Skip to main content
Top
Published in: Inflammation 1/2017

01-02-2017 | ORIGINAL ARTICLE

TAZ Activator Is Involved in IL-10-Mediated Muscle Responses in an Animal Model of Traumatic Brain Injury

Authors: Ruyi Zou, Da Li, Gang Wang, Mo Zhang, Yili Zhao, Zeyu Yang

Published in: Inflammation | Issue 1/2017

Login to get access

Abstract

The transcriptional coactivator with PDZ-binding motif (TAZ) functions as a downstream regulatory target in the Hippo signaling pathway that plays various roles. We previously developed a cell-based assay and identified the TAZ activator IBS008738 as a potential therapeutic target for glucocorticoid-induced atrophy. To further explore the application of IBS008738 in various muscle-related diseases, we examined the function of IBS008738 in inflammatory cytokine-mediated mouse muscle responses after traumatic brain injury (TBI). Preliminary screening suggested that IBS008738 treatments increased the levels of IL-10 in C2C12 cells. In TBI and sham control mice, we compared the effect of IBS008738 treatments on TNF α, IL-6, and IL-10 mRNA levels, muscle morphologic changes, and macrophage phenotype changes. Our findings support that the TAZ activator IBS008738 decreases muscle wasting by upregulating IL-10 and inhibiting TNF α and IL-6, and this process is implemented by changing the macrophage phenotypes. These results indicate a new mechanism of the TAZ activator as a potential therapy for atrophy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jeong, H., S. Bae, S.Y. An, M.R. Byun, J.H. Hwang, M.B. Yaffe, J.H. Hong, and E.S. Hwang. 2010. TAZ as a novel enhancer of MyoD-mediated myogenic differentiation. FASEB Journal 24: 3310–3320.CrossRefPubMed Jeong, H., S. Bae, S.Y. An, M.R. Byun, J.H. Hwang, M.B. Yaffe, J.H. Hong, and E.S. Hwang. 2010. TAZ as a novel enhancer of MyoD-mediated myogenic differentiation. FASEB Journal 24: 3310–3320.CrossRefPubMed
2.
go back to reference Hong, J.H., and M.B. Yaffe. 2006. TAZ: a beta-catenin-like molecule that regulates mesenchymal stem cell differentiation. Cell Cycle 5: 176–179.CrossRefPubMed Hong, J.H., and M.B. Yaffe. 2006. TAZ: a beta-catenin-like molecule that regulates mesenchymal stem cell differentiation. Cell Cycle 5: 176–179.CrossRefPubMed
3.
go back to reference Gabriel, B.M., D.L. Hamilton, A.M. Tremblay, and H. Wackerhage. 2016. The Hippo signal transduction network for exercise physiologists. Journal of Applied Physiology 120: 1105–1117.CrossRefPubMed Gabriel, B.M., D.L. Hamilton, A.M. Tremblay, and H. Wackerhage. 2016. The Hippo signal transduction network for exercise physiologists. Journal of Applied Physiology 120: 1105–1117.CrossRefPubMed
4.
go back to reference Yang, Z., K. Nakagawa, A. Sarkar, J. Maruyama, H. Iwasa, Y. Bao, M. Ishigami-Yuasa, S. Ito, H. Kagechika, S. Hata, H. Nishina, S. Abe, M. Kitagawa, and Y. Hata. 2014. Screening with a novel cell-based assay for TAZ activators identifies a compound that enhances myogenesis in C2C12 cells and facilitatesmuscle repair in a muscle injury model. Molecular and Cellular Biology 34: 1607–1621.CrossRefPubMedPubMedCentral Yang, Z., K. Nakagawa, A. Sarkar, J. Maruyama, H. Iwasa, Y. Bao, M. Ishigami-Yuasa, S. Ito, H. Kagechika, S. Hata, H. Nishina, S. Abe, M. Kitagawa, and Y. Hata. 2014. Screening with a novel cell-based assay for TAZ activators identifies a compound that enhances myogenesis in C2C12 cells and facilitatesmuscle repair in a muscle injury model. Molecular and Cellular Biology 34: 1607–1621.CrossRefPubMedPubMedCentral
