Skip to main content
Top
Published in: Inflammation 4/2017

01-08-2017 | ORIGINAL ARTICLE

A Chemically Modified Curcumin (CMC 2.24) Inhibits Nuclear Factor κB Activation and Inflammatory Bone Loss in Murine Models of LPS-Induced Experimental Periodontitis and Diabetes-Associated Natural Periodontitis

Authors: Muna S. Elburki, Carlos Rossa Jr, Morgana R. Guimarães-Stabili, Hsi-Ming Lee, Fabiana A. Curylofo-Zotti, Francis Johnson, Lorne M. Golub

Published in: Inflammation | Issue 4/2017

Login to get access

Abstract

The purpose of this study was to assess the effect of a novel chemically modified curcumin (CMC 2.24) on NF-κB and MAPK signaling and inflammatory cytokine production in two experimental models of periodontal disease in rats. Experimental model I: Periodontitis was induced by repeated injections of LPS into the gingiva (3×/week, 3 weeks); control rats received vehicle injections. CMC 2.24, or the vehicle, was administered by daily oral gavage for 4 weeks. Experimental model II: Diabetes was induced in adult male rats by streptozotocin injection; periodontal breakdown then results as a complication of uncontrolled hyperglycemia. Non-diabetic rats served as controls. CMC 2.24, or the vehicle, was administered by oral gavage daily for 3 weeks to the diabetics. Hemimaxillae and gingival tissues were harvested, and bone loss was assessed radiographically. Gingival tissues were pooled according to the experimental conditions and processed for the analysis of matrix metalloproteinases (MMPs) and bone-resorptive cytokines. Activation of p38 MAPK and NF-κB signaling pathways was assessed by western blot. Both LPS and diabetes induced an inflammatory process in the gingival tissues associated with excessive alveolar bone resorption and increased activation of p65 (NF-κB) and p38 MAPK. In both models, the administration of CMC 2.24 produced a marked reduction of inflammatory cytokines and MMPs in the gingival tissues, decreased bone loss, and decreased activation of p65 (NF-κB) and p38 MAPK. Inhibition of these cell signaling pathways by this novel tri-ketonic curcuminoid (natural curcumin is di-ketonic) may play a role in its therapeutic efficacy in locally and systemically associated periodontitis.
Literature
1.
go back to reference Kirkwood, K.L., J.A. Cirelli, J.E. Rogers, and W.V. Giannobile. 2007. Novel host response therapeutic approaches to treat periodontal diseases. Periodontology 2000 43: 294–315.CrossRefPubMedPubMedCentral Kirkwood, K.L., J.A. Cirelli, J.E. Rogers, and W.V. Giannobile. 2007. Novel host response therapeutic approaches to treat periodontal diseases. Periodontology 2000 43: 294–315.CrossRefPubMedPubMedCentral
2.
go back to reference Lee, H.-J., I.-K. Kang, C.-P. Chung, and S.-M. Choi. 1995. The subgingival microflora and gingival crevicular fluid cytokines in refractory periodontitis. Journal of Clinical Periodontology 22: 885–890.CrossRefPubMed Lee, H.-J., I.-K. Kang, C.-P. Chung, and S.-M. Choi. 1995. The subgingival microflora and gingival crevicular fluid cytokines in refractory periodontitis. Journal of Clinical Periodontology 22: 885–890.CrossRefPubMed
3.
go back to reference Tsai, C., Y. Ho, and C. Chen. 1995. Levels of interleukin-lß and interleukin-8 in gingival crevicular fluids in adult periodontitis. Journal of Periodontology 66: 852–859.CrossRefPubMed Tsai, C., Y. Ho, and C. Chen. 1995. Levels of interleukin-lß and interleukin-8 in gingival crevicular fluids in adult periodontitis. Journal of Periodontology 66: 852–859.CrossRefPubMed
4.
go back to reference Leng, S.X., and J.A. Elias. 1997. Interleukin-11 inhibits macrophage interleukin-12 production. Journal of Immunology 159: 2161–2168. Leng, S.X., and J.A. Elias. 1997. Interleukin-11 inhibits macrophage interleukin-12 production. Journal of Immunology 159: 2161–2168.
5.
go back to reference Haffajee, A., and S. Socransky. 1994. Microbial etiological agents of destructive periodontal diseases. Periodontology 2000 5: 78–111.CrossRefPubMed Haffajee, A., and S. Socransky. 1994. Microbial etiological agents of destructive periodontal diseases. Periodontology 2000 5: 78–111.CrossRefPubMed
6.
go back to reference Wilson, S.R., C. Peters, P. Saftig, and D. Bromme. 2009. Cathepsin K Activity-dependent Regulation of Osteoclast Actin Ring Formation and Bone Resorption. The Journal of Biological Chemistry 284: 2584–2592.CrossRefPubMedPubMedCentral Wilson, S.R., C. Peters, P. Saftig, and D. Bromme. 2009. Cathepsin K Activity-dependent Regulation of Osteoclast Actin Ring Formation and Bone Resorption. The Journal of Biological Chemistry 284: 2584–2592.CrossRefPubMedPubMedCentral
7.
go back to reference Graves, D.T., and R.A. Kayal. 2008. Diabetic complications and dysregulated innate immunity. Front. Biosci. J. Virtual Libr. 13: 1227.CrossRef Graves, D.T., and R.A. Kayal. 2008. Diabetic complications and dysregulated innate immunity. Front. Biosci. J. Virtual Libr. 13: 1227.CrossRef
8.
go back to reference Baynes, J. 1991. Role of oxidative stress in development of complications in diabetes. Diabetes 40: 405–412.CrossRefPubMed Baynes, J. 1991. Role of oxidative stress in development of complications in diabetes. Diabetes 40: 405–412.CrossRefPubMed
9.
go back to reference Schmidt, A., E. Weldman, E. Lalla, S. Yan, O. Hori, R. Cao, et al. 1996. Advanced glycation endproducts (AGEs) induce Oxidant Stress in the gingiva: a potential mechanism underlying accelerated periodontal disease associated with diabetes. Journal of Periodontal Research 31: 308–315.CrossRef Schmidt, A., E. Weldman, E. Lalla, S. Yan, O. Hori, R. Cao, et al. 1996. Advanced glycation endproducts (AGEs) induce Oxidant Stress in the gingiva: a potential mechanism underlying accelerated periodontal disease associated with diabetes. Journal of Periodontal Research 31: 308–315.CrossRef
10.
go back to reference Lalla, E., I.B. Lamster, M. Feit, L. Huang, A. Spessot, W. Qu, et al. 2000. Blockade of RAGE suppresses periodontitis-associated bone loss in diabetic mice. The Journal of Clinical Investigation 105: 1117–1124.CrossRefPubMedPubMedCentral Lalla, E., I.B. Lamster, M. Feit, L. Huang, A. Spessot, W. Qu, et al. 2000. Blockade of RAGE suppresses periodontitis-associated bone loss in diabetic mice. The Journal of Clinical Investigation 105: 1117–1124.CrossRefPubMedPubMedCentral
11.
