Skip to main content
Top
Published in: Inflammation 5/2017

01-10-2017 | ORIGINAL ARTICLE

Osteoclast-Associated Receptor (OSCAR) Distribution in the Synovial Tissues of Patients with Active RA and TNF-α and RANKL Regulation of Expression by Osteoclasts In Vitro

Authors: Anak A. S. S. K. Dharmapatni, Kent Algate, Roxanne Coleman, Michelle Lorimer, Melissa D. Cantley, Malcolm D. Smith, Mihir D. Wechalekar, Tania N. Crotti

Published in: Inflammation | Issue 5/2017

Login to get access

Abstract

Osteoclast-associated receptor (OSCAR) is a co-stimulatory receptor in osteoclastogenesis. Synovial tissues from active rheumatoid arthritis (RA) patients express higher levels of OSCAR compared with osteoarthritic and normal patients; however, the comparison of OSCAR levels in different regions of active RA synovium has not been reported. The regulation of OSCAR by TNF-α and receptor activator of NF kappa β ligand (RANKL) in pre-osteoclasts/osteoclasts in vitro is unclear. OSCAR and tartrate-resistant acid phosphatase (TRAP) expression levels did not differ between the cartilage pannus junction (CPJ) and non-CPJ regions in active RA. We demonstrate a similar pattern of OSCAR expression in the CPJ and non-CPJ synovial tissue from patients with active RA. OSCAR was associated with mononuclear cells in both the lining and sub-lining and endothelial cells (von Willebrand factor positive). Pre-osteoclasts (TRAP-positive cells) were present in the lining and sub-lining of both regions. OSCAR messenger RNA (mRNA) expression and release by pre-oscteoclasts/osteoclasts was modulated by RANKL with/without TNF-α in vitro. Osteoclast resorption on dentine slices was significantly greater with TNF-α pre-treatment and RANKL (10 ng/ml) than RANKL 10 or 50 ng/ml alone or RANKL 10 ng/ml with TNF-α given from day 3 post-RANKL. The lower levels of OSCAR mRNA expression corresponded with high osteoclast activity levels.
Literature
1.
go back to reference Aletaha, D., T. Neogi, A. Silman, J. Funovits, D. Felson, C. Bingham, et al. 2010. Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis and Rheumatism 62: 2569–2581.CrossRefPubMed Aletaha, D., T. Neogi, A. Silman, J. Funovits, D. Felson, C. Bingham, et al. 2010. Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis and Rheumatism 62: 2569–2581.CrossRefPubMed
2.
go back to reference van de Sande, M., M. de Hair, C. van der Leij, P. Klarenbeek, W. Bos, M. Smith, et al. 2011. Different stages of rheumatoid arthritis: features of the synovium in the preclinical phase. Annals of the Rheumatic Diseases 70: 772–777.CrossRefPubMed van de Sande, M., M. de Hair, C. van der Leij, P. Klarenbeek, W. Bos, M. Smith, et al. 2011. Different stages of rheumatoid arthritis: features of the synovium in the preclinical phase. Annals of the Rheumatic Diseases 70: 772–777.CrossRefPubMed
3.
go back to reference Ashton, B.A., I.K. Ashton, M.J. Marshall, and R.C. Butler. 1993. Localisation of vitronectin receptor immunoreactivity and tartrate resistant acid phosphatase activity in synovium from patients with inflammatory or degenerative arthritis. Annals of the Rheumatic Diseases 52: 133–137.CrossRefPubMedPubMedCentral Ashton, B.A., I.K. Ashton, M.J. Marshall, and R.C. Butler. 1993. Localisation of vitronectin receptor immunoreactivity and tartrate resistant acid phosphatase activity in synovium from patients with inflammatory or degenerative arthritis. Annals of the Rheumatic Diseases 52: 133–137.CrossRefPubMedPubMedCentral
4.
go back to reference Chang, J.S., J.M. Quinn, A. Demaziere, C.J. Bulstrode, M.J. Francis, R.B. Duthie, et al. 1992. Bone resorption by cells isolated from rheumatoid synovium. Annals of the Rheumatic Diseases 51: 1223–1229.CrossRefPubMedPubMedCentral Chang, J.S., J.M. Quinn, A. Demaziere, C.J. Bulstrode, M.J. Francis, R.B. Duthie, et al. 1992. Bone resorption by cells isolated from rheumatoid synovium. Annals of the Rheumatic Diseases 51: 1223–1229.CrossRefPubMedPubMedCentral
5.
