Skip to main content
Top
Published in: Inflammation 2/2017

01-04-2017 | ORIGINAL ARTICLE

AGEs Decreased SIRT3 Expression and SIRT3 Activation Protected AGEs-Induced EPCs’ Dysfunction and Strengthened Anti-oxidant Capacity

Authors: Mingze Chang, Bei Zhang, Ye Tian, Ming Hu, Gejuan Zhang, Zhengli Di, Xinlai Wang, Zhiqin Liu, Naibin Gu, Yong Liu

Published in: Inflammation | Issue 2/2017

Login to get access

Abstract

Advanced glycation end products (AGEs) have been confirmed to induce dysfunction in endothelial progenitor cells (EPCs) and play key roles in pathogenesis of diabetes-related vascular complications. The major function of sirtuin 3 (SIRT3) is to orchestrate oxidative metabolism and control reactive oxygen species (ROS) homeostasis, which are more closely related to EPCs’ dysfunction. Our study therefore was designed to explore the role of SIRT3 on AGEs-induced EPCs dysfunction of. EPCs isolated from healthy adults were stimulated with AGEs and the expression of SIRT3 was assessed. Then, EPCs transfected with ad-SIRT3 or siRNA-SIRT3 were cultured with or without AGEs. EPCs function, including proliferation, migration; expression of manganese superoxide dismutase (MnSOD), ROS production, and interleukin-8 (IL-8); and vascular endothelial growth factor (VEGF) production were measured. In some experiments, EPCs were pre-cultured with anti-receptor for advanced glycation end products (RAGE) antibody or anti-neutralizing antibody, and then proliferation, migration, expression of MnSOD, ROS production, and IL-8 and VEGF production were measured. Our results showed that SIRT3 expressed in EPCs and AGEs decreased SIRT3 expression. SIRT3 knockdown with siRNA-SIRT3 promoted dysfunction in EPCs whereas SIRT3 activation with ad-SIRT3 strengthened anti-oxidant capacity and protected AGE-impaired dysfunction. Moreover, RAGE may involve in AGEs-decreased SIRT3 expression in EPCs. These data suggested an important role of SIRT3 in regulating EPCs bioactivity.
Literature
1.
go back to reference Urbich, C., and S. Dimmeler. 2004. Endothelial progenitor cells: characterization and role in vascular biology. Circulation Research 95: 343–353.CrossRefPubMed Urbich, C., and S. Dimmeler. 2004. Endothelial progenitor cells: characterization and role in vascular biology. Circulation Research 95: 343–353.CrossRefPubMed
2.
go back to reference Rabelink, T.J., H.C. de Boer, E.J. de Koning, and A.J. van Zonneveld. 2004. Endothelial progenitor cells: more than an inflammatory response. Arteriosclerosis, Thrombosis, and Vascular Biology (Dallas, TX) 24: 834–838.CrossRef Rabelink, T.J., H.C. de Boer, E.J. de Koning, and A.J. van Zonneveld. 2004. Endothelial progenitor cells: more than an inflammatory response. Arteriosclerosis, Thrombosis, and Vascular Biology (Dallas, TX) 24: 834–838.CrossRef
3.
go back to reference Groleau, J., S. Dussault, P. Haddad, J. Turgeon, C. Menard, J.S. Chan, and A. Rivard. 2010. Essential role of copper- zinc superoxide dismutase for ischemia-induced neovascularization via modulation of bone marrow-derived endothelial progenitor cells. Arteriosclerosis, Thrombosis, and Vascular Biology (Dallas, TX) 30: 2173–2181.CrossRef Groleau, J., S. Dussault, P. Haddad, J. Turgeon, C. Menard, J.S. Chan, and A. Rivard. 2010. Essential role of copper- zinc superoxide dismutase for ischemia-induced neovascularization via modulation of bone marrow-derived endothelial progenitor cells. Arteriosclerosis, Thrombosis, and Vascular Biology (Dallas, TX) 30: 2173–2181.CrossRef
4.