5.
go back to reference Park, G.H., H. Jeong, M.G. Jeong, E.J. Jang, M.A. Bae, Y.L. Lee, N.J. Kim, J.H. Hong, and E.S. Hwang. 2014. Novel TAZ modulators enhance myogenic differentiation and muscle regeneration. British Journal of Pharmacology 171: 4051–4061.CrossRefPubMedPubMedCentral Park, G.H., H. Jeong, M.G. Jeong, E.J. Jang, M.A. Bae, Y.L. Lee, N.J. Kim, J.H. Hong, and E.S. Hwang. 2014. Novel TAZ modulators enhance myogenic differentiation and muscle regeneration. British Journal of Pharmacology 171: 4051–4061.CrossRefPubMedPubMedCentral
6.
go back to reference Jang, E.J., H. Jeong, J.O. Kang, N.J. Kim, M.S. Kim, S.H. Choi, S.E. Yoo, J.H. Hong, M.A. Bae, and E.S. Hwang. 2012. TM-25659 enhances osteogenic differentiation and suppresses adipogenic differentiation by modulating the transcriptional co-activator TAZ. British Journal of Pharmacology 165: 1584–1594.CrossRefPubMedPubMedCentral Jang, E.J., H. Jeong, J.O. Kang, N.J. Kim, M.S. Kim, S.H. Choi, S.E. Yoo, J.H. Hong, M.A. Bae, and E.S. Hwang. 2012. TM-25659 enhances osteogenic differentiation and suppresses adipogenic differentiation by modulating the transcriptional co-activator TAZ. British Journal of Pharmacology 165: 1584–1594.CrossRefPubMedPubMedCentral
7.
go back to reference Cisterna, B.A., C. Cardozo, and J.C. Sáez. 2014. Neuronal involvement in muscular atrophy. Frontiers in Cellular Neuroscience 8: article 405.CrossRefPubMed Cisterna, B.A., C. Cardozo, and J.C. Sáez. 2014. Neuronal involvement in muscular atrophy. Frontiers in Cellular Neuroscience 8: article 405.CrossRefPubMed
8.
go back to reference Cohen, S., J.A. Nathan, and A.L. Goldberg. 2015. Muscle wasting in disease: molecular mechanisms and promising therapies. Nature Reviews Drug Discovery 14: 58–74.CrossRefPubMed Cohen, S., J.A. Nathan, and A.L. Goldberg. 2015. Muscle wasting in disease: molecular mechanisms and promising therapies. Nature Reviews Drug Discovery 14: 58–74.CrossRefPubMed
9.
go back to reference Palus, S., S. von Haehling, and J. Springer. 2014. Muscle wasting: an overview of recent developments in basic research. International Journal of Cardiology 176: 640–644.CrossRefPubMed Palus, S., S. von Haehling, and J. Springer. 2014. Muscle wasting: an overview of recent developments in basic research. International Journal of Cardiology 176: 640–644.CrossRefPubMed
10.
go back to reference Meador, B.M., C.P. Krzyszton, R.W. Johnson, and K.A. Huey. 2008. Effects of IL-10 and age on IL-6, IL-1beta, and TNF-alpha responses in mouse skeletal and cardiac muscle to an acute inflammatory insult. Journal of Applied Physiology 104: 991–997.CrossRefPubMed Meador, B.M., C.P. Krzyszton, R.W. Johnson, and K.A. Huey. 2008. Effects of IL-10 and age on IL-6, IL-1beta, and TNF-alpha responses in mouse skeletal and cardiac muscle to an acute inflammatory insult. Journal of Applied Physiology 104: 991–997.CrossRefPubMed
11.
go back to reference Tidball, J.G., and S.A. Villalta. 2010. Regulatory interactions between muscle and the immune system during muscle regeneration. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 298: R1173–R1187.CrossRefPubMedPubMedCentral Tidball, J.G., and S.A. Villalta. 2010. Regulatory interactions between muscle and the immune system during muscle regeneration. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 298: R1173–R1187.CrossRefPubMedPubMedCentral