go back to reference Golub, L.M., J.B. Payne, R.A. Reinhardt, and G. Nieman. 2006. Can systemic diseases co-induce (not just exacerbate) periodontitis? A hypothetical “two-hit” model. Journal of Dental Research 85: 102–105.CrossRefPubMed Golub, L.M., J.B. Payne, R.A. Reinhardt, and G. Nieman. 2006. Can systemic diseases co-induce (not just exacerbate) periodontitis? A hypothetical “two-hit” model. Journal of Dental Research 85: 102–105.CrossRefPubMed
12.
go back to reference Engebretson, S.P., and J. Hey-Hadavi. 2011. Sub-antimicrobial doxycycline for periodontitis reduces hemoglobin A1c in subjects with type 2 diabetes: A pilot study. Pharmacological Research 64: 624–629.CrossRefPubMedPubMedCentral Engebretson, S.P., and J. Hey-Hadavi. 2011. Sub-antimicrobial doxycycline for periodontitis reduces hemoglobin A1c in subjects with type 2 diabetes: A pilot study. Pharmacological Research 64: 624–629.CrossRefPubMedPubMedCentral
13.
go back to reference Yamamoto, Y., A. Harashima, H. Saito, K. Tsuneyama, S. Munesue, S. Motoyoshi, et al. 2011. Septic shock is associated with receptor for advanced glycation end products ligation of LPS. Journal of Immunology 186: 3248–3257.CrossRef Yamamoto, Y., A. Harashima, H. Saito, K. Tsuneyama, S. Munesue, S. Motoyoshi, et al. 2011. Septic shock is associated with receptor for advanced glycation end products ligation of LPS. Journal of Immunology 186: 3248–3257.CrossRef
14.
go back to reference Xie, J., J.D. Méndez, V. Méndez-Valenzuela, and M.M. Aguilar-Hernández. 2013. Cellular signalling of the receptor for advanced glycation end products (RAGE). Cellular Signalling 25: 2185–2197.CrossRefPubMed Xie, J., J.D. Méndez, V. Méndez-Valenzuela, and M.M. Aguilar-Hernández. 2013. Cellular signalling of the receptor for advanced glycation end products (RAGE). Cellular Signalling 25: 2185–2197.CrossRefPubMed
15.
go back to reference Ibrahim, Z.A., C.L. Armour, S. Phipps, and M.B. Sukkar. 2013. RAGE and TLRs: Relatives, friends or neighbours? Molecular Immunology 56: 739–744.CrossRefPubMed Ibrahim, Z.A., C.L. Armour, S. Phipps, and M.B. Sukkar. 2013. RAGE and TLRs: Relatives, friends or neighbours? Molecular Immunology 56: 739–744.CrossRefPubMed
16.
go back to reference Agati, V., and A. Schmidt. 2010. RAGE and the pathogenesis of Chronic Kidney disease. Nature Reviews. Nephrology 6: 352–360.CrossRefPubMed Agati, V., and A. Schmidt. 2010. RAGE and the pathogenesis of Chronic Kidney disease. Nature Reviews. Nephrology 6: 352–360.CrossRefPubMed
17.
go back to reference Srikanth, V., A. Maczurek, T. Phan, M. Steele, B. Westcott, D. Juskiw, et al. 2011. Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiology of Aging 32: 763–777.CrossRefPubMed Srikanth, V., A. Maczurek, T. Phan, M. Steele, B. Westcott, D. Juskiw, et al. 2011. Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiology of Aging 32: 763–777.CrossRefPubMed
18.
go back to reference Bickel, M., B. Axtelius, C. Solioz, and R. Attström. 2001. Cytokine gene expression in chronic periodontitis. Journal of Clinical Periodontology 28: 840–847.CrossRefPubMed Bickel, M., B. Axtelius, C. Solioz, and R. Attström. 2001. Cytokine gene expression in chronic periodontitis. Journal of Clinical Periodontology 28: 840–847.CrossRefPubMed
20.
go back to reference Zhang, Y., Y. Gu, H-M. Lee, E. Hambardjieva, K. Vrankova, L.M. Golub, et al. 2012. Design, synthesis and biological activity of new polyenolic inhibitors of matrix metalloproteinases: a focus on chemically-modified curcumins. Current Medicinal Chemistry 19: 4348–4358.CrossRefPubMed Zhang, Y., Y. Gu, H-M. Lee, E. Hambardjieva, K. Vrankova, L.M. Golub, et al. 2012. Design, synthesis and biological activity of new polyenolic inhibitors of matrix metalloproteinases: a focus on chemically-modified curcumins. Current Medicinal Chemistry 19: 4348–4358.CrossRefPubMed
21.
go back to reference Zhang, Y., L.M. Golub, F. Johnson, and A. Wishnia. 2012. pKa, zinc-and serum albumin-binding of curcumin and two novel biologically-active chemically-modified curcumins. Current Medicinal Chemistry 19: 4367–4375.CrossRefPubMed Zhang, Y., L.M. Golub, F. Johnson, and A. Wishnia. 2012. pKa, zinc-and serum albumin-binding of curcumin and two novel biologically-active chemically-modified curcumins. Current Medicinal Chemistry 19: 4367–4375.CrossRefPubMed
22.
go back to reference Katzap E, Goldstein MJ, Shah NV, Schwartz J, Razzano P, Golub LM, et al. (2011). The chondroprotective capability of curcumin (Curcuma longa) and its derivatives against IL-1β and OsM-mediated chrondrolysis. Transaction Orthopaedic Research Society;Abstract # 36. Katzap E, Goldstein MJ, Shah NV, Schwartz J, Razzano P, Golub LM, et al. (2011). The chondroprotective capability of curcumin (Curcuma longa) and its derivatives against IL-1β and OsM-mediated chrondrolysis. Transaction Orthopaedic Research Society;Abstract # 36.
23.
go back to reference Elburki, M.S., C. Rossa Jr., M.R. Guimaraes, M. Goodenough, H-M. Lee, F.A. Curylofo, et al. 2014. A novel chemically modified curcumin reduces severity of experimental periodontal disease in rats: Initial observations. Mediators of Inflammation 2014: 1–10.CrossRef Elburki, M.S., C. Rossa Jr., M.R. Guimaraes, M. Goodenough, H-M. Lee, F.A. Curylofo, et al. 2014. A novel chemically modified curcumin reduces severity of experimental periodontal disease in rats: Initial observations. Mediators of Inflammation 2014: 1–10.CrossRef
24.
go back to reference Botchkina, G.I., E.S. Zuniga, R.H. Rowehl, R. Park, R. Bhalla, A.B. Bialkowska, et al. 2013. Prostate cancer stem cell-targeted efficacy of a new-generation taxoid, SBT-1214 and novel polyenolic zinc-binding curcuminoid, CMC2.24. PloS One 8: e69884.CrossRefPubMedPubMedCentral Botchkina, G.I., E.S. Zuniga, R.H. Rowehl, R. Park, R. Bhalla, A.B. Bialkowska, et al. 2013. Prostate cancer stem cell-targeted efficacy of a new-generation taxoid, SBT-1214 and novel polyenolic zinc-binding curcuminoid, CMC2.24. PloS One 8: e69884.CrossRefPubMedPubMedCentral
25.