go back to reference Heller, G.V. 2005. Evaluation of the patient with diabetes mellitus and suspected coronary artery disease. The American Journal of Medicine 118: 9S–14S.PubMed Heller, G.V. 2005. Evaluation of the patient with diabetes mellitus and suspected coronary artery disease. The American Journal of Medicine 118: 9S–14S.PubMed
5.
go back to reference Waltenberger, J. 2001. Impaired collateral vessel development in diabetes: potential cellular mechanisms and therapeutic implications. Cardiovascular Research 49: 554–560.CrossRefPubMed Waltenberger, J. 2001. Impaired collateral vessel development in diabetes: potential cellular mechanisms and therapeutic implications. Cardiovascular Research 49: 554–560.CrossRefPubMed
6.
go back to reference Palombo, C., M. Kozakova, C. Morizzo, L. Gnesi, M.C. Barsotti, P. Spontoni, F. Massart, P. Salvi, A. Balbarini, G. Saggese, et al. 2011. Circulating endothelial progenitor cells and large artery structure and function in young subjects with uncomplicated type 1 diabetes. Cardiovascular Diabetology 10: 88.CrossRefPubMedPubMedCentral Palombo, C., M. Kozakova, C. Morizzo, L. Gnesi, M.C. Barsotti, P. Spontoni, F. Massart, P. Salvi, A. Balbarini, G. Saggese, et al. 2011. Circulating endothelial progenitor cells and large artery structure and function in young subjects with uncomplicated type 1 diabetes. Cardiovascular Diabetology 10: 88.CrossRefPubMedPubMedCentral
7.
go back to reference Tepper, O.M., R.D. Galiano, J.M. Capla, et al. 2002. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 106:2781–6 Tepper, O.M., R.D. Galiano, J.M. Capla, et al. 2002. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 106:2781–6
8.
go back to reference Vasa, M., S. Fichtlscherer, A. Aicher, et al. 2001. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circulation Research 89: E1–E7.CrossRefPubMed Vasa, M., S. Fichtlscherer, A. Aicher, et al. 2001. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circulation Research 89: E1–E7.CrossRefPubMed
9.
go back to reference Jandeleit-Dahm, K., A. Watson, and A. Soro-Paavonen. 2008. The AGEs/RAGEs axis in diabetes-accelerated atherosclerosis. Clinical and Experimental Pharmacology and Physiology 35: 329–334.CrossRefPubMed Jandeleit-Dahm, K., A. Watson, and A. Soro-Paavonen. 2008. The AGEs/RAGEs axis in diabetes-accelerated atherosclerosis. Clinical and Experimental Pharmacology and Physiology 35: 329–334.CrossRefPubMed
10.
go back to reference Moriyama, T., M. Kemi, C. Okumura, K. Yoshihara, and T. Horie. 2010. Involvement of advanced glycation end-products, pentosidine and N(epsilon)-(carboxymethyl)lysine, in doxorubicin-induced cardiomyopathy in rats. Toxicology 268: 89–97.CrossRefPubMed Moriyama, T., M. Kemi, C. Okumura, K. Yoshihara, and T. Horie. 2010. Involvement of advanced glycation end-products, pentosidine and N(epsilon)-(carboxymethyl)lysine, in doxorubicin-induced cardiomyopathy in rats. Toxicology 268: 89–97.CrossRefPubMed
11.
go back to reference Madonna, R., and R. de Caterina. 2011. Cellular and molecular mechanisms of vascular injury in diabetes—part II: cellular mechanisms and therapeutic targets. Vascular Pharmacology 54: 75–79.CrossRefPubMed Madonna, R., and R. de Caterina. 2011. Cellular and molecular mechanisms of vascular injury in diabetes—part II: cellular mechanisms and therapeutic targets. Vascular Pharmacology 54: 75–79.CrossRefPubMed
12.
