Skip to main content
Top
Published in: Inflammation 4/2016

01-08-2016 | ORIGINAL ARTICLE

Pharmacological Activation of Peroxisome Proliferator-Activated Receptor {Delta} Increases Sphingomyelin Synthase Activity in THP-1 Macrophage-Derived Foam Cell

Authors: Dongsheng Mou, Hua Yang, Changhua Qu, Juan Chen, Chaogui Zhang

Published in: Inflammation | Issue 4/2016

Login to get access

Abstract

Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors, which mediate glucose and lipid homeostasis by regulating the expression of a large number of transcription factors. Sphingomyelin synthase (SMS) is a key enzyme in the synthesis of sphingomyelin (SM), and its expression and activity have been reported to be associated with atherosclerosis (AS). Although there have been many functional PPAR and SMS studies on atherosclerosis in recent years, few have investigated the correlation between the activation of PPARδ and the activity of SMS. In his study, macrophage-induced foam cells were utilized to model important pathological changes that occur in AS. The influence of PPARδ agonism by GW501516 on SMS and its product molecule SM were measured. Results indicated that the activation of PPARδ was correlated in a positive manner with the activity of SMS2, and the content of SM was dose dependently increased by GW501516. Together, this study represents the first to suggest that PPARδ activation may be a potential risk of AS through enhancing activity of SMS2.
Literature
1.
go back to reference Ajith, T.A., and T.G. Jayakumar. 2016. Peroxisome proliferator-activated receptors in cardiac energy metabolism and cardiovascular disease. Clinical and Experimental Pharmacology & Physiology. doi:10.1111/1440-1681.12579. Ajith, T.A., and T.G. Jayakumar. 2016. Peroxisome proliferator-activated receptors in cardiac energy metabolism and cardiovascular disease. Clinical and Experimental Pharmacology & Physiology. doi:10.​1111/​1440-1681.​12579.
2.
go back to reference Auwerx, J.H., A. Chait, and S.S. Deeb. 1989. Regulation of the low density lipoprotein receptor and hydroxymethylglutaryl coenzyme A reductase genes by protein kinase C and a putative negative regulatory protein. Proceedings of the National Academy of Sciences of the United States of America 86(4): 1133–1137.CrossRefPubMedPubMedCentral Auwerx, J.H., A. Chait, and S.S. Deeb. 1989. Regulation of the low density lipoprotein receptor and hydroxymethylglutaryl coenzyme A reductase genes by protein kinase C and a putative negative regulatory protein. Proceedings of the National Academy of Sciences of the United States of America 86(4): 1133–1137.CrossRefPubMedPubMedCentral
3.
go back to reference Auwerx, J.H., S. Deeb, J.D. Brunzell, R. Peng, and A. Chait. 1988. Transcriptional activation of the lipoprotein lipase and apolipoprotein E genes accompanies differentiation in some human macrophage-like cell lines. Biochemistry 27(8): 2651–2655.CrossRefPubMed Auwerx, J.H., S. Deeb, J.D. Brunzell, R. Peng, and A. Chait. 1988. Transcriptional activation of the lipoprotein lipase and apolipoprotein E genes accompanies differentiation in some human macrophage-like cell lines. Biochemistry 27(8): 2651–2655.CrossRefPubMed
4.
5.
go back to reference Bojic, L.A., A.C. Burke, S.S. Chhoker, D.E. Telford, B.G. Sutherland, J.Y. Edwards, C.G. Sawyez, et al. 2014. Peroxisome proliferator-activated receptor delta agonist GW1516 attenuates diet-induced aortic inflammation, insulin resistance, and atherosclerosis in low-density lipoprotein receptor knockout mice. Arteriosclerosis, Thrombosis, and Vascular Biology 34(1): 52–60. doi:10.1161/ATVBAHA.113.301830.CrossRefPubMed Bojic, L.A., A.C. Burke, S.S. Chhoker, D.E. Telford, B.G. Sutherland, J.Y. Edwards, C.G. Sawyez, et al. 2014. Peroxisome proliferator-activated receptor delta agonist GW1516 attenuates diet-induced aortic inflammation, insulin resistance, and atherosclerosis in low-density lipoprotein receptor knockout mice. Arteriosclerosis, Thrombosis, and Vascular Biology 34(1): 52–60. doi:10.​1161/​ATVBAHA.​113.​301830.CrossRefPubMed
