Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2015

Open Access 01-12-2015 | Research

The induction of neuronal death by up-regulated microglial cathepsin H in LPS-induced neuroinflammation

Authors: Kai Fan, Daobo Li, Yanli Zhang, Chao Han, Junjie Liang, Changyi Hou, Hongliang Xiao, Kazuhiro Ikenaka, Jianmei Ma

Published in: Journal of Neuroinflammation | Issue 1/2015

Login to get access

Abstract

Background

Neuroinflammation is a hallmark that leads to selective neuronal loss and/or dysfunction in neurodegenerative disorders. Microglia-derived lysosomal cathepsins are increasingly recognized as important inflammatory mediators to trigger signaling pathways that aggravate neuroinflammation. However, cathepsin H (Cat H), a cysteine protease, has been far less studied in neuroinflammation, compared to cathepsins B, D, L, and S. The expression patterns and functional roles of Cat H in the brain in neuroinflammation remain unknown.

Methods

C57BL/6J mice were intraperitoneally injected with either 0.9% saline or lipopolysaccharide (LPS, 5 mg/kg). Immunohistochemistry (IHC) and in situ hybridization (ISH) were used to analyze expression and localization of Cat H in the brain. Nitrite assay was used to examine microglial activation in vitro; ELISA was used to determine the release of Cat H and proinflammatory cytokines (TNF-α, IL-1β, IL-6, IFN-γ). Cat H activity was analyzed by cellular Cat H assay kit. Flow cytometry and in situ cell death detection were used to investigate neuronal death. Data were evaluated for statistical significance with one-way ANOVA and t test.

Results

Cat H mRNA was only present in perivascular microglia and non-parenchymal sites under normal conditions. After LPS injection, Cat H mRNA expression in activated microglia in different brain regions was increased. Twenty-four hours after LPS injection, Cat H mRNA expression was maximal in SNr; 72 h later, it peaked in cerebral cortex and hippocampus then decreased and maintained at a low level. The expression of Cat H protein exhibited the similar alterations after LPS injection. In vitro, inflammatory stimulation (LPS, TNF-α, IL-1β, IL-6, and IFN-γ) increased the release and activity of Cat H in microglia. Conversely, addition of Cat H to microglia promoted the production and release of NO, IL-1β, and IFN-γ which could be prevented by neutralizing antibody. Further, addition of Cat H to Neuro2a cells induced neuronal death.

