Skip to main content
Top
Published in: Inflammation 3/2017

01-06-2017 | ORIGINAL ARTICLE

BTP2, a Store-Operated Calcium Channel Inhibitor, Attenuates Lung Ischemia-Reperfusion Injury in Rats

Authors: Wei Zhang, Zeyou Qi, Yaping Wang

Published in: Inflammation | Issue 3/2017

Login to get access

Abstract

Lung ischemia-reperfusion (I/R) injury is a critical complication following a lung transplant, cardiopulmonary bypass, pulmonary embolism, and trauma. Immune cells and their effector functions are involved in the lung I/R injury. Store-operated calcium channels (SOCC) are highly Ca2+-selective cation channels and have crucial effects on the immune system. It has been indicated that BTP2, a potent SOCC blocker, could inhibit pro-inflammatory cytokine production from immune cells both in vitro and in vivo. Therefore, this study was conducted to investigate the beneficial effects of BTP2 on lung I/R injury in Sprague-Dawley (SD) rats. The left lungs of male SD rats underwent ischemia for 60 min and reperfusion for 2 h. Treated animals received BTP2 4 mg/kg or 10 mg/kg intraperitoneally 30 min before the ischemia. The results revealed that pretreatment with BTP2 markedly attenuated I/R injury-induced pulmonary edema, microvascular protein leakage, neutrophil infiltration, adhesion molecules, cytokine production (e.g., ICAM-1, TNF-α, IL-1β, and IL-2), and the transcription factor nuclear factor of activated T cells c1 nuclear translocation in the lung tissue. These findings indicate that BTP2 can be a potential therapeutic drug for lung I/R injury and suggest that SOCC may play a critical role in lung I/R injury.
Literature
1.
go back to reference de Perrot, M., M.Y. Liu, T.K. Waddell, and S. Keshavjee. 2003. Ischemia-reperfusion-induced lung injury. American Journal of Respiratory and Critical Care Medicine 167: 490–511.CrossRefPubMed de Perrot, M., M.Y. Liu, T.K. Waddell, and S. Keshavjee. 2003. Ischemia-reperfusion-induced lung injury. American Journal of Respiratory and Critical Care Medicine 167: 490–511.CrossRefPubMed
2.
go back to reference Apostolakis, E., K.S. Filos, E. Koletsis, and D. Dougenis. 2010. Lung dysfunction following cardiopulmonary bypass. Journal of Cardiac Surgery 25: 47–55.CrossRefPubMed Apostolakis, E., K.S. Filos, E. Koletsis, and D. Dougenis. 2010. Lung dysfunction following cardiopulmonary bypass. Journal of Cardiac Surgery 25: 47–55.CrossRefPubMed
3.
go back to reference den Hengst, W.A., J.F. Gielis, J.Y. Lin, P.E. Van Schil, L.J. De Windt, and A.L. Moens. 2010. Lung ischemia-reperfusion injury: a molecular and clinical view on a complex pathophysiological process. American Journal of Physiology. Heart and Circulatory Physiology 299: H1283–H1299.CrossRef den Hengst, W.A., J.F. Gielis, J.Y. Lin, P.E. Van Schil, L.J. De Windt, and A.L. Moens. 2010. Lung ischemia-reperfusion injury: a molecular and clinical view on a complex pathophysiological process. American Journal of Physiology. Heart and Circulatory Physiology 299: H1283–H1299.CrossRef
4.
go back to reference Krishnadasan, B., B. Naidu, M. Rosengart, A.L. Farr, A. Barnes, E.D. Verrier, and M.S. Mulligan. 2002. Decreased lung ischemia-reperfusion injury in rats after preoperative administration of cyclosporine and tacrolimus. The Journal of Thoracic and Cardiovascular Surgery 123: 756–767.CrossRefPubMed Krishnadasan, B., B. Naidu, M. Rosengart, A.L. Farr, A. Barnes, E.D. Verrier, and M.S. Mulligan. 2002. Decreased lung ischemia-reperfusion injury in rats after preoperative administration of cyclosporine and tacrolimus. The Journal of Thoracic and Cardiovascular Surgery 123: 756–767.CrossRefPubMed
5.