6.
go back to reference Briand, F., S.U. Naik, I. Fuki, J.S. Millar, C. Macphee, M. Walker, J. Billheimer, G. Rothblat, and D.J. Rader. 2009. Both the peroxisome proliferator-activated receptor delta agonist, GW0742, and ezetimibe promote reverse cholesterol transport in mice by reducing intestinal reabsorption of HDL-derived cholesterol. Clinical and Translational Science 2(2): 127–133.CrossRefPubMedPubMedCentral Briand, F., S.U. Naik, I. Fuki, J.S. Millar, C. Macphee, M. Walker, J. Billheimer, G. Rothblat, and D.J. Rader. 2009. Both the peroxisome proliferator-activated receptor delta agonist, GW0742, and ezetimibe promote reverse cholesterol transport in mice by reducing intestinal reabsorption of HDL-derived cholesterol. Clinical and Translational Science 2(2): 127–133.CrossRefPubMedPubMedCentral
7.
go back to reference Cheang, W.S., X.Y. Tian, W.T. Wong, and Y. Huang. 2015. The peroxisome proliferator-activated receptors in cardiovascular diseases: experimental benefits and clinical challenges. British Journal of Pharmacology 172(23): 5512–5522. doi:10.1111/bph.13029.CrossRefPubMed Cheang, W.S., X.Y. Tian, W.T. Wong, and Y. Huang. 2015. The peroxisome proliferator-activated receptors in cardiovascular diseases: experimental benefits and clinical challenges. British Journal of Pharmacology 172(23): 5512–5522. doi:10.​1111/​bph.​13029.CrossRefPubMed
9.
go back to reference Ding, T., Z. Li, T. Hailemariam, S. Mukherjee, F.R. Maxfield, M.P. Wu, and X.C. Jiang. 2008. SMS overexpression and knockdown: impact on cellular sphingomyelin and diacylglycerol metabolism, and cell apoptosis. Journal of Lipid Research 49(2): 376–385. doi:10.1194/jlr.M700401-JLR200.CrossRefPubMed Ding, T., Z. Li, T. Hailemariam, S. Mukherjee, F.R. Maxfield, M.P. Wu, and X.C. Jiang. 2008. SMS overexpression and knockdown: impact on cellular sphingomyelin and diacylglycerol metabolism, and cell apoptosis. Journal of Lipid Research 49(2): 376–385. doi:10.​1194/​jlr.​M700401-JLR200.CrossRefPubMed
10.
go back to reference Dong, J., J. Liu, B. Lou, Z. Li, X. Ye, M. Wu, and X.C. Jiang. 2006. Adenovirus-mediated overexpression of sphingomyelin synthases 1 and 2 increases the atherogenic potential in mice. Journal of Lipid Research 47(6): 1307–1314. doi:10.1194/jlr.M600040-JLR200.CrossRefPubMed Dong, J., J. Liu, B. Lou, Z. Li, X. Ye, M. Wu, and X.C. Jiang. 2006. Adenovirus-mediated overexpression of sphingomyelin synthases 1 and 2 increases the atherogenic potential in mice. Journal of Lipid Research 47(6): 1307–1314. doi:10.​1194/​jlr.​M600040-JLR200.CrossRefPubMed
12.
go back to reference Guyton, J.R., and K.F. Klemp. 1996. Development of the lipid-rich core in human atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology 16(1): 4–11.CrossRefPubMed Guyton, J.R., and K.F. Klemp. 1996. Development of the lipid-rich core in human atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology 16(1): 4–11.CrossRefPubMed
13.
go back to reference Hailemariam, T.K., C. Huan, J. Liu, Z. Li, C. Roman, M. Kalbfeisch, H.H. Bui, et al. 2008. Sphingomyelin synthase 2 deficiency attenuates NFkappaB activation. Arteriosclerosis, Thrombosis, and Vascular Biology 28(8): 1519–1526. doi:10.1161/ATVBAHA.108.168682.CrossRefPubMed Hailemariam, T.K., C. Huan, J. Liu, Z. Li, C. Roman, M. Kalbfeisch, H.H. Bui, et al. 2008. Sphingomyelin synthase 2 deficiency attenuates NFkappaB activation. Arteriosclerosis, Thrombosis, and Vascular Biology 28(8): 1519–1526. doi:10.​1161/​ATVBAHA.​108.​168682.CrossRefPubMed
