Skip to main content
Top
Published in: Inflammation 1/2017

01-02-2017 | ORIGINAL ARTICLE

Inhibition of IRF8 Negatively Regulates Macrophage Function and Impairs Cutaneous Wound Healing

Authors: Yuanyuan Guo, Zhiyin Yang, Shan Wu, Peng Xu, Yinbo Peng, Min Yao

Published in: Inflammation | Issue 1/2017

Login to get access

Abstract

The inflammatory response is essential for normal cutaneous wound healing. Macrophages, as critical inflammatory cells, coordinate inflammation and angiogenesis phases during wound healing. It has been reported that the transcription factor interferon regulatory factor 8 (IRF8), a member of the IRF family, plays a critical role in the development and function of macrophages and is associated with inflammation. However, the role of IRF8 in cutaneous wound healing and its underlying mechanism remain elusive. Through immunohistochemical (IHC) staining, we showed that IRF8 is involved in the wound repair process in mice and patients. Furthermore, we ascertain that the repression of IRF8 by small interfering RNA (siRNA) leads to delayed wound healing. To explore the mechanism by which IRF8 impacts wound healing, we observed its effect on macrophage-related mediators by IHC or real-time PCR. The results demonstrated that the inhibition of IRF8 decreases the mRNA expression of inflammatory mediators associated with M1 macrophage (il-1b, il-6, inos, and tnf-a) but no impact on M2 macrophage-related mediators (arg-1, mrc-1, and il-10) and the number of macrophages in the wounds. Furthermore, the inhibition of IRF8 induced apoptosis in the wounds. In summary, this study demonstrates that the down-regulation of IRF8 in the wound leads to impaired wound healing possibly through the regulation of macrophage function and apoptosis in skin wound.
Literature
1.
2.
go back to reference Xu, Z., H. Xu, V.A. Ploplis, and F.J. Castellino. 2010. Factor VII deficiency impairs cutaneous wound healing in mice. Molecular Medicine 16(5–6): 167–176.PubMedPubMedCentral Xu, Z., H. Xu, V.A. Ploplis, and F.J. Castellino. 2010. Factor VII deficiency impairs cutaneous wound healing in mice. Molecular Medicine 16(5–6): 167–176.PubMedPubMedCentral
3.
go back to reference Morris Jr., M.W., M. Allukian 3rd, B.J. Herdrich, R.C. Caskey, C. Zgheib, J. Xu, W. Dorsett-Martin, M.E. Mitchell, and K.W. Liechty. 2014. Modulation of the inflammatory response by increasing fetal wound size or interleukin-10 overexpression determines wound phenotype and scar formation. Wound Repair and Regeneration 22(3): 406–414.CrossRefPubMed Morris Jr., M.W., M. Allukian 3rd, B.J. Herdrich, R.C. Caskey, C. Zgheib, J. Xu, W. Dorsett-Martin, M.E. Mitchell, and K.W. Liechty. 2014. Modulation of the inflammatory response by increasing fetal wound size or interleukin-10 overexpression determines wound phenotype and scar formation. Wound Repair and Regeneration 22(3): 406–414.CrossRefPubMed
5.
go back to reference Mahdavian Delavary, B., W.M. van der Veer, M. van Egmond, F.B. Niessen, and R.H. Beelen. 2011. Macrophages in skin injury and repair. Immunobiology 216(7): 753–762.CrossRefPubMed Mahdavian Delavary, B., W.M. van der Veer, M. van Egmond, F.B. Niessen, and R.H. Beelen. 2011. Macrophages in skin injury and repair. Immunobiology 216(7): 753–762.CrossRefPubMed
6.
go back to reference Lucas, T., A. Waisman, R. Ranjan, J. Roes, T. Krieg, W. Muller, A. Roers, and S.A. Eming. 2010. Differential roles of macrophages in diverse phases of skin repair. Journal of Immunology 184(7): 3964–3977.CrossRef Lucas, T., A. Waisman, R. Ranjan, J. Roes, T. Krieg, W. Muller, A. Roers, and S.A. Eming. 2010. Differential roles of macrophages in diverse phases of skin repair. Journal of Immunology 184(7): 3964–3977.CrossRef