go back to reference Haynes, D., T. Crotti, M. Loric, G. Bain, G. Atkins, and D. Findlay. 2001. Osteoprotegerin and receptor activator of nuclear factor kappaB ligand (RANKL) regulate osteoclast formation by cells in the human rheumatoid arthritic joint. Rheumatology (Oxford, England) 40: 623–630.CrossRef Haynes, D., T. Crotti, M. Loric, G. Bain, G. Atkins, and D. Findlay. 2001. Osteoprotegerin and receptor activator of nuclear factor kappaB ligand (RANKL) regulate osteoclast formation by cells in the human rheumatoid arthritic joint. Rheumatology (Oxford, England) 40: 623–630.CrossRef
6.
go back to reference Tsuboi, H., Y. Matsui, K. Hayashida, S. Yamane, M. Maeda-Tanimura, A. Nampei, et al. 2003. Tartrate resistant acid phosphatase (TRAP) positive cells in rheumatoid synovium may induce the destruction of articular cartilage. Annals of the Rheumatic Diseases 62: 196–203.CrossRefPubMedPubMedCentral Tsuboi, H., Y. Matsui, K. Hayashida, S. Yamane, M. Maeda-Tanimura, A. Nampei, et al. 2003. Tartrate resistant acid phosphatase (TRAP) positive cells in rheumatoid synovium may induce the destruction of articular cartilage. Annals of the Rheumatic Diseases 62: 196–203.CrossRefPubMedPubMedCentral
7.
go back to reference Gravallese, E.M., Y. Harada, J.T. Wang, A.H. Gorn, T.S. Thornhill, and S.R. Goldring. 1998. Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis. The American Journal of Pathology 152: 943–951.PubMedPubMedCentral Gravallese, E.M., Y. Harada, J.T. Wang, A.H. Gorn, T.S. Thornhill, and S.R. Goldring. 1998. Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis. The American Journal of Pathology 152: 943–951.PubMedPubMedCentral
8.
go back to reference Haynes, D., T. Crotti, H. Weedon, J. Slavotinek, V. Au, M. Coleman, et al. 2008. Modulation of RANKL and osteoprotegerin expression in synovial tissue from patients with rheumatoid arthritis in response to disease-modifying antirheumatic drug treatment and correlation with radiologic outcome. Arthritis and Rheumatism 59: 911–920.CrossRefPubMed Haynes, D., T. Crotti, H. Weedon, J. Slavotinek, V. Au, M. Coleman, et al. 2008. Modulation of RANKL and osteoprotegerin expression in synovial tissue from patients with rheumatoid arthritis in response to disease-modifying antirheumatic drug treatment and correlation with radiologic outcome. Arthritis and Rheumatism 59: 911–920.CrossRefPubMed
9.
go back to reference Haynes, D.R., E. Barg, T.N. Crotti, C. Holding, H. Weedon, G.J. Atkins, et al. 2003. Osteoprotegerin expression in synovial tissue from patients with rheumatoid arthritis, spondyloarthropathies and osteoarthritis and normal controls. Rheumatology 42: 123–134.CrossRefPubMed Haynes, D.R., E. Barg, T.N. Crotti, C. Holding, H. Weedon, G.J. Atkins, et al. 2003. Osteoprotegerin expression in synovial tissue from patients with rheumatoid arthritis, spondyloarthropathies and osteoarthritis and normal controls. Rheumatology 42: 123–134.CrossRefPubMed
10.
go back to reference Takayanagi, H., H. Iizuka, T. Juji, T. Nakagawa, A. Yamamoto, T. Miyazaki, et al. 2000. Involvement of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis and Rheumatism 43: 259–269.CrossRefPubMed Takayanagi, H., H. Iizuka, T. Juji, T. Nakagawa, A. Yamamoto, T. Miyazaki, et al. 2000. Involvement of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis and Rheumatism 43: 259–269.CrossRefPubMed
11.
