for inflammation-induced hippocampal neurogenic dysfunction. The Journal of Neuroscience 35 (26): 9764–9781.CrossRefPubMedPubMedCentral
17.
go back to reference Guedes, J.R., C.M. Custodia, R.J. Silva, and L.P. de Almeida. 2014. Pedroso de Lima MC, Cardoso AL. Early miR-155 upregulation contributes to neuroinflammation in Alzheimer's disease triple transgenic mouse model. Human Molecular Genetics 23 (23): 6286–6301.CrossRefPubMed Guedes, J.R., C.M. Custodia, R.J. Silva, and L.P. de Almeida. 2014. Pedroso de Lima MC, Cardoso AL. Early miR-155 upregulation contributes to neuroinflammation in Alzheimer's disease triple transgenic mouse model. Human Molecular Genetics 23 (23): 6286–6301.CrossRefPubMed
18.
go back to reference Mycko, M.P., M. Cichalewska, H. Cwiklinska, and K.W. Selmaj. 2015. miR-155-3p drives the development of autoimmune demyelination by regulation of heat shock protein 40. The Journal of Neuroscience 35 (50): 16504–16515.CrossRefPubMed Mycko, M.P., M. Cichalewska, H. Cwiklinska, and K.W. Selmaj. 2015. miR-155-3p drives the development of autoimmune demyelination by regulation of heat shock protein 40. The Journal of Neuroscience 35 (50): 16504–16515.CrossRefPubMed
19.
go back to reference Butovsky, O., M.P. Jedrychowski, R. Cialic, S. Krasemann, G. Murugaiyan, Z. Fanek, et al. 2015. Targeting miR-155 restores abnormal microglia and attenuates disease in SOD1 mice. Annals of Neurology 77 (1): 75–99.CrossRefPubMed Butovsky, O., M.P. Jedrychowski, R. Cialic, S. Krasemann, G. Murugaiyan, Z. Fanek, et al. 2015. Targeting miR-155 restores abnormal microglia and attenuates disease in SOD1 mice. Annals of Neurology 77 (1): 75–99.CrossRefPubMed
20.
go back to reference Moore, C.S., V.T. Rao, B.A. Durafourt, B.J. Bedell, S.K. Ludwin, A. Bar-Or, et al. 2013. miR-155 as a multiple sclerosis-relevant regulator of myeloid cell polarization. Annals of Neurology 74 (5): 709–720.CrossRefPubMed Moore, C.S., V.T. Rao, B.A. Durafourt, B.J. Bedell, S.K. Ludwin, A. Bar-Or, et al. 2013. miR-155 as a multiple sclerosis-relevant regulator of myeloid cell polarization. Annals of Neurology 74 (5): 709–720.CrossRefPubMed
21.
go back to reference Mayer, A.M. 1998. Therapeutic implications of microglia activation by lipopolysaccharide and reactive oxygen species generation in septic shock and central nervous system pathologies: a review. Medicina (B Aires). 58 (4): 377–385.PubMed Mayer, A.M. 1998. Therapeutic implications of microglia activation by lipopolysaccharide and reactive oxygen species generation in septic shock and central nervous system pathologies: a review. Medicina (B Aires). 58 (4): 377–385.PubMed
22.
go back to reference Luo, T., J. Qin, M. Liu, J. Luo, F. Ding, M. Wang, et al. 2015. Astragalus polysaccharide attenuates lipopolysaccharide-induced inflammatory responses in microglial cells: regulation of protein kinase B and nuclear factor-kappaB signaling. Inflammation Research 64 (3–4): 205–212.CrossRefPubMed Luo, T., J. Qin, M. Liu, J. Luo, F. Ding, M. Wang, et al. 2015. Astragalus polysaccharide attenuates lipopolysaccharide-induced inflammatory responses in microglial cells: regulation of protein kinase B and nuclear factor-kappaB signaling. Inflammation Research 64 (3–4): 205–212.CrossRefPubMed
23.
go back to reference Fan, K., D. Li, Y. Zhang, C. Han, J. Liang, C. Hou, et al. 2015. The induction of neuronal death by up-regulated microglial cathepsin H in LPS-induced neuroinflammation. Journal of Neuroinflammation 12: 54.CrossRefPubMedPubMedCentral Fan, K., D. Li, Y. Zhang, C. Han, J. Liang, C. Hou, et al. 2015. The induction of neuronal death by up-regulated microglial cathepsin H in LPS-induced neuroinflammation. Journal of Neuroinflammation 12: 54.CrossRefPubMedPubMedCentral
24.