Conclusions

Taken together, these data indicate that the up-regulated microglial Cat H expression, release, and activity in the brain lead to neuronal death in neuroinflammation. The functional link of Cat H with microglial activation might contribute to the initiation and maintenance of microglia-driven chronic neuroinflammation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Whitton PS. Neuroinflammation and the prospects for anti-inflammatory treatment of Parkinson’s disease. Curr Opin Investig Drugs. 2010;11:788–94.PubMed Whitton PS. Neuroinflammation and the prospects for anti-inflammatory treatment of Parkinson’s disease. Curr Opin Investig Drugs. 2010;11:788–94.PubMed
2.
go back to reference Herrera AJ, Castano A, Venero JL, Cano J, Machado A. The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol Dis. 2000;7:429–47.CrossRefPubMed Herrera AJ, Castano A, Venero JL, Cano J, Machado A. The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol Dis. 2000;7:429–47.CrossRefPubMed
3.
go back to reference Hensley K. Neuroinflammation in Alzheimer’s disease: mechanisms, pathologic consequences, and potential for therapeutic manipulation. J Alzheimers Dis. 2010;21:1–14.PubMedCentralPubMed Hensley K. Neuroinflammation in Alzheimer’s disease: mechanisms, pathologic consequences, and potential for therapeutic manipulation. J Alzheimers Dis. 2010;21:1–14.PubMedCentralPubMed
4.
go back to reference Wilms H, Zecca L, Rosenstiel P, Sievers J, Deuschl G, Lucius R. Inflammation in Parkinson’s diseases and other neurodegenerative diseases: cause and therapeutic implications. Curr Pharm Des. 2007;13:1925–8.CrossRefPubMed Wilms H, Zecca L, Rosenstiel P, Sievers J, Deuschl G, Lucius R. Inflammation in Parkinson’s diseases and other neurodegenerative diseases: cause and therapeutic implications. Curr Pharm Des. 2007;13:1925–8.CrossRefPubMed
6.
go back to reference Tufekci KU, Meuwissen R, Genc S, Genc K. Inflammation in Parkinson’s disease. Adv Protein Chem Struct Biol. 2012;88:69–132.CrossRefPubMed Tufekci KU, Meuwissen R, Genc S, Genc K. Inflammation in Parkinson’s disease. Adv Protein Chem Struct Biol. 2012;88:69–132.CrossRefPubMed
7.
go back to reference Weitz TM, Town T. Microglia in Alzheimer’s disease: it’s all about context. Int J Alzheimer’s Dis. 2012;2012:314185. Weitz TM, Town T. Microglia in Alzheimer’s disease: it’s all about context. Int J Alzheimer’s Dis. 2012;2012:314185.
8.
go back to reference Kim S, Ock J, Kim AK, Lee HW, Cho JY, Kim DR, et al. Neurotoxicity of microglial cathepsin D revealed by secretome analysis. Neurochem. 2007;103:2640–50. Kim S, Ock J, Kim AK, Lee HW, Cho JY, Kim DR, et al. Neurotoxicity of microglial cathepsin D revealed by secretome analysis. Neurochem. 2007;103:2640–50.
9.
go back to reference Zeng KW, Wang S, Dong X, Jiang Y, Tu PF. Sesquiterpene dimer (DSF-52) from Artemisia argyi inhibits microglia-mediated neuroinflammation via suppression of NF-κB, JNK/p38 MAPKs and Jak2/Stat3 signaling pathways. Phytomedicine. 2014;21:298–306.CrossRefPubMed Zeng KW, Wang S, Dong X, Jiang Y, Tu PF. Sesquiterpene dimer (DSF-52) from Artemisia argyi inhibits microglia-mediated neuroinflammation via suppression of NF-κB, JNK/p38 MAPKs and Jak2/Stat3 signaling pathways. Phytomedicine. 2014;21:298–306.CrossRefPubMed
10.
go back to reference Louboutin JP, Strayer DS. Relationship between the chemokine receptor CCR5 and microglia in neurological disorders: consequences of targeting CCR5 on neuroinflammation, neuronal death and regeneration in a model of epilepsy. CNS Neurol Disord Drug Targets. 2013;12:815–29.CrossRefPubMed Louboutin JP, Strayer DS. Relationship between the chemokine receptor CCR5 and microglia in neurological disorders: consequences of targeting CCR5 on neuroinflammation, neuronal death and regeneration in a model of epilepsy. CNS Neurol Disord Drug Targets. 2013;12:815–29.CrossRefPubMed
11.
go back to reference Samanani S, Mishra M, Silva C, Verhaeghe B, Wang J, Tong J, et al. Screening for inhibitors of microglia to reduce neuroinflammation. CNS Neurol Disord Drug Targets. 2013;12:741–9.CrossRefPubMed Samanani S, Mishra M, Silva C, Verhaeghe B, Wang J, Tong J, et al. Screening for inhibitors of microglia to reduce neuroinflammation. CNS Neurol Disord Drug Targets. 2013;12:741–9.CrossRefPubMed