go back to reference Zhou, Y.J., H.W. Yang, X.G. Wang, and H. Zhang. 2009. Hepatocyte growth factor prevents advanced glycation end products-induced injury and oxidative stress through a PI3K/Akt-dependent pathway in human endothelial cells. Life Sciences 85: 670–677.CrossRefPubMed Zhou, Y.J., H.W. Yang, X.G. Wang, and H. Zhang. 2009. Hepatocyte growth factor prevents advanced glycation end products-induced injury and oxidative stress through a PI3K/Akt-dependent pathway in human endothelial cells. Life Sciences 85: 670–677.CrossRefPubMed
13.
go back to reference Chen, J., M. Song, S. Yu, P. Gao, Y. Yu, H. Wang, and L. Huang. 2010. Advanced glycation endproducts alter functions and promote apoptosis in endothelial progenitor cells through receptor for advanced glycation endproducts mediate overpression of cell oxidant stress. Molecular and Cellular Biochemistry 335: 137–146.CrossRefPubMed Chen, J., M. Song, S. Yu, P. Gao, Y. Yu, H. Wang, and L. Huang. 2010. Advanced glycation endproducts alter functions and promote apoptosis in endothelial progenitor cells through receptor for advanced glycation endproducts mediate overpression of cell oxidant stress. Molecular and Cellular Biochemistry 335: 137–146.CrossRefPubMed
14.
go back to reference Li, H., X. Zhang, X. Guan, X. Cui, Y. Wang, H. Chu, and M. Cheng. 2012. Advanced glycation end products impair the migration, adhesion and secretion potentials of late endothelial progenitor cells. Cardiovascular Diabetology 11: 46.CrossRefPubMedPubMedCentral Li, H., X. Zhang, X. Guan, X. Cui, Y. Wang, H. Chu, and M. Cheng. 2012. Advanced glycation end products impair the migration, adhesion and secretion potentials of late endothelial progenitor cells. Cardiovascular Diabetology 11: 46.CrossRefPubMedPubMedCentral
16.
go back to reference Schwer, B., and E. Verdin. 2008. Conserved metabolic regulatory functions of sirtuins. Cell Metabolism 7: 104–112.CrossRefPubMed Schwer, B., and E. Verdin. 2008. Conserved metabolic regulatory functions of sirtuins. Cell Metabolism 7: 104–112.CrossRefPubMed
17.
go back to reference Lombard, D.B., F.W. Alt, H.L. Cheng, J. Bunkenborg, R.S. Streeper, R. Mostoslavsky, J. Kim, G. Yancopoulos, D. Valenzuela, A. Murphy, Y. Yang, Y. Chen, M.D. Hirschey, R.T. Bronson, M. Haigis, L.P. Guarente, R.V. Farese, S. Weissman, E. Verdin, and B. Schwer. 2007. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Molecular and Cellular Biology 27: 8807–8814.CrossRefPubMedPubMedCentral Lombard, D.B., F.W. Alt, H.L. Cheng, J. Bunkenborg, R.S. Streeper, R. Mostoslavsky, J. Kim, G. Yancopoulos, D. Valenzuela, A. Murphy, Y. Yang, Y. Chen, M.D. Hirschey, R.T. Bronson, M. Haigis, L.P. Guarente, R.V. Farese, S. Weissman, E. Verdin, and B. Schwer. 2007. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Molecular and Cellular Biology 27: 8807–8814.CrossRefPubMedPubMedCentral
18.
go back to reference Tseng, A.H., S.S. Shieh, and D.L. Wang. 2013. SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radical Biology and Medicine 63: 222–234.CrossRefPubMed Tseng, A.H., S.S. Shieh, and D.L. Wang. 2013. SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radical Biology and Medicine 63: 222–234.CrossRefPubMed
19.
go back to reference Sundaresan, N.R., M. Gupta, G. Kim, S.B. Rajamohan, A. Isbatan, and M.P. Gupta. 2009. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. Journal of Clinical Investigation 119: 2758–2771.PubMedPubMedCentral Sundaresan, N.R., M. Gupta, G. Kim, S.B. Rajamohan, A. Isbatan, and M.P. Gupta. 2009. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. Journal of Clinical Investigation 119: 2758–2771.PubMedPubMedCentral
20.