go back to reference Simonet, W., D. Lacey, C. Dunstan, M. Kelley, M. Chang, R. Lüthy, et al. 1997. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89: 309–319.CrossRefPubMed Simonet, W., D. Lacey, C. Dunstan, M. Kelley, M. Chang, R. Lüthy, et al. 1997. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89: 309–319.CrossRefPubMed
12.
go back to reference Udagawa, N., N. Takahashi, E. Jimi, K. Matsuzaki, T. Tsurukai, K. Itoh, et al. 1999. Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor: receptor activator of NF-kappa B ligand. Bone 25: 517–523.CrossRefPubMed Udagawa, N., N. Takahashi, E. Jimi, K. Matsuzaki, T. Tsurukai, K. Itoh, et al. 1999. Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor: receptor activator of NF-kappa B ligand. Bone 25: 517–523.CrossRefPubMed
13.
go back to reference Yasuda, H., N. Shima, N. Nakagawa, K. Yamaguchi, M. Kinosaki, S. Mochizuki, et al. 1998. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proceedings of the National Academy of Sciences of the United States of America 95: 3597–3602.CrossRefPubMedPubMedCentral Yasuda, H., N. Shima, N. Nakagawa, K. Yamaguchi, M. Kinosaki, S. Mochizuki, et al. 1998. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proceedings of the National Academy of Sciences of the United States of America 95: 3597–3602.CrossRefPubMedPubMedCentral
14.
go back to reference Zhao, B., M. Takami, Y. Miyamoto, T. Suzawa, A. Yamada, A. Mochizuki, et al. 2008. Characterization of synovial cell clones isolated from rheumatoid arthritis patients: possible involvement of TNF-alpha in reduction of osteoprotegerin in synovium. Cytokine 41: 61–70.CrossRefPubMed Zhao, B., M. Takami, Y. Miyamoto, T. Suzawa, A. Yamada, A. Mochizuki, et al. 2008. Characterization of synovial cell clones isolated from rheumatoid arthritis patients: possible involvement of TNF-alpha in reduction of osteoprotegerin in synovium. Cytokine 41: 61–70.CrossRefPubMed
15.
go back to reference Kubota, A., K. Hasegawa, T. Suguro, and Y. Koshihara. 2004. Tumor necrosis factor-alpha promotes the expression of osteoprotegerin in rheumatoid synovial fibroblasts. The Journal of Rheumatology 31: 426–435.PubMed Kubota, A., K. Hasegawa, T. Suguro, and Y. Koshihara. 2004. Tumor necrosis factor-alpha promotes the expression of osteoprotegerin in rheumatoid synovial fibroblasts. The Journal of Rheumatology 31: 426–435.PubMed
16.
go back to reference Asagiri, M., K. Sato, T. Usami, S. Ochi, H. Nishina, H. Yoshida, et al. 2005. Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. Journal of Experimental Medicine 202: 1261–1269.CrossRefPubMedPubMedCentral Asagiri, M., K. Sato, T. Usami, S. Ochi, H. Nishina, H. Yoshida, et al. 2005. Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. Journal of Experimental Medicine 202: 1261–1269.CrossRefPubMedPubMedCentral
17.
go back to reference Takayanagi, H., S. Kim, T. Koga, H. Nishina, M. Isshiki, H. Yoshida, et al. 2002. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Developmental Cell 3: 889–901.CrossRefPubMed Takayanagi, H., S. Kim, T. Koga, H. Nishina, M. Isshiki, H. Yoshida, et al. 2002. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Developmental Cell 3: 889–901.CrossRefPubMed
18.
go back to reference Koga, T., M. Inui, K. Inoue, S. Kim, A. Suematsu, E. Kobayashi, et al. 2004. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428: 758–763.CrossRefPubMed Koga, T., M. Inui, K. Inoue, S. Kim, A. Suematsu, E. Kobayashi, et al. 2004. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428: 758–763.CrossRefPubMed
19.
go back to reference Cella, M., C. Buonsanti, C. Strader, T. Kondo, A. Salmaggi, and M. Colonna. 2003. Impaired differentiation of osteoclasts in TREM-2-deficient individuals. The Journal of Experimental Medicine 198: 645–651.CrossRefPubMedPubMedCentral Cella, M., C. Buonsanti, C. Strader, T. Kondo, A. Salmaggi, and M. Colonna. 2003. Impaired differentiation of osteoclasts in TREM-2-deficient individuals. The Journal of Experimental Medicine 198: 645–651.CrossRefPubMedPubMedCentral
20.