12.
go back to reference Bencze, M., E. Negroni, D. Vallese, H. Yacoub-Youssef, S. Chaouch, A. Wolff, A. Aamiri, J.P. Di Santo, B. Chazaud, G. Butler-Browne, W. Savino, V. Mouly, and Riederer. 2012. Proinflammatory macrophages enhance the regenerative capacity of human myoblasts by modifying their kinetics of proliferation and differentiation. Molecular Therapy 20: 2168–2179.CrossRefPubMedPubMedCentral Bencze, M., E. Negroni, D. Vallese, H. Yacoub-Youssef, S. Chaouch, A. Wolff, A. Aamiri, J.P. Di Santo, B. Chazaud, G. Butler-Browne, W. Savino, V. Mouly, and Riederer. 2012. Proinflammatory macrophages enhance the regenerative capacity of human myoblasts by modifying their kinetics of proliferation and differentiation. Molecular Therapy 20: 2168–2179.CrossRefPubMedPubMedCentral
13.
go back to reference Deng, B., M. Wehling-Henricks, S.A. Villalta, Y. Wang, and J.G. Tidball. 2012. IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. Journal of Immunology 189: 3669–3680.CrossRef Deng, B., M. Wehling-Henricks, S.A. Villalta, Y. Wang, and J.G. Tidball. 2012. IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. Journal of Immunology 189: 3669–3680.CrossRef
14.
go back to reference Zoranovic, T., L. Grmai, and E.A. Bach. 2013. Regulation of proliferation, cell competition, and cellular growth by the Drosophila JAK-STAT pathway. JAKSTAT 2: e25408.PubMedPubMedCentral Zoranovic, T., L. Grmai, and E.A. Bach. 2013. Regulation of proliferation, cell competition, and cellular growth by the Drosophila JAK-STAT pathway. JAKSTAT 2: e25408.PubMedPubMedCentral
15.
go back to reference Carey, A.J., C.K. Tan, and G.C. Ulett. 2012. Infection-induced IL-10 and JAK-STAT: a review of the molecular circuitry controlling immune hyperactivity in response to pathogenic microbes. JAKSTAT 1: 159–167.PubMedPubMedCentral Carey, A.J., C.K. Tan, and G.C. Ulett. 2012. Infection-induced IL-10 and JAK-STAT: a review of the molecular circuitry controlling immune hyperactivity in response to pathogenic microbes. JAKSTAT 1: 159–167.PubMedPubMedCentral
16.
go back to reference Karin, M., and H. Clevers. 2016. Reparative inflammation takes charge of tissue regeneration. Nature 529: 307–315.CrossRefPubMed Karin, M., and H. Clevers. 2016. Reparative inflammation takes charge of tissue regeneration. Nature 529: 307–315.CrossRefPubMed
17.
go back to reference Li, L.Z., Y.J. Bao, and M. Zhao. 2011. 17beta-estradiol attenuates programmed cell death in cortical pericontusional zone following traumatic brain injury via upregulation of ERalpha and inhibition of caspase-3 activation. Neurochemistry International 58: 126–133.CrossRefPubMed Li, L.Z., Y.J. Bao, and M. Zhao. 2011. 17beta-estradiol attenuates programmed cell death in cortical pericontusional zone following traumatic brain injury via upregulation of ERalpha and inhibition of caspase-3 activation. Neurochemistry International 58: 126–133.CrossRefPubMed
18.
go back to reference Ehmer, U., and J. Sage. 2016. Control of proliferation and cancer growth by the hippo signaling pathway. Molecular Cancer Research 14: 127–140.CrossRefPubMed Ehmer, U., and J. Sage. 2016. Control of proliferation and cancer growth by the hippo signaling pathway. Molecular Cancer Research 14: 127–140.CrossRefPubMed
20.