go back to reference Xie, H., C. Wang, X. Wu, X. Liu, S. Qiao, C. Liu, et al. 2012. Parthenolide attenuates LPS-induced activation of NF-κB in a time-dependent manner in rat myocardium. The Journal of Biomedical Research 26: 37–43.CrossRefPubMed Xie, H., C. Wang, X. Wu, X. Liu, S. Qiao, C. Liu, et al. 2012. Parthenolide attenuates LPS-induced activation of NF-κB in a time-dependent manner in rat myocardium. The Journal of Biomedical Research 26: 37–43.CrossRefPubMed
26.
go back to reference Roy, S.K., D. Kendrick, B.D. Sadowitz, L. Gatto, K. Snyder, J.M. Satalin, et al. 2011. Jack of all trades: Pleiotropy and the application of chemically modified tetracycline-3 in sepsis and the acute respiratory distress syndrome (ARDS). Pharmacological Research 64: 580–589.CrossRefPubMedPubMedCentral Roy, S.K., D. Kendrick, B.D. Sadowitz, L. Gatto, K. Snyder, J.M. Satalin, et al. 2011. Jack of all trades: Pleiotropy and the application of chemically modified tetracycline-3 in sepsis and the acute respiratory distress syndrome (ARDS). Pharmacological Research 64: 580–589.CrossRefPubMedPubMedCentral
27.
go back to reference Anrather, J., G. Racchumi, and C. Iadecola. 2005. cis-acting element-specific transcriptional activity of differentially phosphorylated nuclear factor-κB. The Journal of Biological Chemistry 280: 244–252.CrossRefPubMed Anrather, J., G. Racchumi, and C. Iadecola. 2005. cis-acting element-specific transcriptional activity of differentially phosphorylated nuclear factor-κB. The Journal of Biological Chemistry 280: 244–252.CrossRefPubMed
28.
go back to reference Ulevitch, R.J. 2004. Therapeutics targeting the innate immune system. Nature Reviews. Immunology 4: 512–520.CrossRefPubMed Ulevitch, R.J. 2004. Therapeutics targeting the innate immune system. Nature Reviews. Immunology 4: 512–520.CrossRefPubMed
29.
go back to reference Singh, S., and B.B. Aggarwal. 1995. Activation of transcription factor NF-κB is suppressed by curcumin (diferuloylmethane). The Journal of Biological Chemistry 270: 24995–25000.CrossRefPubMed Singh, S., and B.B. Aggarwal. 1995. Activation of transcription factor NF-κB is suppressed by curcumin (diferuloylmethane). The Journal of Biological Chemistry 270: 24995–25000.CrossRefPubMed
30.
go back to reference Anand, P., A.B. Kunnumakkara, R.A. Newman, and B.B. Aggarwal. 2007. Bioavailability of curcumin: Problems and promises. Molecular Pharmaceutics 4: 807–818.CrossRefPubMed Anand, P., A.B. Kunnumakkara, R.A. Newman, and B.B. Aggarwal. 2007. Bioavailability of curcumin: Problems and promises. Molecular Pharmaceutics 4: 807–818.CrossRefPubMed
31.
go back to reference Li, Q., H. Yu, R. Zinna, K. Martin, B. Herbert, A. Liu, et al. 2011. Silencing mitogen-activated protein kinase-activated protein kinase-2 arrests inflammatory bone loss. The Journal of Pharmacology and Experimental Therapeutics 336: 633–642.CrossRefPubMedPubMedCentral Li, Q., H. Yu, R. Zinna, K. Martin, B. Herbert, A. Liu, et al. 2011. Silencing mitogen-activated protein kinase-activated protein kinase-2 arrests inflammatory bone loss. The Journal of Pharmacology and Experimental Therapeutics 336: 633–642.CrossRefPubMedPubMedCentral
32.
go back to reference Sartori, R., F. Li, and K.L. Kirkwood. 2009. MAP kinase phosphatase-1 protects against inflammatory bone loss. Journal of Dental Research 88: 1125–1130.CrossRefPubMedPubMedCentral Sartori, R., F. Li, and K.L. Kirkwood. 2009. MAP kinase phosphatase-1 protects against inflammatory bone loss. Journal of Dental Research 88: 1125–1130.CrossRefPubMedPubMedCentral
33.
go back to reference Travan, S., F. Li, N.J. D’Silva, E.H. Slate, and K.L. Kirkwood. 2013. Differential expression of mitogen activating protein kinases in periodontitis. Journal of Clinical Periodontology 40: 757–764.CrossRefPubMedPubMedCentral Travan, S., F. Li, N.J. D’Silva, E.H. Slate, and K.L. Kirkwood. 2013. Differential expression of mitogen activating protein kinases in periodontitis. Journal of Clinical Periodontology 40: 757–764.CrossRefPubMedPubMedCentral
34.
go back to reference Garcia de Aquino, S., F.R. Manzolli Leite, D.R. Stach-Machado, J.A. Francisco da Silva, L.C. Spolidorio, and C. Rossa. 2009. Signaling pathways associated with the expression of inflammatory mediators activated during the course of two models of experimental periodontitis. Life Sciences 84: 745–754.CrossRefPubMed Garcia de Aquino, S., F.R. Manzolli Leite, D.R. Stach-Machado, J.A. Francisco da Silva, L.C. Spolidorio, and C. Rossa. 2009. Signaling pathways associated with the expression of inflammatory mediators activated during the course of two models of experimental periodontitis. Life Sciences 84: 745–754.CrossRefPubMed
35.
go back to reference de Souza, J., C. Rossa Jr., G. Garlet, A. Nogueira, and J. Cirelli. 2012. Modulation of host cell signaling pathways as a therapeutic approach in periodontal disease. Journal of Applied Oral Science 20: 128–138.CrossRefPubMedPubMedCentral de Souza, J., C. Rossa Jr., G. Garlet, A. Nogueira, and J. Cirelli. 2012. Modulation of host cell signaling pathways as a therapeutic approach in periodontal disease. Journal of Applied Oral Science 20: 128–138.CrossRefPubMedPubMedCentral
36.
go back to reference Lee, J., S. Kumar, D. Griswold, D. Underwood, B. Votta, and J. Adams. 2000. Inhibition of p38 MAP kinase as a therapeutic strategy. Immunopharmacology 47: 185–201.CrossRefPubMed Lee, J., S. Kumar, D. Griswold, D. Underwood, B. Votta, and J. Adams. 2000. Inhibition of p38 MAP kinase as a therapeutic strategy. Immunopharmacology 47: 185–201.CrossRefPubMed
38.
go back to reference Elburki, M.S., D.D. Moore, N.G. Terezakis, Y. Zhang, H-M. Lee, F. Johnson, et al. 2017. A novel chemically modified curcumin reduces inflammation-mediated connective tissue breakdown in a rat model of diabetes: periodontal and systemic effects. Journal of Periodontal Research 52:186–200. Elburki, M.S., D.D. Moore, N.G. Terezakis, Y. Zhang, H-M. Lee, F. Johnson, et al. 2017. A novel chemically modified curcumin reduces inflammation-mediated connective tissue breakdown in a rat model of diabetes: periodontal and systemic effects. Journal of Periodontal Research 52:186–200. 