go back to reference Kim, N., M. Takami, J. Rho, R. Josien, and Y. Choi. 2002. A novel member of the leukocyte receptor complex regulates osteoclast differentiation. The Journal of Experimental Medicine 195: 201–209.CrossRefPubMedPubMedCentral Kim, N., M. Takami, J. Rho, R. Josien, and Y. Choi. 2002. A novel member of the leukocyte receptor complex regulates osteoclast differentiation. The Journal of Experimental Medicine 195: 201–209.CrossRefPubMedPubMedCentral
21.
go back to reference Ishikawa, S., N. Arase, T. Suenaga, Y. Saita, M. Noda, T. Kuriyama, et al. 2004. Involvement of FcRgamma in signal transduction of osteoclast-associated receptor (OSCAR). International Immunology 16: 1019–1025.CrossRefPubMed Ishikawa, S., N. Arase, T. Suenaga, Y. Saita, M. Noda, T. Kuriyama, et al. 2004. Involvement of FcRgamma in signal transduction of osteoclast-associated receptor (OSCAR). International Immunology 16: 1019–1025.CrossRefPubMed
22.
go back to reference Kim, K., J.H. Kim, J. Lee, H.M. Jin, S.H. Lee, D.E. Fisher, et al. 2005. Nuclear factor of activated T cells c1 induces osteoclast-associated receptor gene expression during tumor necrosis factor-related activation-induced cytokine-mediated osteoclastogenesis. The Journal of Biological Chemistry 280: 35209–35216.CrossRefPubMed Kim, K., J.H. Kim, J. Lee, H.M. Jin, S.H. Lee, D.E. Fisher, et al. 2005. Nuclear factor of activated T cells c1 induces osteoclast-associated receptor gene expression during tumor necrosis factor-related activation-induced cytokine-mediated osteoclastogenesis. The Journal of Biological Chemistry 280: 35209–35216.CrossRefPubMed
23.
go back to reference Crotti, Dharmapatni, Zannettino Alias, and Haynes Smith. 2012. The immunoreceptor tyrosine-based activation motif (ITAM)-related factors are increased in synovial tissue and vasculature of rheumatoid arthritic joints. Arthritis Research & Therapy 14: R245.CrossRef Crotti, Dharmapatni, Zannettino Alias, and Haynes Smith. 2012. The immunoreceptor tyrosine-based activation motif (ITAM)-related factors are increased in synovial tissue and vasculature of rheumatoid arthritic joints. Arthritis Research & Therapy 14: R245.CrossRef
24.
go back to reference Herman, S., R. Müller, G. Krönke, J. Zwerina, K. Redlich, A. Hueber, et al. 2008. Induction of osteoclast-associated receptor, a key osteoclast costimulation molecule, in rheumatoid arthritis. Arthritis and Rheumatism 58: 3041–3050.CrossRefPubMed Herman, S., R. Müller, G. Krönke, J. Zwerina, K. Redlich, A. Hueber, et al. 2008. Induction of osteoclast-associated receptor, a key osteoclast costimulation molecule, in rheumatoid arthritis. Arthritis and Rheumatism 58: 3041–3050.CrossRefPubMed
25.
go back to reference Zhao S, Guo Y, Ding N, Yang L, Zhang N. 2011. Changes in serum levels of soluble osteoclast-associated receptor in human rheumatoid arthritis. Chinese Medical Journal-Beijing. Zhao S, Guo Y, Ding N, Yang L, Zhang N. 2011. Changes in serum levels of soluble osteoclast-associated receptor in human rheumatoid arthritis. Chinese Medical Journal-Beijing.
