Skip to main content
Top
Published in: Inflammation 1/2017

01-02-2017 | ORIGINAL ARTICLE

Murine Double Minute-2 Inhibition Attenuates Cardiac Dysfunction and Fibrosis by Modulating NF-κB Pathway After Experimental Myocardial Infarction

Authors: Hao Zhao, Ruijuan Shen, Xiaobin Dong, Yi Shen

Published in: Inflammation | Issue 1/2017

Login to get access

Abstract

Inflammation has been implicated in myocardial infarction (MI). MDM2 associates with nuclear factor-κB (NF-κB)-mediated inflammation. However, the role of MDM2 in MI remains unclear. This study aimed to evaluate the impacts of MDM2 inhibition on cardiac dysfunction and fibrosis after experimental MI and the underlying mechanisms. Three-month-old male C57BL/6 mice were subjected to left anterior descending (LAD) coronary artery ligation for induction of myocardial infarction (MI). Immediately after MI induction, mice were treated with Nutlin-3a (100 mg/kg) or vehicle twice daily for 4 weeks. Survival, heart function and fibrosis were assessed. Signaling molecules were detected by Western blotting. Mouse myofibroblasts under oxygen and glucose deprivation were used for in vitro experiments. MDM2 protein expression was significantly elevated in the mouse heart after MI. Compared with vehicle-treated animals, Nutlin-3a treatment reduced the mouse mortality. Nutlin-3a treatment improved heart function and decreased the infarct scar and fibrosis compared with vehicle. Furthermore, MDM2 inhibition restored IκB and inhibited NF-κB activation, leading to suppressed production of proinflammatory cytokines in the heart after MI. The consistent results were obtained in vitro. MDM2 inhibition reduced cardiac dysfunction and fibrosis after MI. These effects of MDM2 inhibition is mediated through modulating NF-κB activation, resulting in inhibition of inflammatory response.
Literature
2.
go back to reference Saxena, A., I. Russo, and N.G. Frangogiannis. 2016. Inflammation as a therapeutic target in myocardial infarction: learning from past failures to meet future challenges. Translational Research 167(1): 152–66.CrossRefPubMed Saxena, A., I. Russo, and N.G. Frangogiannis. 2016. Inflammation as a therapeutic target in myocardial infarction: learning from past failures to meet future challenges. Translational Research 167(1): 152–66.CrossRefPubMed
3.
go back to reference Ebrahim, M., S.R. Mulay, H.J. Anders, and D. Thomasova. 2015. MDM2 beyond cancer: podoptosis, development, inflammation, and tissue regeneration. Histology and Histopathology 30(11): 1271–82.PubMed Ebrahim, M., S.R. Mulay, H.J. Anders, and D. Thomasova. 2015. MDM2 beyond cancer: podoptosis, development, inflammation, and tissue regeneration. Histology and Histopathology 30(11): 1271–82.PubMed
4.
go back to reference Thomasova, D., S.R. Mulay, H. Bruns, and H.J. Anders. 2012. p53-independent roles of MDM2 in NF-κB signaling: implications for cancer therapy, wound healing, and autoimmune diseases. Neoplasia 14(12): 1097–101.CrossRefPubMedPubMedCentral Thomasova, D., S.R. Mulay, H. Bruns, and H.J. Anders. 2012. p53-independent roles of MDM2 in NF-κB signaling: implications for cancer therapy, wound healing, and autoimmune diseases. Neoplasia 14(12): 1097–101.CrossRefPubMedPubMedCentral
5.
go back to reference Gao, E., Y.H. Lei, X. Shang, Z.M. Huang, L. Zuo, M. Boucher, Q. Fan, J.K. Chuprun, X.L. Ma, and W.J. Koch. 2010. A novel and efficient model of coronary artery ligation and myocardial infarction in the mouse. Circulation Research 107(12): 1445–53.CrossRefPubMedPubMedCentral Gao, E., Y.H. Lei, X. Shang, Z.M. Huang, L. Zuo, M. Boucher, Q. Fan, J.K. Chuprun, X.L. Ma, and W.J. Koch. 2010. A novel and efficient model of coronary artery ligation and myocardial infarction in the mouse. Circulation Research 107(12): 1445–53.CrossRefPubMedPubMedCentral
6.