go back to reference Linfert, D., T. Chowdhry, and H. Rabb. 2009. Lymphocytes and ischemia-reperfusion injury. Transplantation Reviews (Orlando, Fla.) 23: 1–10.CrossRef Linfert, D., T. Chowdhry, and H. Rabb. 2009. Lymphocytes and ischemia-reperfusion injury. Transplantation Reviews (Orlando, Fla.) 23: 1–10.CrossRef
6.
go back to reference Yang, Z., A.K. Sharma, J. Linden, I.L. Kron, and V.E. Laubach. 2009. CD4+ T lymphocytes mediate acute pulmonary ischemia-reperfusion injury. The Journal of Thoracic and Cardiovascular Surgery 137: 695–702. discussion 702.CrossRefPubMedPubMedCentral Yang, Z., A.K. Sharma, J. Linden, I.L. Kron, and V.E. Laubach. 2009. CD4+ T lymphocytes mediate acute pulmonary ischemia-reperfusion injury. The Journal of Thoracic and Cardiovascular Surgery 137: 695–702. discussion 702.CrossRefPubMedPubMedCentral
7.
go back to reference Kalogeris, T., C.P. Baines, M. Krenz, and R.J. Korthuis. 2012. Cell biology of ischemia/reperfusion injury. International Review of Cell and Molecular Biology 298: 229–317.CrossRefPubMedPubMedCentral Kalogeris, T., C.P. Baines, M. Krenz, and R.J. Korthuis. 2012. Cell biology of ischemia/reperfusion injury. International Review of Cell and Molecular Biology 298: 229–317.CrossRefPubMedPubMedCentral
8.
go back to reference Swoboda, L., D.E. Clancy, M.A. Donnebrink, and C.M. Rieder-Nelissen. 1993. The influence of verapamil on lung preservation. A study on rabbit lungs with a reperfusion model allowing physiological loading. The Thoracic and Cardiovascular Surgeon 41: 85–92.CrossRefPubMed Swoboda, L., D.E. Clancy, M.A. Donnebrink, and C.M. Rieder-Nelissen. 1993. The influence of verapamil on lung preservation. A study on rabbit lungs with a reperfusion model allowing physiological loading. The Thoracic and Cardiovascular Surgeon 41: 85–92.CrossRefPubMed
9.
go back to reference Yokomise, H., T. Ueno, F. Yamazaki, S. Keshavjee, A. Slutsky, and G. Patterson. 1990. The effect and optimal time of administration of verapamil on lung preservation. Transplantation 49: 1039–1043.CrossRefPubMed Yokomise, H., T. Ueno, F. Yamazaki, S. Keshavjee, A. Slutsky, and G. Patterson. 1990. The effect and optimal time of administration of verapamil on lung preservation. Transplantation 49: 1039–1043.CrossRefPubMed
10.
go back to reference Karck, M., and A. Haverich. 1992. Nifedipine and diltiazem reduce pulmonary edema formation during postischemic reperfusion of the rabbit lung. Research in Experimental Medicine (Berl) 192: 137–144.CrossRef Karck, M., and A. Haverich. 1992. Nifedipine and diltiazem reduce pulmonary edema formation during postischemic reperfusion of the rabbit lung. Research in Experimental Medicine (Berl) 192: 137–144.CrossRef
11.
go back to reference Soboloff, J., M.A. Spassova, X.D. Tang, T. Hewavitharana, W. Xu, and D.L. Gill. 2006. Orai1 and STIM reconstitute store-operated calcium channel function. Journal Of Biological Chemistry 281: 20661–20665.CrossRefPubMed Soboloff, J., M.A. Spassova, X.D. Tang, T. Hewavitharana, W. Xu, and D.L. Gill. 2006. Orai1 and STIM reconstitute store-operated calcium channel function. Journal Of Biological Chemistry 281: 20661–20665.CrossRefPubMed
12.
go back to reference Perni, S., J. L. Dynes, A. V. Yeromin, M. D. Cahalan, and C. Franzini-Armstrong. 2015. Nanoscale patterning of STIM1 and Orai1 during store-operated Ca2+ entry. Proc Natl Acad Sci U S A. Perni, S., J. L. Dynes, A. V. Yeromin, M. D. Cahalan, and C. Franzini-Armstrong. 2015. Nanoscale patterning of STIM1 and Orai1 during store-operated Ca2+ entry. Proc Natl Acad Sci U S A.