12.
go back to reference Cai Z, Hussain MD, Yan LJ. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease. Int J Neurosci. 2014;124:307–21.CrossRefPubMed Cai Z, Hussain MD, Yan LJ. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease. Int J Neurosci. 2014;124:307–21.CrossRefPubMed
13.
go back to reference Graeber MB, Li W, Rodriguez ML. Role of microglia in CNS inflammation. FEBS Letters. 2011;585:3798–805.CrossRefPubMed Graeber MB, Li W, Rodriguez ML. Role of microglia in CNS inflammation. FEBS Letters. 2011;585:3798–805.CrossRefPubMed
14.
go back to reference Streit WJ, Conde JR, Fendrick SE, Flanary BE, Mariani CL. Role of microglia in the central nervous system’s immune response. Neurol Res. 2005;27:685–91.PubMed Streit WJ, Conde JR, Fendrick SE, Flanary BE, Mariani CL. Role of microglia in the central nervous system’s immune response. Neurol Res. 2005;27:685–91.PubMed
15.
go back to reference Jiao J, Xue B, Zhang L, Gong Y, Li K, Wang H, et al. Triptolide inhibits amyloid-beta1-42-induced TNF-alpha and IL-1beta production in cultured rat microglia. J Neuroimmunol. 2008;205:32–6.CrossRefPubMed Jiao J, Xue B, Zhang L, Gong Y, Li K, Wang H, et al. Triptolide inhibits amyloid-beta1-42-induced TNF-alpha and IL-1beta production in cultured rat microglia. J Neuroimmunol. 2008;205:32–6.CrossRefPubMed
16.
go back to reference Magni P, Ruscica M, Dozio E, Rizzi E, Beretta G, Maffei FR. Parthenolide inhibits the LPS-induced secretion of IL-6 and TNF-α and NF- ƙB nuclear translocation in BV-2 microglia. Phytother Res. 2012;26:1405–9.CrossRefPubMed Magni P, Ruscica M, Dozio E, Rizzi E, Beretta G, Maffei FR. Parthenolide inhibits the LPS-induced secretion of IL-6 and TNF-α and NF- ƙB nuclear translocation in BV-2 microglia. Phytother Res. 2012;26:1405–9.CrossRefPubMed
17.
go back to reference Smith JA, Das A, Ray SK, Banik NL. Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull. 2012;87:10–20.CrossRefPubMed Smith JA, Das A, Ray SK, Banik NL. Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull. 2012;87:10–20.CrossRefPubMed
18.
go back to reference Fan K, Wu X, Fan B, Li N, Lin Y, Yao Y, et al. Up-regulation of microglial cathepsin C expression and activity in lipopolysaccharide-induced neuroinflammation. J Neuroinflammation. 2012;9:96.CrossRefPubMedCentralPubMed Fan K, Wu X, Fan B, Li N, Lin Y, Yao Y, et al. Up-regulation of microglial cathepsin C expression and activity in lipopolysaccharide-induced neuroinflammation. J Neuroinflammation. 2012;9:96.CrossRefPubMedCentralPubMed
19.
go back to reference Lively S, Schlichter LC. The microglial activation state regulates migration and roles of matrix-dissolving enzymes for invasion. J Neuroinflammation. 2013;10:75.CrossRefPubMedCentralPubMed Lively S, Schlichter LC. The microglial activation state regulates migration and roles of matrix-dissolving enzymes for invasion. J Neuroinflammation. 2013;10:75.CrossRefPubMedCentralPubMed
20.
go back to reference Hafner A, Glavan G, Obermajer N, Živin M, Schliebs R, Kos J. Neuroprotective role of γ-enolase in microglia in a mouse model of Alzheimer’s disease is regulated by cathepsin X. Aging Cell. 2013;12:604–14.CrossRefPubMed Hafner A, Glavan G, Obermajer N, Živin M, Schliebs R, Kos J. Neuroprotective role of γ-enolase in microglia in a mouse model of Alzheimer’s disease is regulated by cathepsin X. Aging Cell. 2013;12:604–14.CrossRefPubMed
21.
go back to reference Clark AK, Malcangio M. Microglial signalling mechanisms: cathepsin S and fractalkine. Exp Neurol. 2012;234:283–92.CrossRefPubMed Clark AK, Malcangio M. Microglial signalling mechanisms: cathepsin S and fractalkine. Exp Neurol. 2012;234:283–92.CrossRefPubMed
22.