go back to reference Hirschey, M.D., T. Shimazu, E. Jing, C.A. Grueter, A.M. Collins, B. Aouizerat, A. Stancakova, E. Goetzman, M.M. Lam, B. Schwer, R.D. Stevens, M.J. Muehlbauer, S. Kakar, N.M. Bass, J. Kuusisto, M. Laakso, F.W. Alt, C.B. Newgard, R.V. Farese Jr., C.R. Kahn, and E. Verdin. 2011. Sirt3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Molecular Cell 44: 177–90.CrossRefPubMedPubMedCentral Hirschey, M.D., T. Shimazu, E. Jing, C.A. Grueter, A.M. Collins, B. Aouizerat, A. Stancakova, E. Goetzman, M.M. Lam, B. Schwer, R.D. Stevens, M.J. Muehlbauer, S. Kakar, N.M. Bass, J. Kuusisto, M. Laakso, F.W. Alt, C.B. Newgard, R.V. Farese Jr., C.R. Kahn, and E. Verdin. 2011. Sirt3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Molecular Cell 44: 177–90.CrossRefPubMedPubMedCentral
21.
go back to reference Zeng, H., X. He, X. Hou, L. Li, and J.X. Chen. 2014. Apelin gene therapy increases myocardial vascular density and ameliorates diabetic cardiomyopathy via upregulation of sirtuin 3. American Journal of Physiology. Heart and Circulatory Physiology 306: 585–597.CrossRef Zeng, H., X. He, X. Hou, L. Li, and J.X. Chen. 2014. Apelin gene therapy increases myocardial vascular density and ameliorates diabetic cardiomyopathy via upregulation of sirtuin 3. American Journal of Physiology. Heart and Circulatory Physiology 306: 585–597.CrossRef
22.
go back to reference Cheng, C.C., S.J. Chang, Y.N. Chueh, T.S. Huang, P.H. Huang, S.M. Cheng, T.N. Tsai, J. Chen, and H.W. Wang. 2013. Distinct angiogenesis roles and surface markers of early and late endothelial progenitor cells revealed by functional group analyses. BMC Genomics 14: 182.CrossRefPubMedPubMedCentral Cheng, C.C., S.J. Chang, Y.N. Chueh, T.S. Huang, P.H. Huang, S.M. Cheng, T.N. Tsai, J. Chen, and H.W. Wang. 2013. Distinct angiogenesis roles and surface markers of early and late endothelial progenitor cells revealed by functional group analyses. BMC Genomics 14: 182.CrossRefPubMedPubMedCentral
23.
go back to reference Hur, J., C.H. Yoon, H.S. Kim, J.H. Choi, H.J. Kang, K.K. Hwang, B.H. Oh, M.M. Lee, and Y.B. Park. 2004. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology (Dallas, TX) 24: 288–293.CrossRef Hur, J., C.H. Yoon, H.S. Kim, J.H. Choi, H.J. Kang, K.K. Hwang, B.H. Oh, M.M. Lee, and Y.B. Park. 2004. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology (Dallas, TX) 24: 288–293.CrossRef
24.
go back to reference Luo, X., Z. Yang, S. Zheng, Y. Cao, and Y. Wu. 2014. Sirt3 activation attenuated oxidized low-density lipoprotein-induced human umbilical vein endothelial cells’ apoptosis. Cell Biology International 24: 288–293. Luo, X., Z. Yang, S. Zheng, Y. Cao, and Y. Wu. 2014. Sirt3 activation attenuated oxidized low-density lipoprotein-induced human umbilical vein endothelial cells’ apoptosis. Cell Biology International 24: 288–293.