39.
go back to reference Epstein, F.H., P.J. Barnes, and M. Karin. 1997. Nuclear factor-κB—a pivotal transcription factor in chronic inflammatory diseases. The New England Journal of Medicine 336: 1066–1071.CrossRef Epstein, F.H., P.J. Barnes, and M. Karin. 1997. Nuclear factor-κB—a pivotal transcription factor in chronic inflammatory diseases. The New England Journal of Medicine 336: 1066–1071.CrossRef
40.
go back to reference Patil, C., X. Zhu, C. Rossa, Y.J. Kim, and K.L. Kirkwood. 2004. p38 MAPK regulates IL-1β induced IL-6 expression through mRNA stability in osteoblasts. Immunological Investigations 33: 213–233.CrossRefPubMedPubMedCentral Patil, C., X. Zhu, C. Rossa, Y.J. Kim, and K.L. Kirkwood. 2004. p38 MAPK regulates IL-1β induced IL-6 expression through mRNA stability in osteoblasts. Immunological Investigations 33: 213–233.CrossRefPubMedPubMedCentral
41.
go back to reference Rossa, C. Jr., M. Liu, C. Patil, and K.L. Kirkwood. 2005. MKK3/6—p38 MAPK negatively regulates murine MMP-13 gene expression induced by IL-1β and TNF-α in immortalized periodontal ligament fibroblasts. Matrix Biology 24: 478–488.CrossRefPubMed Rossa, C. Jr., M. Liu, C. Patil, and K.L. Kirkwood. 2005. MKK3/6—p38 MAPK negatively regulates murine MMP-13 gene expression induced by IL-1β and TNF-α in immortalized periodontal ligament fibroblasts. Matrix Biology 24: 478–488.CrossRefPubMed
42.
go back to reference Mbalaviele, G. 2006. Inhibition of p38 mitogen-activated protein kinase prevents inflammatory bone destruction. The Journal of Pharmacology and Experimental Therapeutics 317: 1044–1053.CrossRefPubMed Mbalaviele, G. 2006. Inhibition of p38 mitogen-activated protein kinase prevents inflammatory bone destruction. The Journal of Pharmacology and Experimental Therapeutics 317: 1044–1053.CrossRefPubMed
43.
go back to reference Rossa, C. Jr., K. Ehmann, M. Liu, C. Patil, and K.L. Kirkwood. 2006. MKK3/6-p38 MAPK signaling is required for IL-1 β and TNF-α-induced RANKL expression in bone marrow stromal cells. Journal of Interferon & Cytokine Research 26: 719–729.CrossRef Rossa, C. Jr., K. Ehmann, M. Liu, C. Patil, and K.L. Kirkwood. 2006. MKK3/6-p38 MAPK signaling is required for IL-1 β and TNF-α-induced RANKL expression in bone marrow stromal cells. Journal of Interferon & Cytokine Research 26: 719–729.CrossRef
44.
go back to reference Rogers, J.E., F. Li, D.D. Coatney, J. Otremba, J.M. Kriegl, A.A. Protter, et al. 2007. A p38 mitogen-activated protein kinase inhibitor arrests active alveolar bone loss in a rat periodontitis model. Journal of Periodontology 78: 1992–1998.CrossRefPubMed Rogers, J.E., F. Li, D.D. Coatney, J. Otremba, J.M. Kriegl, A.A. Protter, et al. 2007. A p38 mitogen-activated protein kinase inhibitor arrests active alveolar bone loss in a rat periodontitis model. Journal of Periodontology 78: 1992–1998.CrossRefPubMed
45.
go back to reference Guimarães, M.R., L.S. Coimbra, S.G. de Aquino, L.C. Spolidorio, K.L. Kirkwood, and C. Rossa. 2011. Potent anti-inflammatory effects of systemically administered curcumin modulate periodontal disease in vivo: Curcumin inhibits periodontal disease in vivo. Journal of Periodontal Research 46: 269–279.CrossRefPubMedPubMedCentral Guimarães, M.R., L.S. Coimbra, S.G. de Aquino, L.C. Spolidorio, K.L. Kirkwood, and C. Rossa. 2011. Potent anti-inflammatory effects of systemically administered curcumin modulate periodontal disease in vivo: Curcumin inhibits periodontal disease in vivo. Journal of Periodontal Research 46: 269–279.CrossRefPubMedPubMedCentral
46.
go back to reference Guimaraes, M.R., S.G. de Aquino, L.S. Coimbra, L.C. Spolidorio, K.L. Kirkwood, and C. Rossa. 2012. Curcumin modulates the immune response associated with LPS-induced periodontal disease in rats. Innate Immunity 18: 155–163.CrossRefPubMed Guimaraes, M.R., S.G. de Aquino, L.S. Coimbra, L.C. Spolidorio, K.L. Kirkwood, and C. Rossa. 2012. Curcumin modulates the immune response associated with LPS-induced periodontal disease in rats. Innate Immunity 18: 155–163.CrossRefPubMed
47.
go back to reference Preshaw, P.M. 2013. Diabetes and periodontitis: what’s it all about. Pract. Diabetes 30: 9–10.CrossRef Preshaw, P.M. 2013. Diabetes and periodontitis: what’s it all about. Pract. Diabetes 30: 9–10.CrossRef
48.
go back to reference Velea, O.A., C. Kralev, D. Onisei, D. Onisei, L.M. Nica, and I.P. Velea. 2013. Diabetes mellitus and periodontal disease—a two-way road: Current concepts and future considerations (literature review). Eur. Sci. J. 9: 61–79. Velea, O.A., C. Kralev, D. Onisei, D. Onisei, L.M. Nica, and I.P. Velea. 2013. Diabetes mellitus and periodontal disease—a two-way road: Current concepts and future considerations (literature review). Eur. Sci. J. 9: 61–79.
49.
go back to reference Meenawat, A., K. Punn, V. Srivastava, A. Meenawat, R. Dolsa, and V. Govila. 2013. Periodontal disease and type I diabetes mellitus: Associations with glycemic control and complications. J Indian Soc Periodontol 17: 597–600.CrossRefPubMedPubMedCentral Meenawat, A., K. Punn, V. Srivastava, A. Meenawat, R. Dolsa, and V. Govila. 2013. Periodontal disease and type I diabetes mellitus: Associations with glycemic control and complications. J Indian Soc Periodontol 17: 597–600.CrossRefPubMedPubMedCentral
50.
go back to reference Claudino, M., G. Gennaro, T.M. Cestari, C.T. Spadella, G.P. Garlet, and G.F. Assis. 2012. Spontaneous periodontitis development in diabetic rats involves an unrestricted expression of inflammatory cytokines and tissue destructive factors in the absence of major changes in commensal oral microbiota. Experimental Diabetes Research 2012: 1–10.CrossRef Claudino, M., G. Gennaro, T.M. Cestari, C.T. Spadella, G.P. Garlet, and G.F. Assis. 2012. Spontaneous periodontitis development in diabetic rats involves an unrestricted expression of inflammatory cytokines and tissue destructive factors in the absence of major changes in commensal oral microbiota. Experimental Diabetes Research 2012: 1–10.CrossRef
51.
go back to reference Liu, R., H.S. Bal, T. Desta, N. Krothapalli, M. Alyassi, Q. Luan, et al. 2006. Diabetes enhances periodontal bone loss through enhanced resorption and diminished bone formation. Journal of Dental Research 85: 510–514.CrossRefPubMedPubMedCentral Liu, R., H.S. Bal, T. Desta, N. Krothapalli, M. Alyassi, Q. Luan, et al. 2006. Diabetes enhances periodontal bone loss through enhanced resorption and diminished bone formation. Journal of Dental Research 85: 510–514.CrossRefPubMedPubMedCentral
52.