13.
go back to reference Shaw, P.J., B. Qu, M. Hoth, and S. Feske. 2013. Molecular regulation of CRAC channels and their role in lymphocyte function. Cellular and Molecular Life Sciences 70: 2637–2656.CrossRefPubMed Shaw, P.J., B. Qu, M. Hoth, and S. Feske. 2013. Molecular regulation of CRAC channels and their role in lymphocyte function. Cellular and Molecular Life Sciences 70: 2637–2656.CrossRefPubMed
14.
go back to reference Parekh, A.B. 2010. Store-operated CRAC channels: function in health and disease. Nature Reviews. Drug Discovery 9: 399–410.CrossRefPubMed Parekh, A.B. 2010. Store-operated CRAC channels: function in health and disease. Nature Reviews. Drug Discovery 9: 399–410.CrossRefPubMed
15.
go back to reference Shaw, P.J., and S. Feske. 2012. Physiological and pathophysiological functions of SOCE in the immune system. Frontiers in Bioscience (Elite Edition) 4: 2253–2268.CrossRef Shaw, P.J., and S. Feske. 2012. Physiological and pathophysiological functions of SOCE in the immune system. Frontiers in Bioscience (Elite Edition) 4: 2253–2268.CrossRef
16.
go back to reference Di Sabatino, A., L. Rovedatti, R. Kaur, J.P. Spencer, J.T. Brown, V.D. Morisset, P. Biancheri, et al. 2009. Targeting gut T cell Ca2+ release-activated Ca2+ channels inhibits T cell cytokine production and T-box transcription factor T-bet in inflammatory bowel disease. Journal of Immunology 183: 3454–3462.CrossRef Di Sabatino, A., L. Rovedatti, R. Kaur, J.P. Spencer, J.T. Brown, V.D. Morisset, P. Biancheri, et al. 2009. Targeting gut T cell Ca2+ release-activated Ca2+ channels inhibits T cell cytokine production and T-box transcription factor T-bet in inflammatory bowel disease. Journal of Immunology 183: 3454–3462.CrossRef
17.
go back to reference Wen, L., S. Voronina, M.A. Javed, M. Awais, P. Szatmary, D. Latawiec, M. Chvanov, et al. 2015. Inhibitors of ORAI1 prevent cytosolic calcium-associated injury of human pancreatic acinar cells and acute pancreatitis in 3 mouse models. Gastroenterology 149: 481–492 e487.CrossRefPubMedPubMedCentral Wen, L., S. Voronina, M.A. Javed, M. Awais, P. Szatmary, D. Latawiec, M. Chvanov, et al. 2015. Inhibitors of ORAI1 prevent cytosolic calcium-associated injury of human pancreatic acinar cells and acute pancreatitis in 3 mouse models. Gastroenterology 149: 481–492 e487.CrossRefPubMedPubMedCentral
18.
go back to reference Ma, J., C.A. McCarl, S. Khalil, K. Luthy, and S. Feske. 2010. T-cell-specific deletion of STIM1 and STIM2 protects mice from EAE by impairing the effector functions of Th1 and Th17 cells. European Journal of Immunology 40: 3028–3042.CrossRefPubMedPubMedCentral Ma, J., C.A. McCarl, S. Khalil, K. Luthy, and S. Feske. 2010. T-cell-specific deletion of STIM1 and STIM2 protects mice from EAE by impairing the effector functions of Th1 and Th17 cells. European Journal of Immunology 40: 3028–3042.CrossRefPubMedPubMedCentral
19.
go back to reference Braun, A., D. Varga-Szabo, C. Kleinschnitz, I. Pleines, M. Bender, M. Austinat, M. Bosl, G. Stoll, and B. Nieswandt. 2009. Orai1 (CRACM1) is the platelet SOC channel and essential for pathological thrombus formation. Blood 113: 2056–2063.CrossRefPubMed Braun, A., D. Varga-Szabo, C. Kleinschnitz, I. Pleines, M. Bender, M. Austinat, M. Bosl, G. Stoll, and B. Nieswandt. 2009. Orai1 (CRACM1) is the platelet SOC channel and essential for pathological thrombus formation. Blood 113: 2056–2063.CrossRefPubMed
20.
