Skip to main content
Top
Published in: Inflammation 6/2017

01-12-2017 | ORIGINAL ARTICLE

Biomechanical Stretch Induces Inflammation, Proliferation, and Migration by Activating NFAT5 in Arterial Smooth Muscle Cells

Authors: Wei Cao, Donghui Zhang, Qiannan Li, Yue Liu, Shenhong Jing, Jinjin Cui, Wei Xu, Shufeng Li, Jingjin Liu, Bo Yu

Published in: Inflammation | Issue 6/2017

Login to get access

Abstract

The increasing wall stress as is elicited by arterial hypertension promotes their reorganization in the vessel wall which may lead to arterial stiffening and contractile dysfunction. The nuclear factor of activated T cells 5 (NFAT5) pathway plays a role in regulating growth and differentiation in various cell types. We investigated whether the NFAT5 pathway was involved in the regulation of biomechanical stretch-induced human arterial smooth muscle cell (HUASMC) proliferation, inflammation, and migration. Herein, we showed that stretch promoted the expression of NFAT5 in human arterial smooth muscle cells and regulated through activation of c-Jun N-terminal kinase under these conditions. This may contribute to an improved activity of HUASMCs and thus promote reorganization in vascular remodeling processes such as hypertension-induced arterial stiffening and contractile dysfunction.
Literature
1.
go back to reference Olivetti, G., M. Melissari, G. Marchetti, and P. Anversa. 1982. Quantitative structural changes of the rat thoracic aorta in early spontaneous hypertension. Tissue composition, and hypertrophy and hyperplasia of smooth muscle cells. Circulation Research 51 (1): 19–26.CrossRefPubMed Olivetti, G., M. Melissari, G. Marchetti, and P. Anversa. 1982. Quantitative structural changes of the rat thoracic aorta in early spontaneous hypertension. Tissue composition, and hypertrophy and hyperplasia of smooth muscle cells. Circulation Research 51 (1): 19–26.CrossRefPubMed
2.
go back to reference Feldner, A., H. Otto, S. Rewerk, M. Hecker, and T. Korff. 2011. Experimental hypertension triggers varicosis-like maladaptive venous remodeling through activator protein-1. The FASEB Journal 25 (10): 3613–3621.CrossRefPubMed Feldner, A., H. Otto, S. Rewerk, M. Hecker, and T. Korff. 2011. Experimental hypertension triggers varicosis-like maladaptive venous remodeling through activator protein-1. The FASEB Journal 25 (10): 3613–3621.CrossRefPubMed
3.
go back to reference Pfisterer, L., A. Feldner, M. Hecker, and T. Korff. 2012. Hypertension impairs myocardin function: a novel mechanism facilitating arterial remodelling. Cardiovascular Research 96 (1): 120–129.CrossRefPubMed Pfisterer, L., A. Feldner, M. Hecker, and T. Korff. 2012. Hypertension impairs myocardin function: a novel mechanism facilitating arterial remodelling. Cardiovascular Research 96 (1): 120–129.CrossRefPubMed
4.
go back to reference Nordström, I., K. Dreja, U. Malmqvist, and P. Hellstrand. 2000. Stretch-dependent modulation of contractility and growth in smooth muscle of rat portal vein. Circulation Research 87 (3): 228–234.CrossRefPubMed Nordström, I., K. Dreja, U. Malmqvist, and P. Hellstrand. 2000. Stretch-dependent modulation of contractility and growth in smooth muscle of rat portal vein. Circulation Research 87 (3): 228–234.CrossRefPubMed
5.
go back to reference Lee, Samuel, and Richard T. Lee. 2010. Mechanical stretch and intimal hyperplasia: the missing link?[J]. Arteriosclerosis Thrombosis & Vascular Biology 30 (3): 459–460. Lee, Samuel, and Richard T. Lee. 2010. Mechanical stretch and intimal hyperplasia: the missing link?[J]. Arteriosclerosis Thrombosis & Vascular Biology 30 (3): 459–460.
6.
go back to reference Li, S., D.Z. Wang, Z. Wang, J.A. Richardson, and E.N. Olson. 2003. The serum response factor coactivator myocardin is required for vascular smooth muscle development. Proceedings of the National Academy of Sciences 100 (16): 9366–9370.CrossRef Li, S., D.Z. Wang, Z. Wang, J.A. Richardson, and E.N. Olson. 2003. The serum response factor coactivator myocardin is required for vascular smooth muscle development. Proceedings of the National Academy of Sciences 100 (16): 9366–9370.CrossRef