go back to reference Vigorito, E., S. Kohlhaas, D. Lu, and R. Leyland. 2013. miR-155: an ancient regulator of the immune system. Immunological Reviews 253 (1): 146–157.CrossRefPubMed Vigorito, E., S. Kohlhaas, D. Lu, and R. Leyland. 2013. miR-155: an ancient regulator of the immune system. Immunological Reviews 253 (1): 146–157.CrossRefPubMed
25.
go back to reference Henn, A., S. Lund, M. Hedtjarn, A. Schrattenholz, P. Porzgen, and M. Leist. 2009. The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. ALTEX 26 (2): 83–94.CrossRefPubMed Henn, A., S. Lund, M. Hedtjarn, A. Schrattenholz, P. Porzgen, and M. Leist. 2009. The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. ALTEX 26 (2): 83–94.CrossRefPubMed
26.
go back to reference Adachi, Y.U., M. Satomoto, H. Higuchi, and K. Watanabe. 2005. Rapid fluid infusion therapy decreases the plasma concentration of continuously infused propofol. Acta Anaesthesiologica Scandinavica 49 (3): 331–336.CrossRefPubMed Adachi, Y.U., M. Satomoto, H. Higuchi, and K. Watanabe. 2005. Rapid fluid infusion therapy decreases the plasma concentration of continuously infused propofol. Acta Anaesthesiologica Scandinavica 49 (3): 331–336.CrossRefPubMed
27.
go back to reference Murphy, P.G., M.J. Davies, M.O. Columb, and N. Stratford. 1996. Effect of propofol and thiopentone on free radical mediated oxidative stress of the erythrocyte. British Journal of Anaesthesia 76 (4): 536–543.CrossRefPubMed Murphy, P.G., M.J. Davies, M.O. Columb, and N. Stratford. 1996. Effect of propofol and thiopentone on free radical mediated oxidative stress of the erythrocyte. British Journal of Anaesthesia 76 (4): 536–543.CrossRefPubMed
28.
go back to reference Wen, Y., X. Zhang, L. Dong, J. Zhao, C. Zhang, and C. Zhu. 2015. Acetylbritannilactone modulates MicroRNA-155-mediated inflammatory response in ischemic cerebral tissues. Molecular Medicine 21: 197–209.CrossRefPubMedPubMedCentral Wen, Y., X. Zhang, L. Dong, J. Zhao, C. Zhang, and C. Zhu. 2015. Acetylbritannilactone modulates MicroRNA-155-mediated inflammatory response in ischemic cerebral tissues. Molecular Medicine 21: 197–209.CrossRefPubMedPubMedCentral
29.
go back to reference Caballero-Garrido, E., J.C. Pena-Philippides, T. Lordkipanidze, D. Bragin, Y. Yang, E.B. Erhardt, et al. 2015. In vivo inhibition of miR-155 promotes recovery after experimental mouse stroke. The Journal of Neuroscience 35 (36): 12446–12464.CrossRefPubMedPubMedCentral Caballero-Garrido, E., J.C. Pena-Philippides, T. Lordkipanidze, D. Bragin, Y. Yang, E.B. Erhardt, et al. 2015. In vivo inhibition of miR-155 promotes recovery after experimental mouse stroke. The Journal of Neuroscience 35 (36): 12446–12464.CrossRefPubMedPubMedCentral
30.
go back to reference Gaudet, A.D., S. Mandrekar-Colucci, J.C. Hall, D.R. Sweet, P.J. Schmitt, X. Xu, et al. 2016. miR-155 deletion in mice overcomes neuron-intrinsic and neuron-extrinsic barriers to spinal cord repair. The Journal of Neuroscience 36 (32): 8516–8532.CrossRefPubMedPubMedCentral Gaudet, A.D., S. Mandrekar-Colucci, J.C. Hall, D.R. Sweet, P.J. Schmitt, X. Xu, et al. 2016. miR-155 deletion in mice overcomes neuron-intrinsic and neuron-extrinsic barriers to spinal cord repair. The Journal of Neuroscience 36 (32): 8516–8532.CrossRefPubMedPubMedCentral
31.
go back to reference Androulidaki, A., D. Iliopoulos, A. Arranz, C. Doxaki, S. Schworer, V. Zacharioudaki, et al. 2009. The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity 31 (2): 220–231.CrossRefPubMedPubMedCentral Androulidaki, A., D. Iliopoulos, A. Arranz, C. Doxaki, S. Schworer, V. Zacharioudaki, et al. 2009. The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity 31 (2): 220–231.CrossRefPubMedPubMedCentral
32.
go back to reference Goto, G., Y. Hori, M. Ishikawa, S. Tanaka, and A. Sakamoto. 2014. Changes in the gene expression levels of microRNAs in the rat hippocampus by sevoflurane and propofol anesthesia. Molecular Medicine Reports 9 (5): 1715–1722.CrossRefPubMed Goto, G., Y. Hori, M. Ishikawa, S. Tanaka, and A. Sakamoto. 2014. Changes in the gene expression levels of microRNAs in the rat hippocampus by sevoflurane and propofol anesthesia. Molecular Medicine Reports 9 (5): 1715–1722.CrossRefPubMed
33.