7.
go back to reference Mirza, R., L.A. DiPietro, and T.J. Koh. 2009. Selective and specific macrophage ablation is detrimental to wound healing in mice. The American Journal of Pathology 175(6): 2454–2462.CrossRefPubMedPubMedCentral Mirza, R., L.A. DiPietro, and T.J. Koh. 2009. Selective and specific macrophage ablation is detrimental to wound healing in mice. The American Journal of Pathology 175(6): 2454–2462.CrossRefPubMedPubMedCentral
8.
go back to reference Gu, X.Y., S.E. Shen, C.F. Huang, Y.N. Liu, Y.C. Chen, L. Luo, Y. Zeng, and A.P. Wang. 2013. Effect of activated autologous monocytes/macrophages on wound healing in a rodent model of experimental diabetes. Diabetes Research and Clinical Practice 102(1): 53–59.CrossRefPubMed Gu, X.Y., S.E. Shen, C.F. Huang, Y.N. Liu, Y.C. Chen, L. Luo, Y. Zeng, and A.P. Wang. 2013. Effect of activated autologous monocytes/macrophages on wound healing in a rodent model of experimental diabetes. Diabetes Research and Clinical Practice 102(1): 53–59.CrossRefPubMed
9.
go back to reference Zhang, Q.Z., W.R. Su, S.H. Shi, P. Wilder-Smith, A.P. Xiang, A. Wong, A.L. Nguyen, C.W. Kwon, and A.D. Le. 2010. Human gingiva-derived mesenchymal stem cells elicit polarization of M2 macrophages and enhance cutaneous wound healing. Stem Cells 28(10): 1856–1868.CrossRefPubMedPubMedCentral Zhang, Q.Z., W.R. Su, S.H. Shi, P. Wilder-Smith, A.P. Xiang, A. Wong, A.L. Nguyen, C.W. Kwon, and A.D. Le. 2010. Human gingiva-derived mesenchymal stem cells elicit polarization of M2 macrophages and enhance cutaneous wound healing. Stem Cells 28(10): 1856–1868.CrossRefPubMedPubMedCentral
10.
go back to reference Dror, N., M. Alter-Koltunoff, A. Azriel, N. Amariglio, J. Jacob-Hirsch, S. Zeligson, A. Morgenstern, T. Tamura, H. Hauser, G. Rechavi, K. Ozato, and B.Z. Levi. 2007. Identification of IRF-8 and IRF-1 target genes in activated macrophages. Molecular Immunology 44(4): 338–346.CrossRefPubMed Dror, N., M. Alter-Koltunoff, A. Azriel, N. Amariglio, J. Jacob-Hirsch, S. Zeligson, A. Morgenstern, T. Tamura, H. Hauser, G. Rechavi, K. Ozato, and B.Z. Levi. 2007. Identification of IRF-8 and IRF-1 target genes in activated macrophages. Molecular Immunology 44(4): 338–346.CrossRefPubMed
11.
go back to reference Tamura, T., P. Thotakura, T.S. Tanaka, M.S. Ko, and K. Ozato. 2005. Identification of target genes and a unique cis element regulated by IRF-8 in developing macrophages. Blood 106(6): 1938–1947.CrossRefPubMedPubMedCentral Tamura, T., P. Thotakura, T.S. Tanaka, M.S. Ko, and K. Ozato. 2005. Identification of target genes and a unique cis element regulated by IRF-8 in developing macrophages. Blood 106(6): 1938–1947.CrossRefPubMedPubMedCentral
12.
go back to reference Langlais, D., L.B. Barreiro, and P. Gros. 2016. The macrophage IRF8/IRF1 regulome is required for protection against infections and is associated with chronic inflammation. The Journal of Experimental Medicine 213(4): 585–603.CrossRefPubMedPubMedCentral Langlais, D., L.B. Barreiro, and P. Gros. 2016. The macrophage IRF8/IRF1 regulome is required for protection against infections and is associated with chronic inflammation. The Journal of Experimental Medicine 213(4): 585–603.CrossRefPubMedPubMedCentral
13.
go back to reference Mancino, A., A. Termanini, I. Barozzi, S. Ghisletti, R. Ostuni, E. Prosperini, K. Ozato, and G. Natoli. 2015. A dual cis-regulatory code links IRF8 to constitutive and inducible gene expression in macrophages. Genes & Development 29(4): 394–408.CrossRef Mancino, A., A. Termanini, I. Barozzi, S. Ghisletti, R. Ostuni, E. Prosperini, K. Ozato, and G. Natoli. 2015. A dual cis-regulatory code links IRF8 to constitutive and inducible gene expression in macrophages. Genes & Development 29(4): 394–408.CrossRef