go back to reference Chang, K.M., N.S. Ramamurthy, T.F. McNamara, R.T. Evans, B. Klausen, and L.M. Golub. 1994. Tetracycline inhibit Porphyromonas gingivalis-induced alveolar bone loss in rats by a non-antimicrobial mechanism. J Periodont Res 29: 242–249.CrossRefPubMed Chang, K.M., N.S. Ramamurthy, T.F. McNamara, R.T. Evans, B. Klausen, and L.M. Golub. 1994. Tetracycline inhibit Porphyromonas gingivalis-induced alveolar bone loss in rats by a non-antimicrobial mechanism. J Periodont Res 29: 242–249.CrossRefPubMed
53.
go back to reference Bildt, M.M., M. Bloemen, A.M. Kuijpers-Jagtman, and J.W. Von den Hoff. 2008. Collagenolytic fragments and active gelatinase complexes in periodontitis. Journal of Periodontology 79: 1704–1711.CrossRefPubMed Bildt, M.M., M. Bloemen, A.M. Kuijpers-Jagtman, and J.W. Von den Hoff. 2008. Collagenolytic fragments and active gelatinase complexes in periodontitis. Journal of Periodontology 79: 1704–1711.CrossRefPubMed
54.
go back to reference Patil, C., C. Rossa, and K.L. Kirkwood. 2006. Actinobacillus actinomycetemcomitans lipopolysaccharide induces interleukin-6 expression through multiple mitogen-activated protein kinase pathways in periodontal ligament fibroblasts. Oral Microbiology and Immunology 21: 392–398.CrossRefPubMed Patil, C., C. Rossa, and K.L. Kirkwood. 2006. Actinobacillus actinomycetemcomitans lipopolysaccharide induces interleukin-6 expression through multiple mitogen-activated protein kinase pathways in periodontal ligament fibroblasts. Oral Microbiology and Immunology 21: 392–398.CrossRefPubMed
55.
go back to reference Plummer, S.M., K.A. Holloway, M.M. Manson, R.J. Munks, A. Kaptein, S. Farrow, et al. 1999. Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-κB activation via the NIK/IKK signalling complex. Oncogene 18: 6013–6020.CrossRefPubMed Plummer, S.M., K.A. Holloway, M.M. Manson, R.J. Munks, A. Kaptein, S. Farrow, et al. 1999. Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-κB activation via the NIK/IKK signalling complex. Oncogene 18: 6013–6020.CrossRefPubMed
56.
go back to reference Gaddipati, J.P., S.V. Sundar, J. Calemine, P. Seth, G.S. Sidhu, and R.K. Maheshwari. 2003. Differential regulation of cytokines and transcription factors in liver by curcumin following hemorrhage/resuscitation. Shock 19: 150–156.CrossRefPubMed Gaddipati, J.P., S.V. Sundar, J. Calemine, P. Seth, G.S. Sidhu, and R.K. Maheshwari. 2003. Differential regulation of cytokines and transcription factors in liver by curcumin following hemorrhage/resuscitation. Shock 19: 150–156.CrossRefPubMed
57.
go back to reference Goel, A., A.B. Kunnumakkara, and B.B. Aggarwal. 2008. Curcumin as “Curecumin”: From kitchen to clinic. Biochemical Pharmacology 75: 787–809.CrossRefPubMed Goel, A., A.B. Kunnumakkara, and B.B. Aggarwal. 2008. Curcumin as “Curecumin”: From kitchen to clinic. Biochemical Pharmacology 75: 787–809.CrossRefPubMed
58.
go back to reference Woo, M.-S., S.-H. Jung, S.-Y. Kim, J.-W. Hyun, K.-H. Ko, W.-K. Kim, et al. 2005. Curcumin suppresses phorbol ester-induced matrix metalloproteinase-9 expression by inhibiting the PKC to MAPK signaling pathways in human astroglioma cells. Biochemical and Biophysical Research Communications 335: 1017–1025.CrossRefPubMed Woo, M.-S., S.-H. Jung, S.-Y. Kim, J.-W. Hyun, K.-H. Ko, W.-K. Kim, et al. 2005. Curcumin suppresses phorbol ester-induced matrix metalloproteinase-9 expression by inhibiting the PKC to MAPK signaling pathways in human astroglioma cells. Biochemical and Biophysical Research Communications 335: 1017–1025.CrossRefPubMed
59.
go back to reference Guimarães, M.R., F.R.M. Leite, L.C. Spolidorio, K.L. Kirkwood, and C. Rossa. 2013. Curcumin abrogates LPS-induced pro-inflammatory cytokines in RAW 264.7 macrophages. Evidence for novel mechanisms involving SOCS-1, -3 and p38 MAPK. Archives of Oral Biology 58: 1309–1317.CrossRefPubMedPubMedCentral Guimarães, M.R., F.R.M. Leite, L.C. Spolidorio, K.L. Kirkwood, and C. Rossa. 2013. Curcumin abrogates LPS-induced pro-inflammatory cytokines in RAW 264.7 macrophages. Evidence for novel mechanisms involving SOCS-1, -3 and p38 MAPK. Archives of Oral Biology 58: 1309–1317.CrossRefPubMedPubMedCentral
60.
go back to reference Banerjee, M., L.M. Tripathi, V.M.L. Srivastava, A. Puri, and R. Shukla. 2003. Modulationof inflammatory mediators by ibuprofen and curcumin treatment during chronic inflammation in rat. Immunopharmacology and Immunotoxicology 25: 213–224.CrossRefPubMed Banerjee, M., L.M. Tripathi, V.M.L. Srivastava, A. Puri, and R. Shukla. 2003. Modulationof inflammatory mediators by ibuprofen and curcumin treatment during chronic inflammation in rat. Immunopharmacology and Immunotoxicology 25: 213–224.CrossRefPubMed
61.
go back to reference Fu, Y., S. Zheng, J. Lin, J. Ryerse, and A. Chen. 2007. Curcumin protects the rat liver from CCl4-caused injury and fibrogenesis by attenuating oxidative stress and suppressing inflammation. Molecular Pharmacology 73: 399–409.CrossRefPubMed Fu, Y., S. Zheng, J. Lin, J. Ryerse, and A. Chen. 2007. Curcumin protects the rat liver from CCl4-caused injury and fibrogenesis by attenuating oxidative stress and suppressing inflammation. Molecular Pharmacology 73: 399–409.CrossRefPubMed
62.
go back to reference Geivelis, M., W. Turner, E. Pederson, and B. Lamberts. 1993. Measurements of interleukin-6 in gingival crevicular fluid from adults with destructive periodontal disease. Journal of Periodontology 64: 980–983.CrossRefPubMed Geivelis, M., W. Turner, E. Pederson, and B. Lamberts. 1993. Measurements of interleukin-6 in gingival crevicular fluid from adults with destructive periodontal disease. Journal of Periodontology 64: 980–983.CrossRefPubMed
63.