7.
go back to reference Halterman, J.A., H.M. Kwon, and B.R. Wamhoff. 2012. Tonicity-independent regulation of the osmosensitive transcription factor TonEBP (NFAT5). American Journal of Physiology-Cell Physiology 302 (1): C1–C8.CrossRefPubMed Halterman, J.A., H.M. Kwon, and B.R. Wamhoff. 2012. Tonicity-independent regulation of the osmosensitive transcription factor TonEBP (NFAT5). American Journal of Physiology-Cell Physiology 302 (1): C1–C8.CrossRefPubMed
8.
go back to reference Ho, S.N. 2003. The role of NFAT5/TonEBP in establishing an optimal intracellular environment. Archives of Biochemistry and Biophysics 413 (2): 151–157.CrossRefPubMed Ho, S.N. 2003. The role of NFAT5/TonEBP in establishing an optimal intracellular environment. Archives of Biochemistry and Biophysics 413 (2): 151–157.CrossRefPubMed
9.
go back to reference Woo, S., S. Lee, and M.H. Kwon. 2002. TonEBP transcriptional activator in the cellular response to increased osmolality. Pflügers Archiv European Journal of Physiology 444 (5): 579–585.CrossRefPubMed Woo, S., S. Lee, and M.H. Kwon. 2002. TonEBP transcriptional activator in the cellular response to increased osmolality. Pflügers Archiv European Journal of Physiology 444 (5): 579–585.CrossRefPubMed
10.
go back to reference Jauliac, S., C. López-Rodriguez, L.M. Shaw, L.F. Brown, A. Rao, and A. Toker. 2002. The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nature Cell Biology 4 (7): 540–544.CrossRefPubMed Jauliac, S., C. López-Rodriguez, L.M. Shaw, L.F. Brown, A. Rao, and A. Toker. 2002. The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nature Cell Biology 4 (7): 540–544.CrossRefPubMed
11.
go back to reference O'Connor, R.S., S.T. Mills, K.A. Jones, S.N. Ho, and G.K. Pavlath. 2007. A combinatorial role for NFAT5 in both myoblast migration and differentiation during skeletal muscle myogenesis. Journal of Cell Science 120 (1): 149–159.CrossRefPubMed O'Connor, R.S., S.T. Mills, K.A. Jones, S.N. Ho, and G.K. Pavlath. 2007. A combinatorial role for NFAT5 in both myoblast migration and differentiation during skeletal muscle myogenesis. Journal of Cell Science 120 (1): 149–159.CrossRefPubMed
12.
go back to reference Go, W.Y., X. Liu, M.A. Roti, F. Liu, and S.N. Ho. 2004. NFAT5/TonEBP mutant mice define osmotic stress as a critical feature of the lymphoid microenvironment. Proceedings of the National Academy of Sciences of the United States of America 101 (29): 10673–10678.CrossRefPubMedPubMedCentral Go, W.Y., X. Liu, M.A. Roti, F. Liu, and S.N. Ho. 2004. NFAT5/TonEBP mutant mice define osmotic stress as a critical feature of the lymphoid microenvironment. Proceedings of the National Academy of Sciences of the United States of America 101 (29): 10673–10678.CrossRefPubMedPubMedCentral
13.
go back to reference Halterman, J.A., H.M. Kwon, R. Zargham, P.D. Bortz, and B.R. Wamhoff. 2011. Nuclear factor of activated T cells 5 regulates vascular smooth muscle cell phenotypic modulation. Arteriosclerosis, Thrombosis, and Vascular Biology 31 (10): 2287–2296.CrossRefPubMedPubMedCentral Halterman, J.A., H.M. Kwon, R. Zargham, P.D. Bortz, and B.R. Wamhoff. 2011. Nuclear factor of activated T cells 5 regulates vascular smooth muscle cell phenotypic modulation. Arteriosclerosis, Thrombosis, and Vascular Biology 31 (10): 2287–2296.CrossRefPubMedPubMedCentral
14.
go back to reference Yoon, H.J., S. You, S.A. Yoo, N.H. Kim, H.M. Kwon, C.H. Yoon, C.S. Cho, D. Hwang, and W.U. Kim. 2011. NF-AT5 is a critical regulator of inflammatory arthritis. Arthritis & Rheumatology 63 (7): 1843–1852.CrossRef Yoon, H.J., S. You, S.A. Yoo, N.H. Kim, H.M. Kwon, C.H. Yoon, C.S. Cho, D. Hwang, and W.U. Kim. 2011. NF-AT5 is a critical regulator of inflammatory arthritis. Arthritis & Rheumatology 63 (7): 1843–1852.CrossRef
15.