14.
go back to reference Tsujimura, H., T. Nagamura-Inoue, T. Tamura, and K. Ozato. 2002. IFN consensus sequence binding protein/IFN regulatory factor-8 guides bone marrow progenitor cells toward the macrophage lineage. Journal of Immunology 169(3): 1261–1269.CrossRef Tsujimura, H., T. Nagamura-Inoue, T. Tamura, and K. Ozato. 2002. IFN consensus sequence binding protein/IFN regulatory factor-8 guides bone marrow progenitor cells toward the macrophage lineage. Journal of Immunology 169(3): 1261–1269.CrossRef
15.
go back to reference Paschall, A.V., R. Zhang, C.F. Qi, K. Bardhan, L. Peng, G. Lu, J. Yang, M. Merad, T. McGaha, G. Zhou, A. Mellor, S.I. Abrams, H.C. Morse 3rd, K. Ozato, H. Xiong, and K. Liu. 2015. IFN regulatory factor 8 represses GM-CSF expression in T cells to affect myeloid cell lineage differentiation. Journal of Immunology 194(5): 2369–2379.CrossRef Paschall, A.V., R. Zhang, C.F. Qi, K. Bardhan, L. Peng, G. Lu, J. Yang, M. Merad, T. McGaha, G. Zhou, A. Mellor, S.I. Abrams, H.C. Morse 3rd, K. Ozato, H. Xiong, and K. Liu. 2015. IFN regulatory factor 8 represses GM-CSF expression in T cells to affect myeloid cell lineage differentiation. Journal of Immunology 194(5): 2369–2379.CrossRef
16.
17.
go back to reference Kurotaki, D., M. Yamamoto, A. Nishiyama, K. Uno, T. Ban, M. Ichino, H. Sasaki, S. Matsunaga, M. Yoshinari, A. Ryo, M. Nakazawa, K. Ozato, and T. Tamura. 2014. IRF8 inhibits C/EBPalpha activity to restrain mononuclear phagocyte progenitors from differentiating into neutrophils. Nature Communications 5: 4978.CrossRefPubMed Kurotaki, D., M. Yamamoto, A. Nishiyama, K. Uno, T. Ban, M. Ichino, H. Sasaki, S. Matsunaga, M. Yoshinari, A. Ryo, M. Nakazawa, K. Ozato, and T. Tamura. 2014. IRF8 inhibits C/EBPalpha activity to restrain mononuclear phagocyte progenitors from differentiating into neutrophils. Nature Communications 5: 4978.CrossRefPubMed
18.
go back to reference Sasaki, H., D. Kurotaki, N. Osato, H. Sato, I. Sasaki, S. Koizumi, H. Wang, C. Kaneda, A. Nishiyama, T. Kaisho, H. Aburatani, H.C. Morse 3rd, K. Ozato, and T. Tamura. 2015. Transcription factor IRF8 plays a critical role in the development of murine basophils and mast cells. Blood 125(2): 358–369.CrossRefPubMedPubMedCentral Sasaki, H., D. Kurotaki, N. Osato, H. Sato, I. Sasaki, S. Koizumi, H. Wang, C. Kaneda, A. Nishiyama, T. Kaisho, H. Aburatani, H.C. Morse 3rd, K. Ozato, and T. Tamura. 2015. Transcription factor IRF8 plays a critical role in the development of murine basophils and mast cells. Blood 125(2): 358–369.CrossRefPubMedPubMedCentral
19.
go back to reference Watanabe, T., C. Hotta, S. Koizumi, K. Miyashita, J. Nakabayashi, D. Kurotaki, G.R. Sato, M. Yamamoto, M. Nakazawa, H. Fujita, R. Sakai, S. Fujisawa, A. Nishiyama, Z. Ikezawa, M. Aihara, Y. Ishigatsubo, and T. Tamura. 2013. The transcription factor IRF8 counteracts BCR-ABL to rescue dendritic cell development in chronic myelogenous leukemia. Cancer Research 73(22): 6642–6653.CrossRefPubMed Watanabe, T., C. Hotta, S. Koizumi, K. Miyashita, J. Nakabayashi, D. Kurotaki, G.R. Sato, M. Yamamoto, M. Nakazawa, H. Fujita, R. Sakai, S. Fujisawa, A. Nishiyama, Z. Ikezawa, M. Aihara, Y. Ishigatsubo, and T. Tamura. 2013. The transcription factor IRF8 counteracts BCR-ABL to rescue dendritic cell development in chronic myelogenous leukemia. Cancer Research 73(22): 6642–6653.CrossRefPubMed
20.