go back to reference Gao, X.H., R. Gao, Y.Z. Tian, P. McGonigle, J.E. Barrett, Y. Dai, and H. Hu. 2015. A store-operated calcium channel inhibitor attenuates collagen-induced arthritis. British Journal of Pharmacology 172: 2991–3002.CrossRefPubMedPubMedCentral Gao, X.H., R. Gao, Y.Z. Tian, P. McGonigle, J.E. Barrett, Y. Dai, and H. Hu. 2015. A store-operated calcium channel inhibitor attenuates collagen-induced arthritis. British Journal of Pharmacology 172: 2991–3002.CrossRefPubMedPubMedCentral
21.
go back to reference Ishikawa, J., K. Ohga, T. Yoshino, R. Takezawa, A. Ichikawa, H. Kubota, and T. Yamada. 2003. A pyrazole derivative, YM-58483, potently inhibits store-operated sustained Ca2+ influx and IL-2 production in T lymphocytes. Journal of Immunology 170: 4441–4449.CrossRef Ishikawa, J., K. Ohga, T. Yoshino, R. Takezawa, A. Ichikawa, H. Kubota, and T. Yamada. 2003. A pyrazole derivative, YM-58483, potently inhibits store-operated sustained Ca2+ influx and IL-2 production in T lymphocytes. Journal of Immunology 170: 4441–4449.CrossRef
22.
go back to reference Zitt, C., B. Strauss, E.C. Schwarz, N. Spaeth, G. Rast, A. Hatzelmann, and M. Hoth. 2004. Potent inhibition of Ca2+ release-activated Ca2+ channels and T-lymphocyte activation by the pyrazole derivative BTP2. The Journal of Biological Chemistry 279: 12427–12437.CrossRefPubMed Zitt, C., B. Strauss, E.C. Schwarz, N. Spaeth, G. Rast, A. Hatzelmann, and M. Hoth. 2004. Potent inhibition of Ca2+ release-activated Ca2+ channels and T-lymphocyte activation by the pyrazole derivative BTP2. The Journal of Biological Chemistry 279: 12427–12437.CrossRefPubMed
23.
go back to reference Steinckwich, N., J.P. Frippiat, M.J. Stasia, M. Erard, R. Boxio, C. Tankosic, I. Doignon, and O. Nusse. 2007. Potent inhibition of store-operated Ca2+ influx and superoxide production in HL60 cells and polymorphonuclear neutrophils by the pyrazole derivative BTP2. Journal of Leukocyte Biology 81: 1054–1064.CrossRefPubMed Steinckwich, N., J.P. Frippiat, M.J. Stasia, M. Erard, R. Boxio, C. Tankosic, I. Doignon, and O. Nusse. 2007. Potent inhibition of store-operated Ca2+ influx and superoxide production in HL60 cells and polymorphonuclear neutrophils by the pyrazole derivative BTP2. Journal of Leukocyte Biology 81: 1054–1064.CrossRefPubMed
24.
go back to reference Ohga, K., R. Takezawa, T. Yoshino, T. Yamada, Y. Shimizu, and J. Ishikawa. 2008. The suppressive effects of YM-58483/BTP-2, a store-operated Ca2+ entry blocker, on inflammatory mediator release in vitro and airway responses in vivo. Pulmonary Pharmacology & Therapeutics 21: 360–369.CrossRef Ohga, K., R. Takezawa, T. Yoshino, T. Yamada, Y. Shimizu, and J. Ishikawa. 2008. The suppressive effects of YM-58483/BTP-2, a store-operated Ca2+ entry blocker, on inflammatory mediator release in vitro and airway responses in vivo. Pulmonary Pharmacology & Therapeutics 21: 360–369.CrossRef
25.