go back to reference Tovar, C., J. Rosinski, Z. Filipovic, B. Higgins, K. Kolinsky, H. Hilton, X. Zhao, B.T. Vu, W. Qing, K. Packman, O. Myklebost, D.C. Heimbrook, and L.T. Vassilev. 2006. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proceedings of the National Academy of Sciences of the United States of America 103(6): 1888–93.CrossRefPubMedPubMedCentral Tovar, C., J. Rosinski, Z. Filipovic, B. Higgins, K. Kolinsky, H. Hilton, X. Zhao, B.T. Vu, W. Qing, K. Packman, O. Myklebost, D.C. Heimbrook, and L.T. Vassilev. 2006. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proceedings of the National Academy of Sciences of the United States of America 103(6): 1888–93.CrossRefPubMedPubMedCentral
7.
go back to reference Chen, H., W. Yong, S. Ren, W. Shen, Y. He, K.A. Cox, W. Zhu, W. Li, M. Soonpaa, R.M. Payne, D. Franco, L.J. Field, V. Rosen, Y. Wang, and W. Shou. 2006. Overexpression of bone morphogenetic protein 10 in myocardium disrupts cardiac postnatal hypertrophic growth. Journal of Biological Chemistry 281(37): 27481–91.CrossRefPubMedPubMedCentral Chen, H., W. Yong, S. Ren, W. Shen, Y. He, K.A. Cox, W. Zhu, W. Li, M. Soonpaa, R.M. Payne, D. Franco, L.J. Field, V. Rosen, Y. Wang, and W. Shou. 2006. Overexpression of bone morphogenetic protein 10 in myocardium disrupts cardiac postnatal hypertrophic growth. Journal of Biological Chemistry 281(37): 27481–91.CrossRefPubMedPubMedCentral
8.
go back to reference Qin, G., M. Ii, M. Silver, A. Wecker, E. Bord, H. Ma, M. Gavin, D.A. Goukassian, Y.S. Yoon, T. Papayannopoulou, T. Asahara, M. Kearney, T. Thorne, C. Curry, L. Eaton, L. Heyd, D. Dinesh, R. Kishore, Y. Zhu, and D.W. Losordo. 2006. Functional disruption of alpha4 integrin mobilizes bone marrow-derived endothelial progenitors and augments ischemic neovascularization. Journal of Experimental Medicine 203(1): 153–63.CrossRefPubMedPubMedCentral Qin, G., M. Ii, M. Silver, A. Wecker, E. Bord, H. Ma, M. Gavin, D.A. Goukassian, Y.S. Yoon, T. Papayannopoulou, T. Asahara, M. Kearney, T. Thorne, C. Curry, L. Eaton, L. Heyd, D. Dinesh, R. Kishore, Y. Zhu, and D.W. Losordo. 2006. Functional disruption of alpha4 integrin mobilizes bone marrow-derived endothelial progenitors and augments ischemic neovascularization. Journal of Experimental Medicine 203(1): 153–63.CrossRefPubMedPubMedCentral
9.
go back to reference Wang, L., Z.P. Feng, C.S. Kondo, R.S. Sheldon, and H.J. Duff. 1996. Developmental changes in the delayed rectifier K+ channels in mouse heart. Circulation Research 79(1): 79–85.CrossRefPubMed Wang, L., Z.P. Feng, C.S. Kondo, R.S. Sheldon, and H.J. Duff. 1996. Developmental changes in the delayed rectifier K+ channels in mouse heart. Circulation Research 79(1): 79–85.CrossRefPubMed
10.
go back to reference Ibrahim, N., and J.L. Januzzi. 2015. The potential role of natriuretic peptides and other biomarkers in heart failure diagnosis, prognosis and management. Expert Review of Cardiovascular Therapy 13(9): 1017–30.CrossRefPubMed Ibrahim, N., and J.L. Januzzi. 2015. The potential role of natriuretic peptides and other biomarkers in heart failure diagnosis, prognosis and management. Expert Review of Cardiovascular Therapy 13(9): 1017–30.CrossRefPubMed
11.