go back to reference Machnik, A., W. Neuhofer, J. Jantsch, A. Dahlmann, T. Tammela, K. Machura, J.K. Park, F.X. Beck, D.N. Müller, W. Derer, and J. Goss. 2009. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nature Medicine 15 (5): 545–552.CrossRefPubMed Machnik, A., W. Neuhofer, J. Jantsch, A. Dahlmann, T. Tammela, K. Machura, J.K. Park, F.X. Beck, D.N. Müller, W. Derer, and J. Goss. 2009. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nature Medicine 15 (5): 545–552.CrossRefPubMed
16.
go back to reference Roth, I., V. Leroy, H.M. Kwon, P.Y. Martin, E. Féraille, and U. Hasler. 2010. Osmoprotective transcription factor NFAT5/TonEBP modulates nuclear factor-κB activity. Molecular Biology of the Cell 21 (19): 3459–3474.CrossRefPubMedPubMedCentral Roth, I., V. Leroy, H.M. Kwon, P.Y. Martin, E. Féraille, and U. Hasler. 2010. Osmoprotective transcription factor NFAT5/TonEBP modulates nuclear factor-κB activity. Molecular Biology of the Cell 21 (19): 3459–3474.CrossRefPubMedPubMedCentral
17.
go back to reference Buxadé, M., G. Lunazzi, J. Minguillón, S. Iborra, R. Berga-Bolaños, M. del Val, J. Aramburu, and C. López-Rodríguez. 2012. Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5. Journal of Experimental Medicine 209 (2): 379–393. Buxadé, M., G. Lunazzi, J. Minguillón, S. Iborra, R. Berga-Bolaños, M. del Val, J. Aramburu, and C. López-Rodríguez. 2012. Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5. Journal of Experimental Medicine 209 (2): 379–393.
18.
go back to reference Haudenschild, C.C., J.O. Grunwald, and A.V. Chobanian. 1985. Effects of hypertension on migration and proliferation of smooth muscle in culture. Hypertension 7 (3 Pt 2): I101.CrossRefPubMed Haudenschild, C.C., J.O. Grunwald, and A.V. Chobanian. 1985. Effects of hypertension on migration and proliferation of smooth muscle in culture. Hypertension 7 (3 Pt 2): I101.CrossRefPubMed
19.
go back to reference Intengan, H.D., and E.L. Schiffrin. 2000. Structure and mechanical properties of resistance arteries in hypertension. Hypertension 36 (3): 312–318.CrossRefPubMed Intengan, H.D., and E.L. Schiffrin. 2000. Structure and mechanical properties of resistance arteries in hypertension. Hypertension 36 (3): 312–318.CrossRefPubMed
20.
go back to reference Brady, P.S., E.A. Park, J.S. Liu, R.W. Hanson, and L.J. Brady. 1992. Isolation and characterization of the promoter for the gene coding for the 68 kDa carnitine palmitoyltransferase from the rat. Biochemical Journal 286 (3): 779–783.CrossRefPubMedPubMedCentral Brady, P.S., E.A. Park, J.S. Liu, R.W. Hanson, and L.J. Brady. 1992. Isolation and characterization of the promoter for the gene coding for the 68 kDa carnitine palmitoyltransferase from the rat. Biochemical Journal 286 (3): 779–783.CrossRefPubMedPubMedCentral
21.
go back to reference Wang, Z., D.Z. Wang, D. Hockemeyer, J. McAnally, A. Nordheim, and E.N. Olson. 2004. Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Nature 428 (6979): 185–189.CrossRefPubMed Wang, Z., D.Z. Wang, D. Hockemeyer, J. McAnally, A. Nordheim, and E.N. Olson. 2004. Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Nature 428 (6979): 185–189.CrossRefPubMed
22.
go back to reference Chen, J., C.M. Kitchen, J.W. Streb, and J.M. Miano. 2002. Myocardin: a component of a molecular switch for smooth muscle differentiation. Journal of Molecular and Cellular Cardiology 34 (10): 1345–1356.CrossRefPubMed Chen, J., C.M. Kitchen, J.W. Streb, and J.M. Miano. 2002. Myocardin: a component of a molecular switch for smooth muscle differentiation. Journal of Molecular and Cellular Cardiology 34 (10): 1345–1356.CrossRefPubMed
Metadata
Title
Biomechanical Stretch Induces Inflammation, Proliferation, and Migration by Activating NFAT5 in Arterial Smooth Muscle Cells
Authors
Wei Cao
Donghui Zhang
Qiannan Li
Yue Liu
Shenhong Jing
Jinjin Cui
Wei Xu
Shufeng Li
Jingjin Liu
Bo Yu
Publication date
01-12-2017
Publisher
Springer US
Published in
Inflammation / Issue 6/2017
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0653-y

Other articles of this Issue 6/2017

Inflammation 6/2017 Go to the issue