go back to reference Yoshino, T., J. Ishikawa, K. Ohga, T. Morokata, R. Takezawa, H. Morio, Y. Okada, K. Honda, and T. Yamada. 2007. YM-58483, a selective CRAC channel inhibitor, prevents antigen-induced airway eosinophilia and late phase asthmatic responses via Th2 cytokine inhibition in animal models. European Journal of Pharmacology 560: 225–233.CrossRefPubMed Yoshino, T., J. Ishikawa, K. Ohga, T. Morokata, R. Takezawa, H. Morio, Y. Okada, K. Honda, and T. Yamada. 2007. YM-58483, a selective CRAC channel inhibitor, prevents antigen-induced airway eosinophilia and late phase asthmatic responses via Th2 cytokine inhibition in animal models. European Journal of Pharmacology 560: 225–233.CrossRefPubMed
26.
go back to reference Qi, Z., Y. Wang, H. Zhou, N. Liang, L. Yang, L. Liu, and W. Zhang. 2015. The central analgesic mechanism of YM-58483 in attenuating neuropathic pain in rats. Cell Mol Neurobiol. Qi, Z., Y. Wang, H. Zhou, N. Liang, L. Yang, L. Liu, and W. Zhang. 2015. The central analgesic mechanism of YM-58483 in attenuating neuropathic pain in rats. Cell Mol Neurobiol.
27.
go back to reference Zhang, X., P. Shan, L.E. Otterbein, J. Alam, R.A. Flavell, R.J. Davis, A.M. Choi, and P.J. Lee. 2003. Carbon monoxide inhibition of apoptosis during ischemia-reperfusion lung injury is dependent on the p38 mitogen-activated protein kinase pathway and involves caspase 3. The Journal of Biological Chemistry 278: 1248–1258.CrossRefPubMed Zhang, X., P. Shan, L.E. Otterbein, J. Alam, R.A. Flavell, R.J. Davis, A.M. Choi, and P.J. Lee. 2003. Carbon monoxide inhibition of apoptosis during ischemia-reperfusion lung injury is dependent on the p38 mitogen-activated protein kinase pathway and involves caspase 3. The Journal of Biological Chemistry 278: 1248–1258.CrossRefPubMed
28.
go back to reference Yamada, T., M. Hisanaga, Y. Nakajima, S. Mizuno, K. Matsumoto, T. Nakamura, and H. Nakano. 2000. Enhanced expression of hepatocyte growth factor by pulmonary ischemia-reperfusion injury in the rat. American Journal of Respiratory and Critical Care Medicine 162: 707–715.CrossRefPubMed Yamada, T., M. Hisanaga, Y. Nakajima, S. Mizuno, K. Matsumoto, T. Nakamura, and H. Nakano. 2000. Enhanced expression of hepatocyte growth factor by pulmonary ischemia-reperfusion injury in the rat. American Journal of Respiratory and Critical Care Medicine 162: 707–715.CrossRefPubMed
29.
go back to reference Matute-Bello, G., G. Downey, B.B. Moore, S.D. Groshong, M.A. Matthay, A.S. Slutsky, W.M. Kuebler, and Group Acute Lung Injury in Animals Study. 2011. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. American Journal of Respiratory Cell and Molecular Biology 44: 725–738.CrossRefPubMed Matute-Bello, G., G. Downey, B.B. Moore, S.D. Groshong, M.A. Matthay, A.S. Slutsky, W.M. Kuebler, and Group Acute Lung Injury in Animals Study. 2011. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. American Journal of Respiratory Cell and Molecular Biology 44: 725–738.CrossRefPubMed
30.
go back to reference Gandhirajan, R.K., S. Meng, H.C. Chandramoorthy, K. Mallilankaraman, S. Mancarella, H. Gao, R. Razmpour, et al. 2013. Blockade of NOX2 and STIM1 signaling limits lipopolysaccharide-induced vascular inflammation. The Journal of Clinical Investigation 123: 887–902.PubMedPubMedCentral Gandhirajan, R.K., S. Meng, H.C. Chandramoorthy, K. Mallilankaraman, S. Mancarella, H. Gao, R. Razmpour, et al. 2013. Blockade of NOX2 and STIM1 signaling limits lipopolysaccharide-induced vascular inflammation. The Journal of Clinical Investigation 123: 887–902.PubMedPubMedCentral
31.