go back to reference Rocha, S., K.J. Campbell, and N.D. Perkins. 2003. p53- and Mdm2-independent repression of NF-kappa B transactivation by the ARF tumor suppressor. Molecular Cell 12(1): 15–25.CrossRefPubMed Rocha, S., K.J. Campbell, and N.D. Perkins. 2003. p53- and Mdm2-independent repression of NF-kappa B transactivation by the ARF tumor suppressor. Molecular Cell 12(1): 15–25.CrossRefPubMed
12.
go back to reference Gu, L., H.W. Findley, and M. Zhou. 2002. MDM2 induces NF-kappaB/p65 expression transcriptionally through Sp1-binding sites: a novel, p53-independent role of MDM2 in doxorubicin resistance in acute lymphoblastic leukemia. Blood 99(9): 3367–75.CrossRefPubMed Gu, L., H.W. Findley, and M. Zhou. 2002. MDM2 induces NF-kappaB/p65 expression transcriptionally through Sp1-binding sites: a novel, p53-independent role of MDM2 in doxorubicin resistance in acute lymphoblastic leukemia. Blood 99(9): 3367–75.CrossRefPubMed
13.
go back to reference Zhang, Q., X. He, L. Chen, C. Zhang, X. Gao, Z. Yang, and G. Liu. 2012. Synergistic regulation of p53 by Mdm2 and Mdm4 is critical in cardiac endocardial cushion morphogenesis during heart development. Journal of Pathology 228(3): 416–28.CrossRefPubMed Zhang, Q., X. He, L. Chen, C. Zhang, X. Gao, Z. Yang, and G. Liu. 2012. Synergistic regulation of p53 by Mdm2 and Mdm4 is critical in cardiac endocardial cushion morphogenesis during heart development. Journal of Pathology 228(3): 416–28.CrossRefPubMed
14.
go back to reference Ponnuswamy, A., T. Hupp, and R. Fåhraeus. 2012. Concepts in MDM2 signaling: allosteric regulation and feedback loops. Genes & Cancer 3(3-4): 291–7.CrossRef Ponnuswamy, A., T. Hupp, and R. Fåhraeus. 2012. Concepts in MDM2 signaling: allosteric regulation and feedback loops. Genes & Cancer 3(3-4): 291–7.CrossRef
15.
go back to reference Heyne, K., C. Winter, F. Gerten, C. Schmidt, and K. Roemer. 2013. A novel mechanism of crosstalk between the p53 and NFκB pathways: MDM2 binds and inhibits p65RelA. Cell Cycle 12(15): 2479–92.CrossRefPubMedPubMedCentral Heyne, K., C. Winter, F. Gerten, C. Schmidt, and K. Roemer. 2013. A novel mechanism of crosstalk between the p53 and NFκB pathways: MDM2 binds and inhibits p65RelA. Cell Cycle 12(15): 2479–92.CrossRefPubMedPubMedCentral
16.
go back to reference Mulay, S.R., D. Thomasova, M. Ryu, and H.J. Anders. 2012. MDM2 (murine double minute-2) links inflammation and tubular cell healing during acute kidney injury in mice. Kidney International 81(12): 1199–211.CrossRefPubMed Mulay, S.R., D. Thomasova, M. Ryu, and H.J. Anders. 2012. MDM2 (murine double minute-2) links inflammation and tubular cell healing during acute kidney injury in mice. Kidney International 81(12): 1199–211.CrossRefPubMed
17.
go back to reference Mulay, S.R., D. Thomasova, M. Ryu, O.P. Kulkarni, A. Migliorini, H. Bruns, R. Gröbmayr, E. Lazzeri, L. Lasagni, H. Liapis, P. Romagnani, and H.J. Anders. 2013. Podocyte loss involves MDM2-driven mitotic catastrophe. Journal of Pathology 230(3): 322–35.CrossRefPubMed Mulay, S.R., D. Thomasova, M. Ryu, O.P. Kulkarni, A. Migliorini, H. Bruns, R. Gröbmayr, E. Lazzeri, L. Lasagni, H. Liapis, P. Romagnani, and H.J. Anders. 2013. Podocyte loss involves MDM2-driven mitotic catastrophe. Journal of Pathology 230(3): 322–35.CrossRefPubMed
18.