go back to reference Terada K, Yamada J, Hayashi Y, Wu Z, Uchiyama Y, Peters C, et al. Involvement of cathepsin B in the processing and secretion of interleukin-1beta in chromogranin A-stimulated microglia. Glia. 2010;58:114–24.CrossRefPubMed Terada K, Yamada J, Hayashi Y, Wu Z, Uchiyama Y, Peters C, et al. Involvement of cathepsin B in the processing and secretion of interleukin-1beta in chromogranin A-stimulated microglia. Glia. 2010;58:114–24.CrossRefPubMed
23.
go back to reference Zhang L, Sheng R, Qin Z. The lysosome and neurodegenerative diseases. Acta Biochim Biophys Sin (Shanghai). 2009;41:437–45.CrossRefPubMed Zhang L, Sheng R, Qin Z. The lysosome and neurodegenerative diseases. Acta Biochim Biophys Sin (Shanghai). 2009;41:437–45.CrossRefPubMed
24.
go back to reference Kingham PJ, Pocock JM. Microglial secreted cathepsin B induces neuronal apoptosis. J Neurochem. 2001;76:1475–84.CrossRefPubMed Kingham PJ, Pocock JM. Microglial secreted cathepsin B induces neuronal apoptosis. J Neurochem. 2001;76:1475–84.CrossRefPubMed
25.
go back to reference Sun L, Wu Z, Baba M, Peters C, Uchiyama Y, Nakanishi H. Cathepsin B-dependent motor neuron death after nerve injury in the adult mouse. Biochem Biophys Res Commun. 2010;399:391–5.CrossRefPubMed Sun L, Wu Z, Baba M, Peters C, Uchiyama Y, Nakanishi H. Cathepsin B-dependent motor neuron death after nerve injury in the adult mouse. Biochem Biophys Res Commun. 2010;399:391–5.CrossRefPubMed
26.
go back to reference Shevtsova Z, Garrido M, Weishaupt J, Saftig P, Bähr M, Lühder F, et al. CNS-expressed cathepsin D prevents lymphopenia in a murine model of congenital neuronal ceroid lipofuscinosis. Am J Pathol. 2010;177:271–9.CrossRefPubMedCentralPubMed Shevtsova Z, Garrido M, Weishaupt J, Saftig P, Bähr M, Lühder F, et al. CNS-expressed cathepsin D prevents lymphopenia in a murine model of congenital neuronal ceroid lipofuscinosis. Am J Pathol. 2010;177:271–9.CrossRefPubMedCentralPubMed
27.
go back to reference Yoshiyama Y, Arai K, Oki T, Hattori T. Expression of invariant chain and pro-cathepsin L in Alzheimer’s brain. Neurosci Lett. 2000;290:125–8.CrossRefPubMed Yoshiyama Y, Arai K, Oki T, Hattori T. Expression of invariant chain and pro-cathepsin L in Alzheimer’s brain. Neurosci Lett. 2000;290:125–8.CrossRefPubMed
28.
go back to reference Lemere CA, Munger JS, Shi GP, Natkin L, Haass C, Chapman HA, et al. The lysosomal cysteine protease, cathepsin S, is increased in Alzheimer’s disease and Down syndrome brain. An immunocytochemical study. Am J Pathol. 1995;146:848–60.PubMedCentralPubMed Lemere CA, Munger JS, Shi GP, Natkin L, Haass C, Chapman HA, et al. The lysosomal cysteine protease, cathepsin S, is increased in Alzheimer’s disease and Down syndrome brain. An immunocytochemical study. Am J Pathol. 1995;146:848–60.PubMedCentralPubMed
29.
go back to reference Mantle D, Falkous G, Ishiura S, Perry RH, Perry EK. Comparison of Cathepsin protease activities in brain tissue from normal cases and cases with Alzheimer’s disease, Lewy body dementia, Parkinson’s disease and Huntington’s disease. J Neurol Sci. 1995;131:65–70.CrossRefPubMed Mantle D, Falkous G, Ishiura S, Perry RH, Perry EK. Comparison of Cathepsin protease activities in brain tissue from normal cases and cases with Alzheimer’s disease, Lewy body dementia, Parkinson’s disease and Huntington’s disease. J Neurol Sci. 1995;131:65–70.CrossRefPubMed
30.
go back to reference Chapman HA, Riese RJ, Shi GP. Emerging roles for cysteine proteases in human biology. Annu Rev Physiol. 1997;59:63–88.CrossRefPubMed Chapman HA, Riese RJ, Shi GP. Emerging roles for cysteine proteases in human biology. Annu Rev Physiol. 1997;59:63–88.CrossRefPubMed
31.
go back to reference Buhling F, Waldburg N, Reisenauer A, Heimburg A, Golpon H, Welte T. Lysosomal cysteine proteases in the lung: role in protein processing and immunoregulation. Eur Respir J. 2004;23:620–8.CrossRefPubMed Buhling F, Waldburg N, Reisenauer A, Heimburg A, Golpon H, Welte T. Lysosomal cysteine proteases in the lung: role in protein processing and immunoregulation. Eur Respir J. 2004;23:620–8.CrossRefPubMed
32.
go back to reference Kominami E, Tsukahara T, Hara K, Katunuma N. Biosyntheses and processing of lysosomal cysteine proteinases in rat macrophages. FEB. 1988;231:225–8.CrossRef Kominami E, Tsukahara T, Hara K, Katunuma N. Biosyntheses and processing of lysosomal cysteine proteinases in rat macrophages. FEB. 1988;231:225–8.CrossRef