go back to reference Twaroski, D.M., Y. Yan, J.M. Olson, Z.J. Bosnjak, and X. Bai. 2014. Down-regulation of microRNA-21 is involved in the propofol-induced neurotoxicity observed in human stem cell-derived neurons. Anesthesiology 121 (4): 786–800.CrossRefPubMedPubMedCentral Twaroski, D.M., Y. Yan, J.M. Olson, Z.J. Bosnjak, and X. Bai. 2014. Down-regulation of microRNA-21 is involved in the propofol-induced neurotoxicity observed in human stem cell-derived neurons. Anesthesiology 121 (4): 786–800.CrossRefPubMedPubMedCentral
34.
go back to reference Huang, X., Y. Teng, H. Yang, and J. Ma. 2016. Propofol inhibits invasion and growth of ovarian cancer cells via regulating miR-9/NF-kappaB signal. Brazilian Journal of Medical and Biological Research 49 (12): e5717.CrossRefPubMedPubMedCentral Huang, X., Y. Teng, H. Yang, and J. Ma. 2016. Propofol inhibits invasion and growth of ovarian cancer cells via regulating miR-9/NF-kappaB signal. Brazilian Journal of Medical and Biological Research 49 (12): e5717.CrossRefPubMedPubMedCentral
35.
go back to reference Liu, Z., J. Zhang, G. Hong, J. Quan, L. Zhang, and M. Yu. 2016. Propofol inhibits growth and invasion of pancreatic cancer cells through regulation of the miR-21/Slug signaling pathway. American Journal of Translational Research 8 (10): 4120–4133.PubMedPubMedCentral Liu, Z., J. Zhang, G. Hong, J. Quan, L. Zhang, and M. Yu. 2016. Propofol inhibits growth and invasion of pancreatic cancer cells through regulation of the miR-21/Slug signaling pathway. American Journal of Translational Research 8 (10): 4120–4133.PubMedPubMedCentral
36.
go back to reference Wang, Z.T., H.Y. Gong, F. Zheng, D.J. Liu, and T.L. Dong. 2015. Propofol suppresses proliferation and invasion of pancreatic cancer cells by upregulating microRNA-133a expression. Genetics and Molecular Research 14 (3): 7529–7537.CrossRefPubMed Wang, Z.T., H.Y. Gong, F. Zheng, D.J. Liu, and T.L. Dong. 2015. Propofol suppresses proliferation and invasion of pancreatic cancer cells by upregulating microRNA-133a expression. Genetics and Molecular Research 14 (3): 7529–7537.CrossRefPubMed
37.
go back to reference Velly, L.J., B.A. Guillet, F.M. Masmejean, A.L. Nieoullon, N.J. Bruder, F.M. Gouin, et al. 2003. Neuroprotective effects of propofol in a model of ischemic cortical cell cultures: role of glutamate and its transporters. Anesthesiology 99 (2): 368–375.CrossRefPubMed Velly, L.J., B.A. Guillet, F.M. Masmejean, A.L. Nieoullon, N.J. Bruder, F.M. Gouin, et al. 2003. Neuroprotective effects of propofol in a model of ischemic cortical cell cultures: role of glutamate and its transporters. Anesthesiology 99 (2): 368–375.CrossRefPubMed
38.
go back to reference Bickler, P.E., D.E. Warren, J.P. Clark, P. Gabatto, M. Gregersen, and H. Brosnan. 2012. Anesthetic protection of neurons injured by hypothermia and rewarming: roles of intracellular Ca2+ and excitotoxicity. Anesthesiology 117 (2): 280–292.CrossRefPubMedPubMedCentral Bickler, P.E., D.E. Warren, J.P. Clark, P. Gabatto, M. Gregersen, and H. Brosnan. 2012. Anesthetic protection of neurons injured by hypothermia and rewarming: roles of intracellular Ca2+ and excitotoxicity. Anesthesiology 117 (2): 280–292.CrossRefPubMedPubMedCentral
Metadata
Title
Propofol Attenuates Inflammatory Response in LPS-Activated Microglia by Regulating the miR-155/SOCS1 Pathway
Authors
Xinxun Zheng
Hongbing Huang
Jianjun Liu
Minghua Li
Min Liu
Tao Luo
Publication date
01-02-2018
Publisher
Springer US
Published in
Inflammation / Issue 1/2018
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0658-6

Other articles of this Issue 1/2018

Inflammation 1/2018 Go to the issue