go back to reference Allam, R., S.G. Sayyed, O.P. Kulkarni, J. Lichtnekert, and H.J. Anders. 2011. Mdm2 promotes systemic lupus erythematosus and lupus nephritis. Journal of the American Society of Nephrology 22(11): 2016–27.CrossRefPubMedPubMedCentral Allam, R., S.G. Sayyed, O.P. Kulkarni, J. Lichtnekert, and H.J. Anders. 2011. Mdm2 promotes systemic lupus erythematosus and lupus nephritis. Journal of the American Society of Nephrology 22(11): 2016–27.CrossRefPubMedPubMedCentral
19.
go back to reference Liu, G., Y.J. Park, Y. Tsuruta, E. Lorne, and E. Abraham. 2009. p53 Attenuates lipopolysaccharide-induced NF-kappaB activation and acute lung injury. Journal of Immunology 182(8): 5063–71.CrossRef Liu, G., Y.J. Park, Y. Tsuruta, E. Lorne, and E. Abraham. 2009. p53 Attenuates lipopolysaccharide-induced NF-kappaB activation and acute lung injury. Journal of Immunology 182(8): 5063–71.CrossRef
20.
go back to reference Hashimoto, T., T. Ichiki, J. Ikeda, E. Narabayashi, H. Matsuura, R. Miyazaki, K. Inanaga, K. Takeda, and K. Sunagawa. 2011. Inhibition of MDM2 attenuates neointimal hyperplasia via suppression of vascular proliferation and inflammation. Cardiovascular Research 91(4): 711–9.CrossRefPubMed Hashimoto, T., T. Ichiki, J. Ikeda, E. Narabayashi, H. Matsuura, R. Miyazaki, K. Inanaga, K. Takeda, and K. Sunagawa. 2011. Inhibition of MDM2 attenuates neointimal hyperplasia via suppression of vascular proliferation and inflammation. Cardiovascular Research 91(4): 711–9.CrossRefPubMed
21.
go back to reference Ihling, C., J. Haendeler, G. Menzel, R.D. Hess, G. Fraedrich, H.E. Schaefer, and A.M. Zeiher. 1998. Co-expression of p53 and MDM2 in human atherosclerosis: implications for the regulation of cellularity of atherosclerotic lesions. Journal of Pathology 185(3): 303–12.CrossRefPubMed Ihling, C., J. Haendeler, G. Menzel, R.D. Hess, G. Fraedrich, H.E. Schaefer, and A.M. Zeiher. 1998. Co-expression of p53 and MDM2 in human atherosclerosis: implications for the regulation of cellularity of atherosclerotic lesions. Journal of Pathology 185(3): 303–12.CrossRefPubMed
22.
go back to reference Kleinbongard, P., G. Heusch, and R. Schulz. 2010. TNFalpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacology and Therapeutics 127(3): 295–314.CrossRefPubMed Kleinbongard, P., G. Heusch, and R. Schulz. 2010. TNFalpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacology and Therapeutics 127(3): 295–314.CrossRefPubMed
23.
go back to reference Toufektsian, M.C., V. Robbez-Masson, D. Sanou, M.G. Jouan, O. Ormezzano, J. de Leiris, and F. Boucher. 2008. A single intravenous sTNFR-Fc administration at the time of reperfusion limits infarct size—implications in reperfusion strategies in man. Cardiovascular Drugs and Therapy 22(6): 437–42.CrossRefPubMed Toufektsian, M.C., V. Robbez-Masson, D. Sanou, M.G. Jouan, O. Ormezzano, J. de Leiris, and F. Boucher. 2008. A single intravenous sTNFR-Fc administration at the time of reperfusion limits infarct size—implications in reperfusion strategies in man. Cardiovascular Drugs and Therapy 22(6): 437–42.CrossRefPubMed
24.
go back to reference Liu, S., T. Yin, X. Wei, W. Yi, Y. Qu, Y. Liu, R. Wang, K. Lian, C. Xia, H. Pei, L. Sun, Y. Ma, W.B. Lau, E. Gao, W.J. Koch, H. Wang, and L. Tao. 2011. Downregulation of adiponectin induced by tumor necrosis factor α is involved in the aggravation of posttraumatic myocardial ischemia/reperfusion injury. Critical Care Medicine 39(8): 1935–43.CrossRefPubMed Liu, S., T. Yin, X. Wei, W. Yi, Y. Qu, Y. Liu, R. Wang, K. Lian, C. Xia, H. Pei, L. Sun, Y. Ma, W.B. Lau, E. Gao, W.J. Koch, H. Wang, and L. Tao. 2011. Downregulation of adiponectin induced by tumor necrosis factor α is involved in the aggravation of posttraumatic myocardial ischemia/reperfusion injury. Critical Care Medicine 39(8): 1935–43.CrossRefPubMed
25.