go back to reference Bao, Y., Y. Hata, M. Ikeda, and K. Withanage. 2011. Mammalian Hippo pathway: from development to cancer and beyond. Journal of Biochemistry 149: 361–379.CrossRefPubMed Bao, Y., Y. Hata, M. Ikeda, and K. Withanage. 2011. Mammalian Hippo pathway: from development to cancer and beyond. Journal of Biochemistry 149: 361–379.CrossRefPubMed
22.
go back to reference Kodaka, M., Z. Yang, K. Nakagawa, J. Maruyama, X. Xu, A. Sarkar, A. Ichimura, Y. Nasu, T. Ozawa, H. Iwasa, M. Ishigami-Yuasa, S. Ito, H. Kagechika, and Y. Hata. 2015. A new cell-based assay to evaluate myogenesis in mouse myoblast C2C12 cells. Experimental Cell Research 336: 171–181.CrossRefPubMed Kodaka, M., Z. Yang, K. Nakagawa, J. Maruyama, X. Xu, A. Sarkar, A. Ichimura, Y. Nasu, T. Ozawa, H. Iwasa, M. Ishigami-Yuasa, S. Ito, H. Kagechika, and Y. Hata. 2015. A new cell-based assay to evaluate myogenesis in mouse myoblast C2C12 cells. Experimental Cell Research 336: 171–181.CrossRefPubMed
23.
go back to reference Kawano, S., J. Maruyama, S. Nagashima, K. Inami, W. Qiu, H. Iwasa, K. Nakagawa, M. Ishigami-Yuasa, H. Kagechika, H. Nishina, and Y. Hata. 2015. A cell-based screening for TAZ activators identifies ethacridine, a widely used antiseptic and abortifacient, as a compound that promotes dephosphorylation of TAZ and inhibits adipogenesis in C3H10T1/2 cells. Journal of Biochemistry 158: 413–423.CrossRefPubMed Kawano, S., J. Maruyama, S. Nagashima, K. Inami, W. Qiu, H. Iwasa, K. Nakagawa, M. Ishigami-Yuasa, H. Kagechika, H. Nishina, and Y. Hata. 2015. A cell-based screening for TAZ activators identifies ethacridine, a widely used antiseptic and abortifacient, as a compound that promotes dephosphorylation of TAZ and inhibits adipogenesis in C3H10T1/2 cells. Journal of Biochemistry 158: 413–423.CrossRefPubMed
24.
go back to reference Nitahara-Kasahara, Y., H. Hayashita-Kinoh, T. Chiyo, A. Nishiyama, H. Okada, S. Takeda, and T. Okada. 2014. Dystrophic mdx mice develop severe cardiac and respiratory dysfunction following genetic ablation of the anti-inflammatory cytokine IL-10. Human Molecular Genetics 23: 3990–4000.CrossRefPubMed Nitahara-Kasahara, Y., H. Hayashita-Kinoh, T. Chiyo, A. Nishiyama, H. Okada, S. Takeda, and T. Okada. 2014. Dystrophic mdx mice develop severe cardiac and respiratory dysfunction following genetic ablation of the anti-inflammatory cytokine IL-10. Human Molecular Genetics 23: 3990–4000.CrossRefPubMed
25.
go back to reference Ruffell, D., F. Mourkioti, A. Gambardella, P. Kirstetter, R.G. Lopez, N. Rosenthal, and C. Nerlov. 2009. A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proceedings of the National Academy of Sciences of the United States of America 106: 17475–17480.CrossRefPubMedPubMedCentral Ruffell, D., F. Mourkioti, A. Gambardella, P. Kirstetter, R.G. Lopez, N. Rosenthal, and C. Nerlov. 2009. A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proceedings of the National Academy of Sciences of the United States of America 106: 17475–17480.CrossRefPubMedPubMedCentral
Metadata
Title
TAZ Activator Is Involved in IL-10-Mediated Muscle Responses in an Animal Model of Traumatic Brain Injury
Authors
Ruyi Zou
Da Li
Gang Wang
Mo Zhang
Yili Zhao
Zeyu Yang
Publication date
01-02-2017
Publisher
Springer US
Published in
Inflammation / Issue 1/2017
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0457-5

Other articles of this Issue 1/2017

Inflammation 1/2017 Go to the issue