go back to reference Prakriya, M., S. Feske, Y. Gwack, S. Srikanth, A. Rao, and P.G. Hogan. 2006. Orai1 is an essential pore subunit of the CRAC channel. Nature 443: 230–233.CrossRefPubMed Prakriya, M., S. Feske, Y. Gwack, S. Srikanth, A. Rao, and P.G. Hogan. 2006. Orai1 is an essential pore subunit of the CRAC channel. Nature 443: 230–233.CrossRefPubMed
32.
go back to reference Feske, S. 2009. ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond. Immunological Reviews 231: 189–209.CrossRefPubMed Feske, S. 2009. ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond. Immunological Reviews 231: 189–209.CrossRefPubMed
36.
go back to reference Eltzschig, H.K., and T. Eckle. 2011. Ischemia and reperfusion—from mechanism to translation. Nature Medicine 17: 1391–1401.CrossRefPubMed Eltzschig, H.K., and T. Eckle. 2011. Ischemia and reperfusion—from mechanism to translation. Nature Medicine 17: 1391–1401.CrossRefPubMed
37.
go back to reference Toda, K., K. Kayano, A. Karimova, Y. Naka, T. Fujita, K. Minamoto, C.Y. Wang, and D.J. Pinsky. 2000. Antisense intercellular adhesion molecule-1 (ICAM-1) oligodeoxyribonucleotide delivered during organ preservation inhibits posttransplant ICAM-1 expression and reduces primary lung isograft failure. Circulation Research 86: 166–174.CrossRefPubMed Toda, K., K. Kayano, A. Karimova, Y. Naka, T. Fujita, K. Minamoto, C.Y. Wang, and D.J. Pinsky. 2000. Antisense intercellular adhesion molecule-1 (ICAM-1) oligodeoxyribonucleotide delivered during organ preservation inhibits posttransplant ICAM-1 expression and reduces primary lung isograft failure. Circulation Research 86: 166–174.CrossRefPubMed
38.
go back to reference Muro, S., and V.R. Muzykantov. 2005. Targeting of antioxidant and anti-thrombotic drugs to endothelial cell adhesion molecules. Current Pharmaceutical Design 11: 2383–2401.CrossRefPubMed Muro, S., and V.R. Muzykantov. 2005. Targeting of antioxidant and anti-thrombotic drugs to endothelial cell adhesion molecules. Current Pharmaceutical Design 11: 2383–2401.CrossRefPubMed
39.
go back to reference Smyth, J.T., S.Y. Hwang, T. Tomita, W.I. DeHaven, J.C. Mercer, and J.W. Putney. 2010. Activation and regulation of store-operated calcium entry. Journal of Cellular and Molecular Medicine 14: 2337–2349.CrossRefPubMedPubMedCentral Smyth, J.T., S.Y. Hwang, T. Tomita, W.I. DeHaven, J.C. Mercer, and J.W. Putney. 2010. Activation and regulation of store-operated calcium entry. Journal of Cellular and Molecular Medicine 14: 2337–2349.CrossRefPubMedPubMedCentral
40.
go back to reference Wang, G., J. Zhang, C. Xu, X. Han, Y. Gao, and H. Chen. 2016. Inhibition of SOCs attenuates acute lung injury induced by severe acute pancreatitis in rats and PMVECs injury induced by lipopolysaccharide. Inflammation. Wang, G., J. Zhang, C. Xu, X. Han, Y. Gao, and H. Chen. 2016. Inhibition of SOCs attenuates acute lung injury induced by severe acute pancreatitis in rats and PMVECs injury induced by lipopolysaccharide. Inflammation.