go back to reference Offenbacher, S., P. Heasman, and G. Collins. 1993. Modulation of host PGE2 secretion as a determinant of periodontal disease expression. Journal of Periodontology 64: 432–444.PubMed Offenbacher, S., P. Heasman, and G. Collins. 1993. Modulation of host PGE2 secretion as a determinant of periodontal disease expression. Journal of Periodontology 64: 432–444.PubMed
64.
go back to reference Gamonal, J., A. Acevedo, A. Bascones, O. Jorge, and A. Silva. 2000. Levels of Interleukin-1β, -8, and -10 and RANTES in Gingival Crevicular Fluid and Cell Populations in Adult Periodontitis Patients and the Effect of Periodontal Treatment. Journal of Periodontology 71: 1535–1545.CrossRefPubMed Gamonal, J., A. Acevedo, A. Bascones, O. Jorge, and A. Silva. 2000. Levels of Interleukin-1β, -8, and -10 and RANTES in Gingival Crevicular Fluid and Cell Populations in Adult Periodontitis Patients and the Effect of Periodontal Treatment. Journal of Periodontology 71: 1535–1545.CrossRefPubMed
65.
go back to reference Ejeil, A., F. Gaultier, S. Igondjo-Tchen, K. Senni, B. Pellat, G. Godeau, et al. 2003. Are cytokines linked to collagen breakdown during periodontal disease progression? Journal of Periodontology 74: 196–201.CrossRefPubMed Ejeil, A., F. Gaultier, S. Igondjo-Tchen, K. Senni, B. Pellat, G. Godeau, et al. 2003. Are cytokines linked to collagen breakdown during periodontal disease progression? Journal of Periodontology 74: 196–201.CrossRefPubMed
66.
go back to reference Stashenko, P., J. Jandinski, P. Fujiyoshi, J. Ryna, and S. Socransky. 1991. Tissue levels of bone resorptive cytokines in periodontal disease. Journal of Periodontology 62: 504–509.CrossRefPubMed Stashenko, P., J. Jandinski, P. Fujiyoshi, J. Ryna, and S. Socransky. 1991. Tissue levels of bone resorptive cytokines in periodontal disease. Journal of Periodontology 62: 504–509.CrossRefPubMed
67.
go back to reference Gorska, R., H. Gregorek, J. Kowalski, A. Laskus-Perendyk, M. Syczewska, et al. 2003. Relationship between clinical parameters and cytokine profiles in inflamed gingival tissue and serum samples from patients with chronic periodontitis. Journal of Clinical Periodontology 30: 1046–1052.CrossRefPubMed Gorska, R., H. Gregorek, J. Kowalski, A. Laskus-Perendyk, M. Syczewska, et al. 2003. Relationship between clinical parameters and cytokine profiles in inflamed gingival tissue and serum samples from patients with chronic periodontitis. Journal of Clinical Periodontology 30: 1046–1052.CrossRefPubMed
68.
go back to reference DiDonato, J., M. Hayakawa, D. Rothwarf, E. Zandi, and M. Karin. 1997. A cytokine-responsive IkB kinase that activates the transcription factor NF-κB. Nature 388: 548–554.CrossRefPubMed DiDonato, J., M. Hayakawa, D. Rothwarf, E. Zandi, and M. Karin. 1997. A cytokine-responsive IkB kinase that activates the transcription factor NF-κB. Nature 388: 548–554.CrossRefPubMed
69.
go back to reference Mercurio, F. 1997. IKK-1 and IKK-2: Cytokine-activated IB kinases essential for NF-κB activation. Science 278: 860–866.CrossRefPubMed Mercurio, F. 1997. IKK-1 and IKK-2: Cytokine-activated IB kinases essential for NF-κB activation. Science 278: 860–866.CrossRefPubMed
70.
go back to reference Zhang, J.-H., Z.-S. Shangguan, C. Chen, H.-J. Zhang, and Y. Lin. 2016. Anti-inflammatory effects of guggulsterone on murine macrophage by inhibiting LPS-induced inflammatory cytokines in NF-κB signaling pathway. Drug Design, Development and Therapy 10: 1829–1835.CrossRefPubMedPubMedCentral Zhang, J.-H., Z.-S. Shangguan, C. Chen, H.-J. Zhang, and Y. Lin. 2016. Anti-inflammatory effects of guggulsterone on murine macrophage by inhibiting LPS-induced inflammatory cytokines in NF-κB signaling pathway. Drug Design, Development and Therapy 10: 1829–1835.CrossRefPubMedPubMedCentral
71.
go back to reference Robbins, J., B. Thomas, L. Tan, B. Choy, J. Arbiser, F. Berenbaum, et al. 2000. Immortalized human adult articular chondrocytes maintain cartilage-specific phenotype and responses to interleukin-1β. Arthritis and Rheumatism 43: 2189–2201.CrossRefPubMed Robbins, J., B. Thomas, L. Tan, B. Choy, J. Arbiser, F. Berenbaum, et al. 2000. Immortalized human adult articular chondrocytes maintain cartilage-specific phenotype and responses to interleukin-1β. Arthritis and Rheumatism 43: 2189–2201.CrossRefPubMed
72.
go back to reference Largo, R., M.A. Alvarez-Soria, I. Díez-Ortego, E. Calvo, O. Sánchez-Pernaute, J. Egido, et al. 2003. Glucosamine inhibits IL-1β-induced NFκB activation in human osteoarthritic chondrocytes. Osteoarthritis and Cartilage 11: 290–298.CrossRefPubMed Largo, R., M.A. Alvarez-Soria, I. Díez-Ortego, E. Calvo, O. Sánchez-Pernaute, J. Egido, et al. 2003. Glucosamine inhibits IL-1β-induced NFκB activation in human osteoarthritic chondrocytes. Osteoarthritis and Cartilage 11: 290–298.CrossRefPubMed
73.
go back to reference Page, R. 1998. The pathobiology of periodontal diseases may affect systemic diseases: Inversion of a paradigm. Annals of Periodontology 3: 108–120.CrossRefPubMed Page, R. 1998. The pathobiology of periodontal diseases may affect systemic diseases: Inversion of a paradigm. Annals of Periodontology 3: 108–120.CrossRefPubMed
74.
go back to reference Gu, Y., H-M. Lee, N. Napolitano, M. Clemens, Y. Zhang, T. Sorsa, et al. 2013. 4-Methoxycarbonyl Curcumin: A Unique Inhibitor of Both Inflammatory Mediators and Periodontal Inflammation. Mediators of Inflammation 2013: 1–10.CrossRef Gu, Y., H-M. Lee, N. Napolitano, M. Clemens, Y. Zhang, T. Sorsa, et al. 2013. 4-Methoxycarbonyl Curcumin: A Unique Inhibitor of Both Inflammatory Mediators and Periodontal Inflammation. Mediators of Inflammation 2013: 1–10.CrossRef
75.
go back to reference Geerlings, S.E., and A.I. Hoepelman. 1999. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunology and Medical Microbiology 26: 259–265.CrossRefPubMed Geerlings, S.E., and A.I. Hoepelman. 1999. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunology and Medical Microbiology 26: 259–265.CrossRefPubMed
76.