go back to reference Dewald, O., G. Ren, G.D. Duerr, M. Zoerlein, C. Klemm, C. Gersch, S. Tincey, L.H. Michael, M.L. Entman, and N.G. Frangogiannis. 2004. Of mice and dogs: species-specific differences in the inflammatory response following myocardial infarction. American Journal of Pathology 164(2): 665–77.CrossRefPubMedPubMedCentral Dewald, O., G. Ren, G.D. Duerr, M. Zoerlein, C. Klemm, C. Gersch, S. Tincey, L.H. Michael, M.L. Entman, and N.G. Frangogiannis. 2004. Of mice and dogs: species-specific differences in the inflammatory response following myocardial infarction. American Journal of Pathology 164(2): 665–77.CrossRefPubMedPubMedCentral
26.
go back to reference Bujak, M., M. Dobaczewski, K. Chatila, L.H. Mendoza, N. Li, A. Reddy, and N.G. Frangogiannis. 2008. Interleukin-1 receptor type I signaling critically regulates infarct healing and cardiac remodeling. American Journal of Pathology 173(1): 57–67.CrossRefPubMedPubMedCentral Bujak, M., M. Dobaczewski, K. Chatila, L.H. Mendoza, N. Li, A. Reddy, and N.G. Frangogiannis. 2008. Interleukin-1 receptor type I signaling critically regulates infarct healing and cardiac remodeling. American Journal of Pathology 173(1): 57–67.CrossRefPubMedPubMedCentral
27.
go back to reference Abbate, A., F.N. Salloum, E. Vecile, A. Das, N.N. Hoke, S. Straino, G.G. Biondi-Zoccai, J.E. Houser, I.Z. Qureshi, E.D. Ownby, E. Gustini, L.M. Biasucci, A. Severino, M.C. Capogrossi, G.W. Vetrovec, F. Crea, A. Baldi, R.C. Kukreja, and A. Dobrina. 2008. Anakinra, a recombinant human interleukin-1 receptor antagonist, inhibits apoptosis in experimental acute myocardial infarction. Circulation 117(20): 2670–83.CrossRefPubMed Abbate, A., F.N. Salloum, E. Vecile, A. Das, N.N. Hoke, S. Straino, G.G. Biondi-Zoccai, J.E. Houser, I.Z. Qureshi, E.D. Ownby, E. Gustini, L.M. Biasucci, A. Severino, M.C. Capogrossi, G.W. Vetrovec, F. Crea, A. Baldi, R.C. Kukreja, and A. Dobrina. 2008. Anakinra, a recombinant human interleukin-1 receptor antagonist, inhibits apoptosis in experimental acute myocardial infarction. Circulation 117(20): 2670–83.CrossRefPubMed
28.
go back to reference Toldo, S., E. Mezzaroma, B.W. Van Tassell, D. Farkas, C. Marchetti, N.F. Voelkel, and A. Abbate. 2013. Interleukin-1β blockade improves cardiac remodelling after myocardial infarction without interrupting the inflammasome in the mouse. Experimental Physiology 98(3): 734–45.CrossRefPubMed Toldo, S., E. Mezzaroma, B.W. Van Tassell, D. Farkas, C. Marchetti, N.F. Voelkel, and A. Abbate. 2013. Interleukin-1β blockade improves cardiac remodelling after myocardial infarction without interrupting the inflammasome in the mouse. Experimental Physiology 98(3): 734–45.CrossRefPubMed
29.