41.
go back to reference Prakash, A., S.V. Sundar, Y.G. Zhu, A. Tran, J.W. Lee, C. Lowell, and J. Hellman. 2015. Lung ischemia-reperfusion is a sterile inflammatory process influenced by commensal microbiota in mice. Shock 44: 272–279.CrossRefPubMedPubMedCentral Prakash, A., S.V. Sundar, Y.G. Zhu, A. Tran, J.W. Lee, C. Lowell, and J. Hellman. 2015. Lung ischemia-reperfusion is a sterile inflammatory process influenced by commensal microbiota in mice. Shock 44: 272–279.CrossRefPubMedPubMedCentral
42.
go back to reference Niesler, U., A. Palmer, P. Radermacher, and M.S. Huber-Lang. 2014. Role of alveolar macrophages in the inflammatory response after trauma. Shock 42: 3–10.CrossRefPubMed Niesler, U., A. Palmer, P. Radermacher, and M.S. Huber-Lang. 2014. Role of alveolar macrophages in the inflammatory response after trauma. Shock 42: 3–10.CrossRefPubMed
43.
go back to reference Braun, A., J.E. Gessner, D. Varga-Szabo, S.N. Syed, S. Konrad, D. Stegner, T. Vogtle, R.E. Schmidt, and B. Nieswandt. 2009. STIM1 is essential for Fcgamma receptor activation and autoimmune inflammation. Blood 113: 1097–1104.CrossRefPubMed Braun, A., J.E. Gessner, D. Varga-Szabo, S.N. Syed, S. Konrad, D. Stegner, T. Vogtle, R.E. Schmidt, and B. Nieswandt. 2009. STIM1 is essential for Fcgamma receptor activation and autoimmune inflammation. Blood 113: 1097–1104.CrossRefPubMed
44.
go back to reference Dadsetan, S., L. Zakharova, T.F. Molinski, and A.F. Fomina. 2008. Store-operated Ca2+ influx causes Ca2+ release from the intracellular Ca2+ channels that is required for T cell activation. The Journal of Biological Chemistry 283: 12512–12519.CrossRefPubMed Dadsetan, S., L. Zakharova, T.F. Molinski, and A.F. Fomina. 2008. Store-operated Ca2+ influx causes Ca2+ release from the intracellular Ca2+ channels that is required for T cell activation. The Journal of Biological Chemistry 283: 12512–12519.CrossRefPubMed
45.
go back to reference Geudens, N., B.M. Vanaudenaerde, A.P. Neyrinck, C. Van De Wauwer, R. Vos, G.M. Verleden, E. Verbeken, T. Lerut, and D.E. Van Raemdonck. 2007. The importance of lymphocytes in lung ischemia-reperfusion injury. Transplantation Proceedings 39: 2659–2662.CrossRefPubMed Geudens, N., B.M. Vanaudenaerde, A.P. Neyrinck, C. Van De Wauwer, R. Vos, G.M. Verleden, E. Verbeken, T. Lerut, and D.E. Van Raemdonck. 2007. The importance of lymphocytes in lung ischemia-reperfusion injury. Transplantation Proceedings 39: 2659–2662.CrossRefPubMed
46.
go back to reference Ohga, K., R. Takezawa, Y. Arakida, Y. Shimizu, and J. Ishikawa. 2008. Characterization of YM-58483/BTP2, a novel store-operated Ca2+ entry blocker, on T cell-mediated immune responses in vivo. International Immunopharmacology 8: 1787–1792.CrossRefPubMed Ohga, K., R. Takezawa, Y. Arakida, Y. Shimizu, and J. Ishikawa. 2008. Characterization of YM-58483/BTP2, a novel store-operated Ca2+ entry blocker, on T cell-mediated immune responses in vivo. International Immunopharmacology 8: 1787–1792.CrossRefPubMed
47.
go back to reference Lu, W., J. Wang, G. Peng, L.A. Shimoda, and J.T. Sylvester. 2009. Knockdown of stromal interaction molecule 1 attenuates store-operated Ca2+ entry and Ca2+ responses to acute hypoxia in pulmonary arterial smooth muscle. American Journal of Physiology. Lung Cellular and Molecular Physiology 297: L17–L25.CrossRefPubMedPubMedCentral Lu, W., J. Wang, G. Peng, L.A. Shimoda, and J.T. Sylvester. 2009. Knockdown of stromal interaction molecule 1 attenuates store-operated Ca2+ entry and Ca2+ responses to acute hypoxia in pulmonary arterial smooth muscle. American Journal of Physiology. Lung Cellular and Molecular Physiology 297: L17–L25.CrossRefPubMedPubMedCentral
48.