go back to reference Szelag, M., Piaszyk-Borychowska, A., Plens-Galaska, M., Wesoly, J., and Bluyssen, H.A. 2016. Targeted inhibition of STATs and IRFs as a potential treatment strategy in cardiovascular disease. Oncotarget. doi:10.18632/oncotarget.9195. Szelag, M., Piaszyk-Borychowska, A., Plens-Galaska, M., Wesoly, J., and Bluyssen, H.A. 2016. Targeted inhibition of STATs and IRFs as a potential treatment strategy in cardiovascular disease. Oncotarget. doi:10.​18632/​oncotarget.​9195.
21.
go back to reference Chmielewski, S., A. Piaszyk-Borychowska, J. Wesoly, and H.A. Bluyssen. 2015. STAT1 and IRF8 in vascular inflammation and cardiovascular disease: Diagnostic and therapeutic potential. International Reviews of Immunology 25: 1–21. Chmielewski, S., A. Piaszyk-Borychowska, J. Wesoly, and H.A. Bluyssen. 2015. STAT1 and IRF8 in vascular inflammation and cardiovascular disease: Diagnostic and therapeutic potential. International Reviews of Immunology 25: 1–21.
22.
go back to reference Yan, M., H. Wang, J. Sun, W. Liao, P. Li, Y. Zhu, C. Xu, J. Joo, Y. Sun, S. Abbasi, A. Kovalchuk, N. Lv, W.J. Leonard, and H.C. Morse. 2016. Cutting edge: Expression of IRF8 in gastric epithelial cells confers protective innate immunity against Helicobacter pylori infection. Journal of Immunology 196(5): 1999–2003.CrossRef Yan, M., H. Wang, J. Sun, W. Liao, P. Li, Y. Zhu, C. Xu, J. Joo, Y. Sun, S. Abbasi, A. Kovalchuk, N. Lv, W.J. Leonard, and H.C. Morse. 2016. Cutting edge: Expression of IRF8 in gastric epithelial cells confers protective innate immunity against Helicobacter pylori infection. Journal of Immunology 196(5): 1999–2003.CrossRef
23.
go back to reference Luda, K.M., T. Joeris, E.K. Persson, A. Rivollier, M. Demiri, K.M. Sitnik, L. Pool, J.B. Holm, F. Melo-Gonzalez, L. Richter, B.N. Lambrecht, K. Kristiansen, M.A. Travis, M. Svensson-Frej, K. Kotarsky, and W.W. Agace. 2016. IRF8 transcription-factor-dependent classical dendritic cells are essential for intestinal T cell homeostasis. Immunity 44(4): 860–874.CrossRefPubMed Luda, K.M., T. Joeris, E.K. Persson, A. Rivollier, M. Demiri, K.M. Sitnik, L. Pool, J.B. Holm, F. Melo-Gonzalez, L. Richter, B.N. Lambrecht, K. Kristiansen, M.A. Travis, M. Svensson-Frej, K. Kotarsky, and W.W. Agace. 2016. IRF8 transcription-factor-dependent classical dendritic cells are essential for intestinal T cell homeostasis. Immunity 44(4): 860–874.CrossRefPubMed
24.
go back to reference Yoshida, Y., R. Yoshimi, H. Yoshii, D. Kim, A. Dey, H. Xiong, J. Munasinghe, I. Yazawa, M.J. O’Donovan, O.A. Maximova, S. Sharma, J. Zhu, H. Wang, H.C. Morse 3rd, and K. Ozato. 2014. The transcription factor IRF8 activates integrin-mediated TGF-beta signaling and promotes neuroinflammation. Immunity 40(2): 187–198.CrossRefPubMedPubMedCentral Yoshida, Y., R. Yoshimi, H. Yoshii, D. Kim, A. Dey, H. Xiong, J. Munasinghe, I. Yazawa, M.J. O’Donovan, O.A. Maximova, S. Sharma, J. Zhu, H. Wang, H.C. Morse 3rd, and K. Ozato. 2014. The transcription factor IRF8 activates integrin-mediated TGF-beta signaling and promotes neuroinflammation. Immunity 40(2): 187–198.CrossRefPubMedPubMedCentral
25.
go back to reference Xiang, M., L. Wang, S. Guo, Y.Y. Lu, H. Lei, D.S. Jiang, Y. Zhang, Y. Liu, Y. Zhou, X.D. Zhang, and H. Li. 2014. Interferon regulatory factor 8 protects against cerebral ischaemic-reperfusion injury. Journal of Neurochemistry 129(6): 988–1001.CrossRefPubMed Xiang, M., L. Wang, S. Guo, Y.Y. Lu, H. Lei, D.S. Jiang, Y. Zhang, Y. Liu, Y. Zhou, X.D. Zhang, and H. Li. 2014. Interferon regulatory factor 8 protects against cerebral ischaemic-reperfusion injury. Journal of Neurochemistry 129(6): 988–1001.CrossRefPubMed