go back to reference Abbate, A., M.C. Kontos, J.D. Grizzard, G.G. Biondi-Zoccai, B.W. Van Tassell, R. Robati, L.M. Roach, R.A. Arena, C.S. Roberts, A. Varma, C.C. Gelwix, F.N. Salloum, A. Hastillo, C.A. Dinarello, G.W. Vetrovec, and VCU-ART Investigators. 2010. Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] Pilot study). American Journal of Cardiology 105(10): 1371–1377.CrossRefPubMed Abbate, A., M.C. Kontos, J.D. Grizzard, G.G. Biondi-Zoccai, B.W. Van Tassell, R. Robati, L.M. Roach, R.A. Arena, C.S. Roberts, A. Varma, C.C. Gelwix, F.N. Salloum, A. Hastillo, C.A. Dinarello, G.W. Vetrovec, and VCU-ART Investigators. 2010. Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] Pilot study). American Journal of Cardiology 105(10): 1371–1377.CrossRefPubMed
30.
go back to reference Kumar, A.G., C.M. Ballantyne, L.H. Michael, G.L. Kukielka, K.A. Youker, M.L. Lindsey, H.K. Hawkins, H.H. Birdsall, C.R. MacKay, G.J. LaRosa, R.D. Rossen, C.W. Smith, and M.L. Entman. 1997. Induction of monocyte chemoattractant protein-1 in the small veins of the ischemic and reperfused canine myocardium. Circulation 95(3): 693–700.CrossRefPubMed Kumar, A.G., C.M. Ballantyne, L.H. Michael, G.L. Kukielka, K.A. Youker, M.L. Lindsey, H.K. Hawkins, H.H. Birdsall, C.R. MacKay, G.J. LaRosa, R.D. Rossen, C.W. Smith, and M.L. Entman. 1997. Induction of monocyte chemoattractant protein-1 in the small veins of the ischemic and reperfused canine myocardium. Circulation 95(3): 693–700.CrossRefPubMed
31.
go back to reference Kaikita, K., T. Hayasaki, T. Okuma, W.A. Kuziel, H. Ogawa, and M. Takeya. 2004. Targeted deletion of CC chemokine receptor 2 attenuates left ventricular remodeling after experimental myocardial infarction. American Journal of Pathology 165(2): 439–47.CrossRefPubMedPubMedCentral Kaikita, K., T. Hayasaki, T. Okuma, W.A. Kuziel, H. Ogawa, and M. Takeya. 2004. Targeted deletion of CC chemokine receptor 2 attenuates left ventricular remodeling after experimental myocardial infarction. American Journal of Pathology 165(2): 439–47.CrossRefPubMedPubMedCentral
32.
go back to reference Dewald, O., P. Zymek, K. Winkelmann, A. Koerting, G. Ren, T. Abou-Khamis, L.H. Michael, B.J. Rollins, M.L. Entman, and N.G. Frangogiannis. 2005. CCL2/Monocyte Chemoattractant Protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circulation Research 96(8): 881–9.CrossRefPubMed Dewald, O., P. Zymek, K. Winkelmann, A. Koerting, G. Ren, T. Abou-Khamis, L.H. Michael, B.J. Rollins, M.L. Entman, and N.G. Frangogiannis. 2005. CCL2/Monocyte Chemoattractant Protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circulation Research 96(8): 881–9.CrossRefPubMed
33.
go back to reference Hayashidani, S., H. Tsutsui, T. Shiomi, M. Ikeuchi, H. Matsusaka, N. Suematsu, J. Wen, K. Egashira, and A. Takeshita. 2003. Anti-monocyte chemoattractant protein-1 gene therapy attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation 108(17): 2134–40.CrossRefPubMed Hayashidani, S., H. Tsutsui, T. Shiomi, M. Ikeuchi, H. Matsusaka, N. Suematsu, J. Wen, K. Egashira, and A. Takeshita. 2003. Anti-monocyte chemoattractant protein-1 gene therapy attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation 108(17): 2134–40.CrossRefPubMed
Metadata
Title
Murine Double Minute-2 Inhibition Attenuates Cardiac Dysfunction and Fibrosis by Modulating NF-κB Pathway After Experimental Myocardial Infarction
Authors
Hao Zhao
Ruijuan Shen
Xiaobin Dong
Yi Shen
Publication date
01-02-2017
Publisher
Springer US
Published in
Inflammation / Issue 1/2017
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0473-5

Other articles of this Issue 1/2017

Inflammation 1/2017 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.