33.
go back to reference Guncar G, Podobnik M, Pungercar J, Strukelj B, Turk V, Turk D. Crystal structure of porcine cathepsin H determined at 2.1 A resolution: location of the mini-chain C-terminal carboxyl group defines cathepsin H aminopeptidase function. Structure. 1998;6:51–61.CrossRefPubMed Guncar G, Podobnik M, Pungercar J, Strukelj B, Turk V, Turk D. Crystal structure of porcine cathepsin H determined at 2.1 A resolution: location of the mini-chain C-terminal carboxyl group defines cathepsin H aminopeptidase function. Structure. 1998;6:51–61.CrossRefPubMed
34.
go back to reference Vasiljeva O, Dolinar M, Turk V, Turk B. Recombinant human cathepsin H lacking the mini chain is an endopeptidase. Biochemistry. 2003;42:13522–8.CrossRefPubMed Vasiljeva O, Dolinar M, Turk V, Turk B. Recombinant human cathepsin H lacking the mini chain is an endopeptidase. Biochemistry. 2003;42:13522–8.CrossRefPubMed
35.
go back to reference Dodt J, Reichwein J. Human: cathepsin H: deletion of the mini-chain switches substrate specificity from aminopeptidase to endopeptidase. Biol Chem. 2003;384:1327–32.CrossRefPubMed Dodt J, Reichwein J. Human: cathepsin H: deletion of the mini-chain switches substrate specificity from aminopeptidase to endopeptidase. Biol Chem. 2003;384:1327–32.CrossRefPubMed
36.
go back to reference Su L, Jia Y, Wang X, Zhang L, Fang H, Xu W. Discovery of a synthetic aminopeptidase N inhibitor LB-4b as a potential anticancer agent. Bioorg Med Chem Lett. 2013;23:2512–7.CrossRefPubMed Su L, Jia Y, Wang X, Zhang L, Fang H, Xu W. Discovery of a synthetic aminopeptidase N inhibitor LB-4b as a potential anticancer agent. Bioorg Med Chem Lett. 2013;23:2512–7.CrossRefPubMed
37.
go back to reference Cifaldi L, Romania P, Lorenzi S, Locatelli F, Fruci D. Role of endoplasmic reticulum aminopeptidases in health and disease: from infection to cancer. Int J Mol Sci. 2012;13:8338–52.CrossRefPubMedCentralPubMed Cifaldi L, Romania P, Lorenzi S, Locatelli F, Fruci D. Role of endoplasmic reticulum aminopeptidases in health and disease: from infection to cancer. Int J Mol Sci. 2012;13:8338–52.CrossRefPubMedCentralPubMed
38.
go back to reference Evnouchidou I, Birtley J, Seregin S, Papakyriakou A, Zervoudi E, Samiotaki M, et al. A common single nucleotide polymorphism in endoplasmic reticulum aminopeptidase 2 induces a specificity switch that leads to altered antigen processing. J Immunol. 2012;189:2383–92.CrossRefPubMedCentralPubMed Evnouchidou I, Birtley J, Seregin S, Papakyriakou A, Zervoudi E, Samiotaki M, et al. A common single nucleotide polymorphism in endoplasmic reticulum aminopeptidase 2 induces a specificity switch that leads to altered antigen processing. J Immunol. 2012;189:2383–92.CrossRefPubMedCentralPubMed
39.
go back to reference Gocheva V, Chen X, Peters C, Reinheckel T, Joyce JA. Deletion of cathepsin H perturbs angiogenic switching, vascularization and growth of tumors in a mouse model of pancreatic islet cell cancer. Biol Chem. 2010;391:937–45.CrossRefPubMedCentralPubMed Gocheva V, Chen X, Peters C, Reinheckel T, Joyce JA. Deletion of cathepsin H perturbs angiogenic switching, vascularization and growth of tumors in a mouse model of pancreatic islet cell cancer. Biol Chem. 2010;391:937–45.CrossRefPubMedCentralPubMed
40.
go back to reference Perez HD, Ohtani O, Banda D, Ong R, Fukuyama K, Goldstein IM. Generation of biologically active, complement-(C5) derived peptides by cathepsin H. J Immunol. 1983;131:397–402.PubMed Perez HD, Ohtani O, Banda D, Ong R, Fukuyama K, Goldstein IM. Generation of biologically active, complement-(C5) derived peptides by cathepsin H. J Immunol. 1983;131:397–402.PubMed
41.
go back to reference Perdereau C, Godat E, Maurel MC, Hazouard E, Diot E, Lalmanach G. Cysteine cathepsins in human silicotic bronchoalveolar lavage fluids. Biochim Biophys Acta. 2006;1762:351–6.CrossRefPubMed Perdereau C, Godat E, Maurel MC, Hazouard E, Diot E, Lalmanach G. Cysteine cathepsins in human silicotic bronchoalveolar lavage fluids. Biochim Biophys Acta. 2006;1762:351–6.CrossRefPubMed