26.
go back to reference Tamura, T., T. Nagamura-Inoue, Z. Shmeltzer, T. Kuwata, and K. Ozato. 2000. ICSBP directs bipotential myeloid progenitor cells to differentiate into mature macrophages. Immunity 13(2): 155–165.CrossRefPubMed Tamura, T., T. Nagamura-Inoue, Z. Shmeltzer, T. Kuwata, and K. Ozato. 2000. ICSBP directs bipotential myeloid progenitor cells to differentiate into mature macrophages. Immunity 13(2): 155–165.CrossRefPubMed
27.
go back to reference Koschwanez, H., M. Vurnek, J. Weinman, J. Tarlton, C. Whiting, S. Amirapu, S. Colgan, D. Long, P. Jarrett, and E. Broadbent. 2015. Stress-related changes to immune cells in the skin prior to wounding may impair subsequent healing. Brain, Behavior, and Immunity 50: 47–51.CrossRefPubMed Koschwanez, H., M. Vurnek, J. Weinman, J. Tarlton, C. Whiting, S. Amirapu, S. Colgan, D. Long, P. Jarrett, and E. Broadbent. 2015. Stress-related changes to immune cells in the skin prior to wounding may impair subsequent healing. Brain, Behavior, and Immunity 50: 47–51.CrossRefPubMed
29.
go back to reference Masuda, T., S. Iwamoto, S. Mikuriya, H. Tozaki-Saitoh, T. Tamura, M. Tsuda, and K. Inoue. 2015. Transcription factor IRF1 is responsible for IRF8-mediated IL-1beta expression in reactive microglia. Journal of Pharmacological Sciences 128(4): 216–220.CrossRefPubMed Masuda, T., S. Iwamoto, S. Mikuriya, H. Tozaki-Saitoh, T. Tamura, M. Tsuda, and K. Inoue. 2015. Transcription factor IRF1 is responsible for IRF8-mediated IL-1beta expression in reactive microglia. Journal of Pharmacological Sciences 128(4): 216–220.CrossRefPubMed
30.
go back to reference Simon, P.S., S.K. Sharman, C. Lu, D. Yang, A.V. Paschall, S.S. Tulachan, and K. Liu. 2015. The NF-kappaB p65 and p50 homodimer cooperate with IRF8 to activate iNOS transcription. BMC Cancer 15: 770.CrossRefPubMedPubMedCentral Simon, P.S., S.K. Sharman, C. Lu, D. Yang, A.V. Paschall, S.S. Tulachan, and K. Liu. 2015. The NF-kappaB p65 and p50 homodimer cooperate with IRF8 to activate iNOS transcription. BMC Cancer 15: 770.CrossRefPubMedPubMedCentral
31.
go back to reference Yang, D., M. Thangaraju, D.D. Browning, Z. Dong, B. Korchin, D.C. Lev, V. Ganapathy, and K. Liu. 2007. IFN regulatory factor 8 mediates apoptosis in nonhemopoietic tumor cells via regulation of Fas expression. Journal of Immunology 179(7): 4775–4782.CrossRef Yang, D., M. Thangaraju, D.D. Browning, Z. Dong, B. Korchin, D.C. Lev, V. Ganapathy, and K. Liu. 2007. IFN regulatory factor 8 mediates apoptosis in nonhemopoietic tumor cells via regulation of Fas expression. Journal of Immunology 179(7): 4775–4782.CrossRef
32.
go back to reference Hu, X., D. Yang, M. Zimmerman, F. Liu, J. Yang, S. Kannan, A. Burchert, Z. Szulc, A. Bielawska, K. Ozato, K. Bhalla, and K. Liu. 2011. IRF8 regulates acid ceramidase expression to mediate apoptosis and suppresses myelogeneous leukemia. Cancer Research 71(8): 2882–2891.CrossRefPubMedPubMedCentral Hu, X., D. Yang, M. Zimmerman, F. Liu, J. Yang, S. Kannan, A. Burchert, Z. Szulc, A. Bielawska, K. Ozato, K. Bhalla, and K. Liu. 2011. IRF8 regulates acid ceramidase expression to mediate apoptosis and suppresses myelogeneous leukemia. Cancer Research 71(8): 2882–2891.CrossRefPubMedPubMedCentral
Metadata
Title
Inhibition of IRF8 Negatively Regulates Macrophage Function and Impairs Cutaneous Wound Healing
Authors
Yuanyuan Guo
Zhiyin Yang
Shan Wu
Peng Xu
Yinbo Peng
Min Yao
Publication date
01-02-2017
Publisher
Springer US
Published in
Inflammation / Issue 1/2017
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0454-8

Other articles of this Issue 1/2017

Inflammation 1/2017 Go to the issue