26.
go back to reference Ndongo-Thiam, N., G. de Sallmard, J. Kastrup, and P. Miossec. 2014. Levels of soluble osteoclast-associated receptor (sOSCAR) in rheumatoid arthritis: link to disease severity and cardiovascular risk. Annals of the Rheumatic Diseases 73: 1276–1277.CrossRefPubMed Ndongo-Thiam, N., G. de Sallmard, J. Kastrup, and P. Miossec. 2014. Levels of soluble osteoclast-associated receptor (sOSCAR) in rheumatoid arthritis: link to disease severity and cardiovascular risk. Annals of the Rheumatic Diseases 73: 1276–1277.CrossRefPubMed
27.
go back to reference Barrow, A., N. Raynal, T. Andersen, D. Slatter, D. Bihan, N. Pugh, et al. 2011. OSCAR is a collagen receptor that costimulates osteoclastogenesis in DAP12-deficient humans and mice. The Journal of Clinical Investigation 121: 3505–3516.CrossRefPubMedPubMedCentral Barrow, A., N. Raynal, T. Andersen, D. Slatter, D. Bihan, N. Pugh, et al. 2011. OSCAR is a collagen receptor that costimulates osteoclastogenesis in DAP12-deficient humans and mice. The Journal of Clinical Investigation 121: 3505–3516.CrossRefPubMedPubMedCentral
28.
go back to reference Goettsch, C., M. Rauner, K. Sinningen, S. Helas, N. Al-Fakhri, K. Nemeth, et al. 2011. The osteoclast-associated receptor (OSCAR) is a novel receptor regulated by oxidized low-density lipoprotein in human endothelial cells. Endocrinology 152: 4915–4926.CrossRefPubMed Goettsch, C., M. Rauner, K. Sinningen, S. Helas, N. Al-Fakhri, K. Nemeth, et al. 2011. The osteoclast-associated receptor (OSCAR) is a novel receptor regulated by oxidized low-density lipoprotein in human endothelial cells. Endocrinology 152: 4915–4926.CrossRefPubMed
29.
go back to reference Schultz, H.S., L. Guo, P. Keller, A.J. Fleetwood, M. Sun, W. Guo, et al. 2016. OSCAR-collagen signaling in monocytes plays a proinflammatory role and may contribute to the pathogenesis of rheumatoid arthritis. European Journal of Immunology 46: 952–963.CrossRefPubMed Schultz, H.S., L. Guo, P. Keller, A.J. Fleetwood, M. Sun, W. Guo, et al. 2016. OSCAR-collagen signaling in monocytes plays a proinflammatory role and may contribute to the pathogenesis of rheumatoid arthritis. European Journal of Immunology 46: 952–963.CrossRefPubMed
30.
go back to reference Goettsch, C., S. Kliemt, K. Sinningen, M. von Bergen, L. Hofbauer, and S. Kalkhof. 2012. Quantitative proteomics reveals novel functions of osteoclast-associated receptor in STAT signaling and cell adhesion in human endothelial cells. Journal of Molecular and Cellular Cardiology 53: 829–837.CrossRefPubMed Goettsch, C., S. Kliemt, K. Sinningen, M. von Bergen, L. Hofbauer, and S. Kalkhof. 2012. Quantitative proteomics reveals novel functions of osteoclast-associated receptor in STAT signaling and cell adhesion in human endothelial cells. Journal of Molecular and Cellular Cardiology 53: 829–837.CrossRefPubMed
31.
go back to reference Starke, R., F. Ferraro, K. Paschalaki, N. Dryden, T. McKinnon, R. Sutton, et al. 2011. Endothelial von Willebrand factor regulates angiogenesis. Blood 117: 1071–1080.CrossRefPubMedPubMedCentral Starke, R., F. Ferraro, K. Paschalaki, N. Dryden, T. McKinnon, R. Sutton, et al. 2011. Endothelial von Willebrand factor regulates angiogenesis. Blood 117: 1071–1080.CrossRefPubMedPubMedCentral
32.
go back to reference Pendu, R., V. Terraube, O.D. Christophe, C.G. Gahmberg, P.G. de Groot, P.J. Lenting, et al. 2006. P-selectin glycoprotein ligand 1 and beta2-integrins cooperate in the adhesion of leukocytes to von Willebrand factor. Blood 108: 3746–3752.CrossRefPubMed Pendu, R., V. Terraube, O.D. Christophe, C.G. Gahmberg, P.G. de Groot, P.J. Lenting, et al. 2006. P-selectin glycoprotein ligand 1 and beta2-integrins cooperate in the adhesion of leukocytes to von Willebrand factor. Blood 108: 3746–3752.CrossRefPubMed
33.