42.
go back to reference Serveau-Avesque C, Martino MF, Hervé-Grépinet V, Hazouard E, Gauthier F, Diot E, et al. Active cathepsins B, H, K, L and S in human inflammatory bronchoalveolar lavage fluids. Biol Cell. 2006;98:15–22.CrossRefPubMed Serveau-Avesque C, Martino MF, Hervé-Grépinet V, Hazouard E, Gauthier F, Diot E, et al. Active cathepsins B, H, K, L and S in human inflammatory bronchoalveolar lavage fluids. Biol Cell. 2006;98:15–22.CrossRefPubMed
43.
go back to reference Shikimi T, Yamamoto D, Handa M. Pancreatic lysosomal thiol proteinases and inhibitors in acute pancreatitis induced in rats. J Pharmacobiodyn. 1987;10:750–7.CrossRefPubMed Shikimi T, Yamamoto D, Handa M. Pancreatic lysosomal thiol proteinases and inhibitors in acute pancreatitis induced in rats. J Pharmacobiodyn. 1987;10:750–7.CrossRefPubMed
44.
go back to reference Kumamoto T, Ueyama H, Sugihara R, Kominami E, Goll DE, Tsuda T. Calpain and cathepsins in the skeletal muscle of inflammatory myopathies. Eur Neurol. 1997;37:176–81.CrossRefPubMed Kumamoto T, Ueyama H, Sugihara R, Kominami E, Goll DE, Tsuda T. Calpain and cathepsins in the skeletal muscle of inflammatory myopathies. Eur Neurol. 1997;37:176–81.CrossRefPubMed
45.
go back to reference Han SR, Momeni A, Strach K, Suriyaphol P, Fenske D, Paprotka K, et al. Enzymatically modified LDL induces cathepsin H in human monocytes potential relevance in early atherogenesis. Arterioscler Thromb Vasc Biol. 2003;23:661–7.CrossRefPubMed Han SR, Momeni A, Strach K, Suriyaphol P, Fenske D, Paprotka K, et al. Enzymatically modified LDL induces cathepsin H in human monocytes potential relevance in early atherogenesis. Arterioscler Thromb Vasc Biol. 2003;23:661–7.CrossRefPubMed
46.
go back to reference Qin LY, Wu XF, Block ML, Liu YX, Breese GR, Hong JS, et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia. 2007;55:453–62.CrossRefPubMedCentralPubMed Qin LY, Wu XF, Block ML, Liu YX, Breese GR, Hong JS, et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia. 2007;55:453–62.CrossRefPubMedCentralPubMed
47.
go back to reference Qin LY, Liu YX, Hong JS, Crews FT. NADPH oxidase and aging drive microglial activation, oxidative stress and dopaminergic neurodegeneration following systemic LPS administration. Glia. 2013;61:855–68.CrossRefPubMedCentralPubMed Qin LY, Liu YX, Hong JS, Crews FT. NADPH oxidase and aging drive microglial activation, oxidative stress and dopaminergic neurodegeneration following systemic LPS administration. Glia. 2013;61:855–68.CrossRefPubMedCentralPubMed
48.
go back to reference Ma J, Tanaka KF, Yamada G, Ikenaka K. Induced expression of cathepsins and cystatin C in a murine model of demyelination. Neurochem Res. 2007;32:311–20.CrossRefPubMed Ma J, Tanaka KF, Yamada G, Ikenaka K. Induced expression of cathepsins and cystatin C in a murine model of demyelination. Neurochem Res. 2007;32:311–20.CrossRefPubMed
49.
go back to reference Ma J, Tanaka K, Shimizu T, Bernard Claude CA, Kakita A, Takahashi H, et al. Microglial cystatin F expression is a sensitive indicator for ongoing demyelination with concurrent remyelination. J Neurosci Res. 2011;89:639–49.CrossRefPubMed Ma J, Tanaka K, Shimizu T, Bernard Claude CA, Kakita A, Takahashi H, et al. Microglial cystatin F expression is a sensitive indicator for ongoing demyelination with concurrent remyelination. J Neurosci Res. 2011;89:639–49.CrossRefPubMed
50.
go back to reference Kominami E, Tsukahara T, Bando Y, Katunuma N. Distribution of cathepsins B and H in rat tissues and peripheral blood cells. J Biochem. 1985;98:87–93.PubMed Kominami E, Tsukahara T, Bando Y, Katunuma N. Distribution of cathepsins B and H in rat tissues and peripheral blood cells. J Biochem. 1985;98:87–93.PubMed
51.
go back to reference Bernstein HG, Kirschke H, Wiederanders B, Müller A, Rinne A, Dorn A. Cathepsin D, B, and H in rat brain as demonstrated by immunohistochemistry. Acta Histochem. 1987;82:25–7.CrossRefPubMed Bernstein HG, Kirschke H, Wiederanders B, Müller A, Rinne A, Dorn A. Cathepsin D, B, and H in rat brain as demonstrated by immunohistochemistry. Acta Histochem. 1987;82:25–7.CrossRefPubMed