25.
go back to reference Mortuza, R., S. Chen, B. Feng, S. Sen, and S. Chakrabarti. 2013. High glucose induced alteration of SIRTs in endothelial cells causes rapid aging in a p300 and FOXO regulated pathway. PloS One 8, e54514.CrossRefPubMedPubMedCentral Mortuza, R., S. Chen, B. Feng, S. Sen, and S. Chakrabarti. 2013. High glucose induced alteration of SIRTs in endothelial cells causes rapid aging in a p300 and FOXO regulated pathway. PloS One 8, e54514.CrossRefPubMedPubMedCentral
26.
go back to reference Shi, T., G.Q. Fan, and S.D. Xiao. 2010. SIRT3 reduces lipid accumulation in human hepatic cells via AMPK activation. Journal of Digestive Diseases 11: 55–62.CrossRefPubMed Shi, T., G.Q. Fan, and S.D. Xiao. 2010. SIRT3 reduces lipid accumulation in human hepatic cells via AMPK activation. Journal of Digestive Diseases 11: 55–62.CrossRefPubMed
27.
go back to reference Chen, Y., J. Zhang, Y. Lin, Q. Lei, K.L. Guan, S. Zhao, and Y. Xiong. 2011. Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Reports 12: 534–541.CrossRefPubMedPubMedCentral Chen, Y., J. Zhang, Y. Lin, Q. Lei, K.L. Guan, S. Zhao, and Y. Xiong. 2011. Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Reports 12: 534–541.CrossRefPubMedPubMedCentral
28.
go back to reference Qiu, X., K. Brown, M.D. Hirschey, E. Verdin, and D. Chen. 2010. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metabolism 12: 662–667.CrossRefPubMed Qiu, X., K. Brown, M.D. Hirschey, E. Verdin, and D. Chen. 2010. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metabolism 12: 662–667.CrossRefPubMed
29.
go back to reference Ji, K.T., L. Qian, J.L. Nan, Y.J. Xue, S.Q. Zhang, G.Q. Wang, R.P. Yin, Y.J. Zhu, L.P. Wang, J. Ma, L.M. Liao, and J.F. Tang. 2015. Ox-LDL induces dysfunction of endothelial progenitor cells via activation of NF-kappaB. BioMed Research International 2015: 175291.PubMedPubMedCentral Ji, K.T., L. Qian, J.L. Nan, Y.J. Xue, S.Q. Zhang, G.Q. Wang, R.P. Yin, Y.J. Zhu, L.P. Wang, J. Ma, L.M. Liao, and J.F. Tang. 2015. Ox-LDL induces dysfunction of endothelial progenitor cells via activation of NF-kappaB. BioMed Research International 2015: 175291.PubMedPubMedCentral
30.
go back to reference Someya, S., W. Yu, W.C. Hallows, J. Xu, J.M. Vann, C. Leeuwenburgh, M. Tanokura, J.M. Denu, and T.A. Prolla. 2010. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143: 802–812.CrossRefPubMedPubMedCentral Someya, S., W. Yu, W.C. Hallows, J. Xu, J.M. Vann, C. Leeuwenburgh, M. Tanokura, J.M. Denu, and T.A. Prolla. 2010. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143: 802–812.CrossRefPubMedPubMedCentral
31.
go back to reference Iwaguro, H., J. Yamaguchi, C. Kalka, et al. 2002. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation 105: 732–738.CrossRefPubMed Iwaguro, H., J. Yamaguchi, C. Kalka, et al. 2002. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation 105: 732–738.CrossRefPubMed
32.
go back to reference Kocher, A.A., M.D. Schuster, N. Bonaros, K. Lietz, G. Xiang, T.P. Martens, P.A. Kurlansky, H. Sondermeijer, P. Witkowski, A. Boyle, S. Homma, S.F. Wang, and S. Itescu. 2006. Myocardial homing and neovascularization by human bone marrow angioblasts is regulated by IL-8/Gro CXC chemokines. Journal of Molecular and Cellular Cardiology 40: 455–464.CrossRefPubMed Kocher, A.A., M.D. Schuster, N. Bonaros, K. Lietz, G. Xiang, T.P. Martens, P.A. Kurlansky, H. Sondermeijer, P. Witkowski, A. Boyle, S. Homma, S.F. Wang, and S. Itescu. 2006. Myocardial homing and neovascularization by human bone marrow angioblasts is regulated by IL-8/Gro CXC chemokines. Journal of Molecular and Cellular Cardiology 40: 455–464.CrossRefPubMed
33.