go back to reference Chu, C., M. Field, M. Feldmann, and R. Maini. 1991. Localization of tumor necrosis factor alpha in synovial tissues and at the cartilage-pannus junction in patients with rheumatoid arthritis. Arthritis and Rheumatism 34: 1125–1132.CrossRefPubMed Chu, C., M. Field, M. Feldmann, and R. Maini. 1991. Localization of tumor necrosis factor alpha in synovial tissues and at the cartilage-pannus junction in patients with rheumatoid arthritis. Arthritis and Rheumatism 34: 1125–1132.CrossRefPubMed
34.
go back to reference Chu C, Field M, Allard S, Abney E. 1992 Detection of cytokines at the cartilage/pannus junction in patients with rheumatoid arthritis: implications for the role of cytokines in cartilage destruction and repair. Chu C, Field M, Allard S, Abney E. 1992 Detection of cytokines at the cartilage/pannus junction in patients with rheumatoid arthritis: implications for the role of cytokines in cartilage destruction and repair.
35.
go back to reference Barrow, A.D., Y. Palarasah, M. Bugatti, A.S. Holehouse, D.E. Byers, M.J. Holtzman, et al. 2015. OSCAR is a receptor for surfactant protein D that activates TNF-alpha release from human CCR2+ inflammatory monocytes. Journal of Immunology 194: 3317–3326.CrossRef Barrow, A.D., Y. Palarasah, M. Bugatti, A.S. Holehouse, D.E. Byers, M.J. Holtzman, et al. 2015. OSCAR is a receptor for surfactant protein D that activates TNF-alpha release from human CCR2+ inflammatory monocytes. Journal of Immunology 194: 3317–3326.CrossRef
36.
go back to reference Algate K, Haynes DR, Bartold PM, Crotti TN, Cantley MD. The effects of tumour necrosis factor-alpha on bone cells involved in periodontal alveolar bone loss; osteoclasts, osteoblasts and osteocytes. J Periodontal Res 2015. Algate K, Haynes DR, Bartold PM, Crotti TN, Cantley MD. The effects of tumour necrosis factor-alpha on bone cells involved in periodontal alveolar bone loss; osteoclasts, osteoblasts and osteocytes. J Periodontal Res 2015.
37.
go back to reference Kobayashi, K., N. Takahashi, E. Jimi, N. Udagawa, M. Takami, S. Kotake, et al. 2000. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. The Journal of Experimental Medicine 191: 275–286.CrossRefPubMedPubMedCentral Kobayashi, K., N. Takahashi, E. Jimi, N. Udagawa, M. Takami, S. Kotake, et al. 2000. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. The Journal of Experimental Medicine 191: 275–286.CrossRefPubMedPubMedCentral
38.
go back to reference Lam, J., S. Takeshita, J. Barker, O. Kanagawa, F. Ross, and S. Teitelbaum. 2000. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. The Journal of Clinical Investigation 106: 1481–1488.CrossRefPubMedPubMedCentral Lam, J., S. Takeshita, J. Barker, O. Kanagawa, F. Ross, and S. Teitelbaum. 2000. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. The Journal of Clinical Investigation 106: 1481–1488.CrossRefPubMedPubMedCentral
39.
go back to reference Azuma, Y., K. Kaji, R. Katogi, S. Takeshita, and A. Kudo. 2000. Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts. The Journal of Biological Chemistry 275: 4858–4864.CrossRefPubMed Azuma, Y., K. Kaji, R. Katogi, S. Takeshita, and A. Kudo. 2000. Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts. The Journal of Biological Chemistry 275: 4858–4864.CrossRefPubMed
40.
go back to reference MacRae, V.E., S.C. Wong, W. Smith, A. Gracie, I. McInnes, P. Galea, et al. 2007. Cytokine profiling and in vitro studies of murine bone growth using biological fluids from children with juvenile idiopathic arthritis. Clinical Endocrinology 67: 442–448.CrossRefPubMed MacRae, V.E., S.C. Wong, W. Smith, A. Gracie, I. McInnes, P. Galea, et al. 2007. Cytokine profiling and in vitro studies of murine bone growth using biological fluids from children with juvenile idiopathic arthritis. Clinical Endocrinology 67: 442–448.CrossRefPubMed
41.