52.
go back to reference Taniguchi K, Tomita M, Kominami E, Uchiyama Y. Cysteine proteinases in rat dorsal root ganglion and spinal cord, with special reference to the co-localization of these enzymes with calcitonin gene-related peptide in lysosomes. Brain Res. 1993;601:143–53.CrossRefPubMed Taniguchi K, Tomita M, Kominami E, Uchiyama Y. Cysteine proteinases in rat dorsal root ganglion and spinal cord, with special reference to the co-localization of these enzymes with calcitonin gene-related peptide in lysosomes. Brain Res. 1993;601:143–53.CrossRefPubMed
53.
go back to reference Lafuse WP, Brown D, Castle L, Zwilling BS. IFN-gamma increases cathepsin H mRNA levels in mouse macrophages. J Leukoc Biol. 1995;57:663–9.PubMed Lafuse WP, Brown D, Castle L, Zwilling BS. IFN-gamma increases cathepsin H mRNA levels in mouse macrophages. J Leukoc Biol. 1995;57:663–9.PubMed
54.
go back to reference Guha S, Padh H. Cathepsins: fundamental effectors of endolysosomal proteolysis. Indian J Biochem Biophys. 2008;45:75–90.PubMed Guha S, Padh H. Cathepsins: fundamental effectors of endolysosomal proteolysis. Indian J Biochem Biophys. 2008;45:75–90.PubMed
56.
go back to reference Cimerman N, Mesko Brguljan P, Krasovec M, Suskovic S, Kos J. Serum concentration and circadian profiles of cathepsins B, H and L, and their inhibitors, stefins A and B, in asthma. Clin Chim Acta. 2001;310:113–22.CrossRefPubMed Cimerman N, Mesko Brguljan P, Krasovec M, Suskovic S, Kos J. Serum concentration and circadian profiles of cathepsins B, H and L, and their inhibitors, stefins A and B, in asthma. Clin Chim Acta. 2001;310:113–22.CrossRefPubMed
57.
go back to reference László A, Sohár I, Sági I, Kovács J, Kovács A. Activity of cathepsin H, B and metalloproteinase in the serum of patients with acute myocardial infarction. Clin Chim Acta. 1992;210:233–5.CrossRefPubMed László A, Sohár I, Sági I, Kovács J, Kovács A. Activity of cathepsin H, B and metalloproteinase in the serum of patients with acute myocardial infarction. Clin Chim Acta. 1992;210:233–5.CrossRefPubMed
58.
go back to reference Yamashima T, Kohda Y, Tsuchiya K, Ueno T, Yamashita J, Yoshioka T, et al. Inhibition of ischaemic hippocampal neuronal death in primates with cathepsin B inhibitor CA-074: a novel strategy for neuroprotection based on ‘calpain-cathepsin hypothesis. Eur J Neurosci. 1998;10:1723–33.CrossRefPubMed Yamashima T, Kohda Y, Tsuchiya K, Ueno T, Yamashita J, Yoshioka T, et al. Inhibition of ischaemic hippocampal neuronal death in primates with cathepsin B inhibitor CA-074: a novel strategy for neuroprotection based on ‘calpain-cathepsin hypothesis. Eur J Neurosci. 1998;10:1723–33.CrossRefPubMed
59.
go back to reference Tsuchiya K, Kohda Y, Yoshida M, Zhao L, Ueno T, Yamashita J, et al. Postictal blockade of ischemic hippocampal neuronal death in primates using selective cathepsin inhibitors. Exp Neurol. 1999;155:187–94.CrossRefPubMed Tsuchiya K, Kohda Y, Yoshida M, Zhao L, Ueno T, Yamashita J, et al. Postictal blockade of ischemic hippocampal neuronal death in primates using selective cathepsin inhibitors. Exp Neurol. 1999;155:187–94.CrossRefPubMed
60.
go back to reference Lieuallen K, Pennacchio LA, Park M, Myers RM, Lennon GG. Cystatin B-deficient mice have increased expression of apoptosis and glial activation genes. Hum Mol Genet. 2001;10:1867–71.CrossRefPubMed Lieuallen K, Pennacchio LA, Park M, Myers RM, Lennon GG. Cystatin B-deficient mice have increased expression of apoptosis and glial activation genes. Hum Mol Genet. 2001;10:1867–71.CrossRefPubMed
61.
go back to reference Houseweart MK, Vilaythong A, Yin XM, Turk B, Noebels JL, Myers RM. Apoptosis caused by cathepsins does not require Bid signaling in an in vivo model of progressive myoclonus epilepsy (EPM1). Cell Death Differ. 2003;10:1329–35.CrossRefPubMed Houseweart MK, Vilaythong A, Yin XM, Turk B, Noebels JL, Myers RM. Apoptosis caused by cathepsins does not require Bid signaling in an in vivo model of progressive myoclonus epilepsy (EPM1). Cell Death Differ. 2003;10:1329–35.CrossRefPubMed