go back to reference Arakawa, T. 1995. Transcriptional Roles of Nuclear Factor kappaB and Nuclear Factor-Interleukin-6 in the Tumor Necrosis Factor alpha-Dependent Induction of Cyclooxygenase-2 in MC3T3-E1 Cells. The Journal of Biological Chemistry 270: 31315–31320.CrossRefPubMed Arakawa, T. 1995. Transcriptional Roles of Nuclear Factor kappaB and Nuclear Factor-Interleukin-6 in the Tumor Necrosis Factor alpha-Dependent Induction of Cyclooxygenase-2 in MC3T3-E1 Cells. The Journal of Biological Chemistry 270: 31315–31320.CrossRefPubMed
77.
go back to reference Esteve, P.O., E. Chicoine, O. Robledo, F. Aoudjit, A. Descoteaux, E.F. Potworowski, et al. 2002. Protein Kinase C- Regulates Transcription of the Matrix Metalloproteinase-9 Gene Induced by IL-1 and TNF-α in Glioma Cells via NF-κB. The Journal of Biological Chemistry 277: 35150–35155.CrossRefPubMed Esteve, P.O., E. Chicoine, O. Robledo, F. Aoudjit, A. Descoteaux, E.F. Potworowski, et al. 2002. Protein Kinase C- Regulates Transcription of the Matrix Metalloproteinase-9 Gene Induced by IL-1 and TNF-α in Glioma Cells via NF-κB. The Journal of Biological Chemistry 277: 35150–35155.CrossRefPubMed
78.
go back to reference Assuma, R., T. Oates, D. Cochran, S. Amar, and D.T. Graves. 1998. IL-1 and TNF antagonists inhibit the inflammatory response and bone loss in experimental periodontitis. Journal of Immunology 160: 403–409. Assuma, R., T. Oates, D. Cochran, S. Amar, and D.T. Graves. 1998. IL-1 and TNF antagonists inhibit the inflammatory response and bone loss in experimental periodontitis. Journal of Immunology 160: 403–409.
79.
go back to reference Graves, D., A. Delima, R. Assuma, S. Amar, T. Oates, and D. Cochran. 1998. Interleukin-1 and tumor necrosis factor antagonists inhibit the progression of inflammatory cell infiltration toward alveolar bone in experimental periodontitis. Journal of Periodontology 69: 1419–1425.CrossRefPubMed Graves, D., A. Delima, R. Assuma, S. Amar, T. Oates, and D. Cochran. 1998. Interleukin-1 and tumor necrosis factor antagonists inhibit the progression of inflammatory cell infiltration toward alveolar bone in experimental periodontitis. Journal of Periodontology 69: 1419–1425.CrossRefPubMed
80.
go back to reference Wei, S., H. Kitaura, P. Zhou, F.P. Ross, and S.L. Teitelbaum. 2005. IL-1 mediates TNF-induced osteoclastogenesis. The Journal of Clinical Investigation 115: 282–290.CrossRefPubMedPubMedCentral Wei, S., H. Kitaura, P. Zhou, F.P. Ross, and S.L. Teitelbaum. 2005. IL-1 mediates TNF-induced osteoclastogenesis. The Journal of Clinical Investigation 115: 282–290.CrossRefPubMedPubMedCentral
81.
go back to reference Delima, A.J., T. Oates, R. Assuma, Z. Schwartz, D. Cochran, S. Amar, et al. 2001. Soluble antagonists to interleukin-1 (IL-1) and tumor necrosis factor (TNF) inhibits loss of tissue attachment in experimental periodontitis. Journal of Clinical Periodontology 28: 233–240.CrossRefPubMed Delima, A.J., T. Oates, R. Assuma, Z. Schwartz, D. Cochran, S. Amar, et al. 2001. Soluble antagonists to interleukin-1 (IL-1) and tumor necrosis factor (TNF) inhibits loss of tissue attachment in experimental periodontitis. Journal of Clinical Periodontology 28: 233–240.CrossRefPubMed
82.
go back to reference Sylvester, J., A. Liacini, W. Li, F. Dehnade, and M. Zafarullah. 2001. Tripterygium wilfordii Hook F extract suppresses proinflammatory cytokine-induced expression of matrix metalloproteinase genes in articular chondrocytes by inhibiting activating protein-1 and nuclear factor-κB activities. Molecular Pharmacology 59: 1196–1205.PubMed Sylvester, J., A. Liacini, W. Li, F. Dehnade, and M. Zafarullah. 2001. Tripterygium wilfordii Hook F extract suppresses proinflammatory cytokine-induced expression of matrix metalloproteinase genes in articular chondrocytes by inhibiting activating protein-1 and nuclear factor-κB activities. Molecular Pharmacology 59: 1196–1205.PubMed
83.
go back to reference Mengshol, J., M. Vincenti, Coon, A. Barchowsky, and C. Brimckerhoff. 2000. Interleukin-1 Induction of Collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-JUN N-terminal kinase, and nuclear factor κB differential regulation of collagenase 1 and collagenase 3. Arthritis and Rheumatism 43: 801–811.CrossRefPubMed Mengshol, J., M. Vincenti, Coon, A. Barchowsky, and C. Brimckerhoff. 2000. Interleukin-1 Induction of Collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-JUN N-terminal kinase, and nuclear factor κB differential regulation of collagenase 1 and collagenase 3. Arthritis and Rheumatism 43: 801–811.CrossRefPubMed
84.
go back to reference Sakai, T., F. Kambe, H. Mitsuyama, N. Ishiguro, K. Kurokouchi, M. Takigawa, et al. 2001. Tumor necrosis factor α induces expression of genes for matrix degradation in human chondrocyte-like HCS-2/8 cells through activation of NF-κB: Abrogation of the tumor necrosis factor a effect by proteasome inhibitors. Journal of Bone and Mineral Research 16: 1272–1280.CrossRefPubMed Sakai, T., F. Kambe, H. Mitsuyama, N. Ishiguro, K. Kurokouchi, M. Takigawa, et al. 2001. Tumor necrosis factor α induces expression of genes for matrix degradation in human chondrocyte-like HCS-2/8 cells through activation of NF-κB: Abrogation of the tumor necrosis factor a effect by proteasome inhibitors. Journal of Bone and Mineral Research 16: 1272–1280.CrossRefPubMed
85.
go back to reference Liacini, A., J. Sylvester, W.Q. Li, and M. Zafarullah. 2002. Inhibition of interleukin-1-stimulated MAP kinases, activating protein-1 (AP-1) and nuclear factor kappa B (NF-κB) transcription factors down-regulates matrix metalloproteinase gene expression in articular chondrocytes. Matrix Biology 21: 251–262.CrossRefPubMed Liacini, A., J. Sylvester, W.Q. Li, and M. Zafarullah. 2002. Inhibition of interleukin-1-stimulated MAP kinases, activating protein-1 (AP-1) and nuclear factor kappa B (NF-κB) transcription factors down-regulates matrix metalloproteinase gene expression in articular chondrocytes. Matrix Biology 21: 251–262.CrossRefPubMed
86.
go back to reference Singh, R., S. Ahmed, N. Islam, V.M. Goldberg, and T.M. Haqqi. 2002. Epigallocatechin-3-gallate inhibits interleukin-1?-induced expression of nitric oxide synthase and production of nitric oxide in human chondrocytes: Suppression of nuclear factor κB activation by degradation of the inhibitor of nuclear factor κB. Arthritis and Rheumatism 46: 2079–2086.CrossRefPubMed Singh, R., S. Ahmed, N. Islam, V.M. Goldberg, and T.M. Haqqi. 2002. Epigallocatechin-3-gallate inhibits interleukin-1?-induced expression of nitric oxide synthase and production of nitric oxide in human chondrocytes: Suppression of nuclear factor κB activation by degradation of the inhibitor of nuclear factor κB. Arthritis and Rheumatism 46: 2079–2086.CrossRefPubMed
87.