go back to reference Arnett, F.C., S.M. Edworthy, D.A. Bloch, D.J. Mcshane, J.F. Fries, N.S. Cooper, et al. 1988. The American-Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis and Rheumatism 31: 315–324.CrossRefPubMed Arnett, F.C., S.M. Edworthy, D.A. Bloch, D.J. Mcshane, J.F. Fries, N.S. Cooper, et al. 1988. The American-Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis and Rheumatism 31: 315–324.CrossRefPubMed
42.
go back to reference Burstone, M. 1958. Histochemical demonstration of acid phosphatases with naphthol AS-phosphates. Journal of the National Cancer Institute 21: 523–539.PubMed Burstone, M. 1958. Histochemical demonstration of acid phosphatases with naphthol AS-phosphates. Journal of the National Cancer Institute 21: 523–539.PubMed
43.
go back to reference Angel, N., N. Walsh, M. Forwood, M. Ostrowski, A. Cassady, and D. Hume. 2000. Transgenic mice overexpressing tartrate-resistant acid phosphatase exhibit an increased rate of bone turnover. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 15: 103–110.CrossRef Angel, N., N. Walsh, M. Forwood, M. Ostrowski, A. Cassady, and D. Hume. 2000. Transgenic mice overexpressing tartrate-resistant acid phosphatase exhibit an increased rate of bone turnover. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 15: 103–110.CrossRef
44.
go back to reference Alias, E., A.S. Dharmapatni, A. Holding, G. Atkins, D. Findlay, D. Howie, et al. 2012. Polyethylene particles stimulate expression of ITAM-related molecules in peri-implant tissues and when stimulating osteoclastogenesis in vitro. Acta Biomaterialia 8: 3104–3112.CrossRefPubMed Alias, E., A.S. Dharmapatni, A. Holding, G. Atkins, D. Findlay, D. Howie, et al. 2012. Polyethylene particles stimulate expression of ITAM-related molecules in peri-implant tissues and when stimulating osteoclastogenesis in vitro. Acta Biomaterialia 8: 3104–3112.CrossRefPubMed
45.
go back to reference Kraan, M.C., J.J. Haringman, W.J. Post, J. Versendaal, F.C. Breedveld, and P.P. Tak. 1999. Immunohistological analysis of synovial tissue for differential diagnosis in early arthritis. Rheumatology (Oxford, England) 38: 1074–1080.CrossRef Kraan, M.C., J.J. Haringman, W.J. Post, J. Versendaal, F.C. Breedveld, and P.P. Tak. 1999. Immunohistological analysis of synovial tissue for differential diagnosis in early arthritis. Rheumatology (Oxford, England) 38: 1074–1080.CrossRef
46.
go back to reference Holding, C.A., D.M. Findlay, R. Stamenkov, S.D. Neale, H. Lucas, A.S. Dharmapatni, et al. 2006. The correlation of RANK, RANKL and TNFalpha expression with bone loss volume and polyethylene wear debris around hip implants. Biomaterials 27: 5212–5219.CrossRefPubMed Holding, C.A., D.M. Findlay, R. Stamenkov, S.D. Neale, H. Lucas, A.S. Dharmapatni, et al. 2006. The correlation of RANK, RANKL and TNFalpha expression with bone loss volume and polyethylene wear debris around hip implants. Biomaterials 27: 5212–5219.CrossRefPubMed
47.
go back to reference Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25: 402–408.CrossRefPubMed Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25: 402–408.CrossRefPubMed
Metadata
Title
Osteoclast-Associated Receptor (OSCAR) Distribution in the Synovial Tissues of Patients with Active RA and TNF-α and RANKL Regulation of Expression by Osteoclasts In Vitro
Authors
Anak A. S. S. K. Dharmapatni
Kent Algate
Roxanne Coleman
Michelle Lorimer
Melissa D. Cantley
Malcolm D. Smith
Mihir D. Wechalekar
Tania N. Crotti
Publication date
01-10-2017
Publisher
Springer US
Published in
Inflammation / Issue 5/2017
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0597-2

Other articles of this Issue 5/2017

Inflammation 5/2017 Go to the issue