62.
go back to reference Leist M, Jäättelä M. Triggering of apoptosis by cathepsins. Cell Death Diff. 2001;8:324–6.CrossRef Leist M, Jäättelä M. Triggering of apoptosis by cathepsins. Cell Death Diff. 2001;8:324–6.CrossRef
64.
go back to reference Olajide OA, Kumar A, Velagapudi R, Okorji UP, Fiebich BL. Punicalagin inhibits neuroinflammation in LPS-activated rat primary microglia. Mol Nutr Food Res. 2014;58:1843–51.CrossRefPubMed Olajide OA, Kumar A, Velagapudi R, Okorji UP, Fiebich BL. Punicalagin inhibits neuroinflammation in LPS-activated rat primary microglia. Mol Nutr Food Res. 2014;58:1843–51.CrossRefPubMed
65.
go back to reference Hashioka S, Klegeris A, Schwab C, McGeer PL. Interferon-gamma-dependent cytotoxic activation of human astrocytes and astrocytoma cells. Neurobiol Aging. 2009;30:1924–35.CrossRefPubMed Hashioka S, Klegeris A, Schwab C, McGeer PL. Interferon-gamma-dependent cytotoxic activation of human astrocytes and astrocytoma cells. Neurobiol Aging. 2009;30:1924–35.CrossRefPubMed
66.
go back to reference Schweiger A, Staib A, Werle B, Krasovec M, Lah TT, Ebert W, et al. Cysteine proteinase cathepsin H in tumours and sera of lung cancer patients: relation to prognosis and cigarette smoking. Br J Cancer. 2000;82:782–8.CrossRefPubMedCentralPubMed Schweiger A, Staib A, Werle B, Krasovec M, Lah TT, Ebert W, et al. Cysteine proteinase cathepsin H in tumours and sera of lung cancer patients: relation to prognosis and cigarette smoking. Br J Cancer. 2000;82:782–8.CrossRefPubMedCentralPubMed
67.
go back to reference Waghray A, Keppler D, Sloane BF, Schuger L, Chen YQ. Analysis of a truncated form of cathepsin H in human prostate tumor cells. J Biol Chem. 2002;277:11533–8.CrossRefPubMed Waghray A, Keppler D, Sloane BF, Schuger L, Chen YQ. Analysis of a truncated form of cathepsin H in human prostate tumor cells. J Biol Chem. 2002;277:11533–8.CrossRefPubMed
68.
go back to reference del Re EC, Shuja S, Cai J, Murnane MJ. Alterations in cathepsin H activity and protein patterns in human colorectal carcinomas. Br J Cancer. 2000;82:1317–26.CrossRefPubMedCentralPubMed del Re EC, Shuja S, Cai J, Murnane MJ. Alterations in cathepsin H activity and protein patterns in human colorectal carcinomas. Br J Cancer. 2000;82:1317–26.CrossRefPubMedCentralPubMed
69.
go back to reference Nitatori T, Sato N, Kominami E, Uchiyama Y. Participation of cathepsins B, H, and L in perikaryal condensation of CA1 pyramidal neurons undergoing apoptosis after brief ischemia. Adv Exp Med Biol. 1996;389:177–85.CrossRefPubMed Nitatori T, Sato N, Kominami E, Uchiyama Y. Participation of cathepsins B, H, and L in perikaryal condensation of CA1 pyramidal neurons undergoing apoptosis after brief ischemia. Adv Exp Med Biol. 1996;389:177–85.CrossRefPubMed
70.
go back to reference D’Angelo ME, Bird PI, Peters C, Reinheckel T, Trapani JA, Sutton VR. Cathepsin H is an additional convertase of pro-granzyme B. J Biol Chem. 2010;285:20514–9.CrossRefPubMedCentralPubMed D’Angelo ME, Bird PI, Peters C, Reinheckel T, Trapani JA, Sutton VR. Cathepsin H is an additional convertase of pro-granzyme B. J Biol Chem. 2010;285:20514–9.CrossRefPubMedCentralPubMed
71.
go back to reference Boivin WA, Cooper DM, Hiebert Paul R, Granville DJ. Intracellular versus extracellular granzyme B in immunity and disease challenging the dogma. Laboratory Investigation. 2009;89:1195–220.CrossRefPubMed Boivin WA, Cooper DM, Hiebert Paul R, Granville DJ. Intracellular versus extracellular granzyme B in immunity and disease challenging the dogma. Laboratory Investigation. 2009;89:1195–220.CrossRefPubMed
Metadata
Title
The induction of neuronal death by up-regulated microglial cathepsin H in LPS-induced neuroinflammation
Authors
Kai Fan
Daobo Li
Yanli Zhang
Chao Han
Junjie Liang
Changyi Hou
Hongliang Xiao
Kazuhiro Ikenaka
Jianmei Ma
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2015
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-015-0268-x

Other articles of this Issue 1/2015

Journal of Neuroinflammation 1/2015 Go to the issue