go back to reference Peng, G., P. Ran, W. Lu, N. Zhong, and J. Wang. 2013. Acute hypoxia activates store-operated Ca(2+) entry and increases intracellular Ca(2+) concentration in rat distal pulmonary venous smooth muscle cells. Journal Thoracic Disease 5: 605–612. Peng, G., P. Ran, W. Lu, N. Zhong, and J. Wang. 2013. Acute hypoxia activates store-operated Ca(2+) entry and increases intracellular Ca(2+) concentration in rat distal pulmonary venous smooth muscle cells. Journal Thoracic Disease 5: 605–612.
49.
go back to reference Connolly, M.J., J. Prieto-Lloret, S. Becker, J.P. Ward, and P.I. Aaronson. 2013. Hypoxic pulmonary vasoconstriction in the absence of pretone: essential role for intracellular Ca2+ release. The Journal of Physiology 591: 4473–4498.CrossRefPubMedPubMedCentral Connolly, M.J., J. Prieto-Lloret, S. Becker, J.P. Ward, and P.I. Aaronson. 2013. Hypoxic pulmonary vasoconstriction in the absence of pretone: essential role for intracellular Ca2+ release. The Journal of Physiology 591: 4473–4498.CrossRefPubMedPubMedCentral
50.
go back to reference Gusarova, G.A., H.E. Trejo, L.A. Dada, A. Briva, L.C. Welch, R.B. Hamanaka, G.M. Mutlu, N.S. Chandel, M. Prakriya, and J.I. Sznajder. 2011. Hypoxia leads to Na, K-ATPase downregulation via Ca(2+) release-activated Ca(2+) channels and AMPK activation. Molecular and Cellular Biology 31: 3546–3556.CrossRefPubMedPubMedCentral Gusarova, G.A., H.E. Trejo, L.A. Dada, A. Briva, L.C. Welch, R.B. Hamanaka, G.M. Mutlu, N.S. Chandel, M. Prakriya, and J.I. Sznajder. 2011. Hypoxia leads to Na, K-ATPase downregulation via Ca(2+) release-activated Ca(2+) channels and AMPK activation. Molecular and Cellular Biology 31: 3546–3556.CrossRefPubMedPubMedCentral
51.
go back to reference Mungai, P.T., G.B. Waypa, A. Jairaman, M. Prakriya, D. Dokic, M.K. Ball, and P.T. Schumacker. 2011. Hypoxia triggers AMPK activation through reactive oxygen species-mediated activation of calcium release-activated calcium channels. Molecular and Cellular Biology 31: 3531–3545.CrossRefPubMedPubMedCentral Mungai, P.T., G.B. Waypa, A. Jairaman, M. Prakriya, D. Dokic, M.K. Ball, and P.T. Schumacker. 2011. Hypoxia triggers AMPK activation through reactive oxygen species-mediated activation of calcium release-activated calcium channels. Molecular and Cellular Biology 31: 3531–3545.CrossRefPubMedPubMedCentral
52.
go back to reference Henke, N., P. Albrecht, I. Bouchachia, M. Ryazantseva, K. Knoll, J. Lewerenz, E. Kaznacheyeva, P. Maher, and A. Methner. 2013. The plasma membrane channel ORAI1 mediates detrimental calcium influx caused by endogenous oxidative stress. Cell Death & Disease 4: e470.CrossRef Henke, N., P. Albrecht, I. Bouchachia, M. Ryazantseva, K. Knoll, J. Lewerenz, E. Kaznacheyeva, P. Maher, and A. Methner. 2013. The plasma membrane channel ORAI1 mediates detrimental calcium influx caused by endogenous oxidative stress. Cell Death & Disease 4: e470.CrossRef
Metadata
Title
BTP2, a Store-Operated Calcium Channel Inhibitor, Attenuates Lung Ischemia-Reperfusion Injury in Rats
Authors
Wei Zhang
Zeyou Qi
Yaping Wang
Publication date
01-06-2017
Publisher
Springer US
Published in
Inflammation / Issue 3/2017
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0522-8

Other articles of this Issue 3/2017

Inflammation 3/2017 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.