go back to reference Sun, C., C. Liang, Y. Ren, Y. Zhen, Z. He, H. Wang, H. Tan, X. Pan, and Z. Wu. 2009. Advanced glycation end products depress function of endothelial progenitor cells via p38 and ERK 1/2 mitogen-activated protein kinase pathways. Basic Research in Cardiology 104: 42–49.CrossRefPubMed Sun, C., C. Liang, Y. Ren, Y. Zhen, Z. He, H. Wang, H. Tan, X. Pan, and Z. Wu. 2009. Advanced glycation end products depress function of endothelial progenitor cells via p38 and ERK 1/2 mitogen-activated protein kinase pathways. Basic Research in Cardiology 104: 42–49.CrossRefPubMed
34.
go back to reference Scheubel, R.J., S. Kahrstedt, H. Weber, J. Holtz, I. Friedrich, J. Borgermann, R.E. Silber, and A. Simm. 2006. Depression of progenitor cell function by advanced glycation endproducts (AGEs): potential relevance for impaired angiogenesis in advanced age and diabetes. Experimental Gerontology 41: 540–548.CrossRefPubMed Scheubel, R.J., S. Kahrstedt, H. Weber, J. Holtz, I. Friedrich, J. Borgermann, R.E. Silber, and A. Simm. 2006. Depression of progenitor cell function by advanced glycation endproducts (AGEs): potential relevance for impaired angiogenesis in advanced age and diabetes. Experimental Gerontology 41: 540–548.CrossRefPubMed
35.
go back to reference Kawamura, Y., Y. Uchijima, N. Horike, K. Tonami, K. Nishiyama, T. Amano, T. Asano, Y. Kurihara, and H. Kurihara. 2010. SIRT3 protects in vitro-fertilized mouse preimplantation embryos against oxidative stress-induced p53-mediated developmental arrest. Journal of Clinical Investigation 120: 2817–2828.CrossRefPubMedPubMedCentral Kawamura, Y., Y. Uchijima, N. Horike, K. Tonami, K. Nishiyama, T. Amano, T. Asano, Y. Kurihara, and H. Kurihara. 2010. SIRT3 protects in vitro-fertilized mouse preimplantation embryos against oxidative stress-induced p53-mediated developmental arrest. Journal of Clinical Investigation 120: 2817–2828.CrossRefPubMedPubMedCentral
36.
go back to reference Someya, S., W. Yu, W.C. Hallows, J. Xu, J.M. Vann, C. Leeuwenburgh, M. Tanokura, J.M. Denu, and T.A. Prolla. 2010. SIRT3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143: 802–812.CrossRefPubMedPubMedCentral Someya, S., W. Yu, W.C. Hallows, J. Xu, J.M. Vann, C. Leeuwenburgh, M. Tanokura, J.M. Denu, and T.A. Prolla. 2010. SIRT3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143: 802–812.CrossRefPubMedPubMedCentral
Metadata
Title
AGEs Decreased SIRT3 Expression and SIRT3 Activation Protected AGEs-Induced EPCs’ Dysfunction and Strengthened Anti-oxidant Capacity
Authors
Mingze Chang
Bei Zhang
Ye Tian
Ming Hu
Gejuan Zhang
Zhengli Di
Xinlai Wang
Zhiqin Liu
Naibin Gu
Yong Liu
Publication date
01-04-2017
Publisher
Springer US
Published in
Inflammation / Issue 2/2017
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0493-1

Other articles of this Issue 2/2017

Inflammation 2/2017 Go to the issue