go back to reference Schmitz, J., D. Dean, Z. Schwartz, D. Cochran, G. Grant, R. Klebe, et al. 1996. Chondrocyte cultures express matrix metalloproteinase mRNA and immunoreactive protein; stromelysin-1 and 72 kDa gelatinase are localized in extracellular matrix vesicles. Journal of Cellular Biochemistry 61: 375–391.CrossRefPubMed Schmitz, J., D. Dean, Z. Schwartz, D. Cochran, G. Grant, R. Klebe, et al. 1996. Chondrocyte cultures express matrix metalloproteinase mRNA and immunoreactive protein; stromelysin-1 and 72 kDa gelatinase are localized in extracellular matrix vesicles. Journal of Cellular Biochemistry 61: 375–391.CrossRefPubMed
88.
go back to reference Visse, R., and H. Nagase. 2003. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circulation Research 92: 827–839.CrossRefPubMed Visse, R., and H. Nagase. 2003. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circulation Research 92: 827–839.CrossRefPubMed
89.
go back to reference Shakibaei, M., T. John, G. Schulze-Tanzil, I. Lehmann, and A. Mobasheri. 2007. Suppression of NF-κB activation by curcumin leads to inhibition of expression of cyclo-oxygenase-2 and matrix metalloproteinase-9 in human articular chondrocytes: Implications for the treatment of osteoarthritis. Biochemical Pharmacology 73: 1434–1445.CrossRefPubMed Shakibaei, M., T. John, G. Schulze-Tanzil, I. Lehmann, and A. Mobasheri. 2007. Suppression of NF-κB activation by curcumin leads to inhibition of expression of cyclo-oxygenase-2 and matrix metalloproteinase-9 in human articular chondrocytes: Implications for the treatment of osteoarthritis. Biochemical Pharmacology 73: 1434–1445.CrossRefPubMed
90.
go back to reference Hudson, M.P., P.W. Armstrong, W. Ruzyllo, J. Brum, L. Cusmano, P. Krzeski, et al. 2006. Effects of selective matrix metalloproteinase inhibitor (PG-116800) to prevent ventricular remodeling after myocardial infarction. Journal of the American College of Cardiology 48: 15–20.CrossRefPubMed Hudson, M.P., P.W. Armstrong, W. Ruzyllo, J. Brum, L. Cusmano, P. Krzeski, et al. 2006. Effects of selective matrix metalloproteinase inhibitor (PG-116800) to prevent ventricular remodeling after myocardial infarction. Journal of the American College of Cardiology 48: 15–20.CrossRefPubMed
91.
go back to reference Krzeski, P., C. Buckland-Wright, G. Bálint, G.A. Cline, K. Stoner, R. Lyon, et al. 2007. Development of musculoskeletal toxicity without clear benefit after administration of PG-116800, a matrix metalloproteinase inhibitor, to patients with knee osteoarthritis: a randomized, 12-month, double-blind, placebo-controlled study. Arthritis Research & Therapy 9: 1.CrossRef Krzeski, P., C. Buckland-Wright, G. Bálint, G.A. Cline, K. Stoner, R. Lyon, et al. 2007. Development of musculoskeletal toxicity without clear benefit after administration of PG-116800, a matrix metalloproteinase inhibitor, to patients with knee osteoarthritis: a randomized, 12-month, double-blind, placebo-controlled study. Arthritis Research & Therapy 9: 1.CrossRef
92.
go back to reference Bissett, D. 2005. Phase III study of matrix metalloproteinase inhibitor prinomastat in non-small-cell lung cancer. Journal of Clinical Oncology 23: 842–849.CrossRefPubMed Bissett, D. 2005. Phase III study of matrix metalloproteinase inhibitor prinomastat in non-small-cell lung cancer. Journal of Clinical Oncology 23: 842–849.CrossRefPubMed
93.
go back to reference Koide, N., A. Kaneda, T. Yokochi, and K. Umezawa. 2015. Inhibition of RANKL- and LPS-induced osteoclast differentiations by novel NF-κB inhibitor DTCM-glutarimide. International Immunopharmacology 25: 162–168.CrossRefPubMed Koide, N., A. Kaneda, T. Yokochi, and K. Umezawa. 2015. Inhibition of RANKL- and LPS-induced osteoclast differentiations by novel NF-κB inhibitor DTCM-glutarimide. International Immunopharmacology 25: 162–168.CrossRefPubMed
94.
go back to reference Abu-Amer, Y. 2013. NF-κB signaling and bone resorption. Osteoporosis International 24: 2377–2386.CrossRefPubMed Abu-Amer, Y. 2013. NF-κB signaling and bone resorption. Osteoporosis International 24: 2377–2386.CrossRefPubMed
95.
go back to reference Jimi, E., K. Aoki, H. Saito, F. D’Acquisto, M.J. May, I. Nakamura, et al. 2004. Selective inhibition of NF-κB blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nature Medicine 10: 617–624.CrossRefPubMed Jimi, E., K. Aoki, H. Saito, F. D’Acquisto, M.J. May, I. Nakamura, et al. 2004. Selective inhibition of NF-κB blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nature Medicine 10: 617–624.CrossRefPubMed
96.
go back to reference Yang, S., X. Li, L. Cheng, H. Wu, C. Zhang, and K. Li. 2015. Tenuigenin inhibits RANKL-induced osteoclastogenesis by down-regulating NF-κB activation and suppresses bone loss in vivo. Biochemical and Biophysical Research Communications 466: 615–621.CrossRefPubMed Yang, S., X. Li, L. Cheng, H. Wu, C. Zhang, and K. Li. 2015. Tenuigenin inhibits RANKL-induced osteoclastogenesis by down-regulating NF-κB activation and suppresses bone loss in vivo. Biochemical and Biophysical Research Communications 466: 615–621.CrossRefPubMed
97.
go back to reference Lee, J., and P. Young. 1996. Role of CSBP/p38/RK stress response kinase in LPS and cytokine signaling mechanisms. Journal of Leukocyte Biology 59: 152–157.PubMed Lee, J., and P. Young. 1996. Role of CSBP/p38/RK stress response kinase in LPS and cytokine signaling mechanisms. Journal of Leukocyte Biology 59: 152–157.PubMed
Metadata
Title
A Chemically Modified Curcumin (CMC 2.24) Inhibits Nuclear Factor κB Activation and Inflammatory Bone Loss in Murine Models of LPS-Induced Experimental Periodontitis and Diabetes-Associated Natural Periodontitis
Authors
Muna S. Elburki
Carlos Rossa Jr
Morgana R. Guimarães-Stabili
Hsi-Ming Lee
Fabiana A. Curylofo-Zotti
Francis Johnson
Lorne M. Golub
Publication date
01-08-2017
Publisher
Springer US
Published in
Inflammation / Issue 4/2017
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0587-4

Other articles of this Issue 4/2017

Inflammation 4/2017 Go to the issue