14.
go back to reference Hoff, H.F., and R.E. Morton. 1985. Lipoproteins containing apo B extracted from human aortas. Structure and function. Annals of the New York Academy of Sciences 454: 183–194.CrossRefPubMed Hoff, H.F., and R.E. Morton. 1985. Lipoproteins containing apo B extracted from human aortas. Structure and function. Annals of the New York Academy of Sciences 454: 183–194.CrossRefPubMed
16.
go back to reference Hojjati, M.R., Z. Li, H. Zhou, S. Tang, C. Huan, E. Ooi, S. Lu, and X.C. Jiang. 2005. Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in apoE-deficient mice. The Journal of Biological Chemistry 280(11): 10284–10289. doi:10.1074/jbc.M412348200.CrossRefPubMed Hojjati, M.R., Z. Li, H. Zhou, S. Tang, C. Huan, E. Ooi, S. Lu, and X.C. Jiang. 2005. Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in apoE-deficient mice. The Journal of Biological Chemistry 280(11): 10284–10289. doi:10.​1074/​jbc.​M412348200.CrossRefPubMed
18.
go back to reference Jeong, Ts, S.L. Schissel, I. Tabas, H.J. Pownall, A.R. Tall, and X. Jiang. 1998. Increased sphingomyelin content of plasma lipoproteins in apolipoprotein E knockout mice reflects combined production and catabolic defects and enhances reactivity with mammalian sphingomyelinase. The Journal of Clinical Investigation 101(4): 905–912. doi:10.1172/JCI870.CrossRefPubMedPubMedCentral Jeong, Ts, S.L. Schissel, I. Tabas, H.J. Pownall, A.R. Tall, and X. Jiang. 1998. Increased sphingomyelin content of plasma lipoproteins in apolipoprotein E knockout mice reflects combined production and catabolic defects and enhances reactivity with mammalian sphingomyelinase. The Journal of Clinical Investigation 101(4): 905–912. doi:10.​1172/​JCI870.CrossRefPubMedPubMedCentral
19.
go back to reference Jiang, X.C., F. Paultre, T.A. Pearson, R.G. Reed, C.K. Francis, M. Lin, L. Berglund, and A.R. Tall. 2000. Plasma sphingomyelin level as a risk factor for coronary artery disease. Arteriosclerosis, Thrombosis, and Vascular Biology 20(12): 2614–2618.CrossRefPubMed Jiang, X.C., F. Paultre, T.A. Pearson, R.G. Reed, C.K. Francis, M. Lin, L. Berglund, and A.R. Tall. 2000. Plasma sphingomyelin level as a risk factor for coronary artery disease. Arteriosclerosis, Thrombosis, and Vascular Biology 20(12): 2614–2618.CrossRefPubMed
21.
go back to reference Lee, C.H., P. Olson, A. Hevener, I. Mehl, L.W. Chong, J.M. Olefsky, F.J. Gonzalez, et al. 2006. PPARdelta regulates glucose metabolism and insulin sensitivity. Proceedings of the National Academy of Sciences of the United States of America 103(9): 3444–3449. doi:10.1073/pnas.0511253103.CrossRefPubMedPubMedCentral Lee, C.H., P. Olson, A. Hevener, I. Mehl, L.W. Chong, J.M. Olefsky, F.J. Gonzalez, et al. 2006. PPARdelta regulates glucose metabolism and insulin sensitivity. Proceedings of the National Academy of Sciences of the United States of America 103(9): 3444–3449. doi:10.​1073/​pnas.​0511253103.CrossRefPubMedPubMedCentral
22.
go back to reference Lee, S.S., T. Pineau, J. Drago, E.J. Lee, J.W. Owens, D.L. Kroetz, P.M. Fernandez-Salguero, H. Westphal, and F.J. Gonzalez. 1995. Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Molecular and Cellular Biology 15(6): 3012–3022.CrossRefPubMedPubMedCentral Lee, S.S., T. Pineau, J. Drago, E.J. Lee, J.W. Owens, D.L. Kroetz, P.M. Fernandez-Salguero, H. Westphal, and F.J. Gonzalez. 1995. Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Molecular and Cellular Biology 15(6): 3012–3022.CrossRefPubMedPubMedCentral
23.
go back to reference Li, G., C. Chen, S.D. Laing, C. Ballard, K.C. Biju, R.L. Reddick, R.A. Clark, and S. Li. 2016. Hematopoietic knockdown of PPARdelta reduces atherosclerosis in LDLR−/− mice. Gene Therapy 23(1): 78–85. doi:10.1038/gt.2015.78.CrossRefPubMed Li, G., C. Chen, S.D. Laing, C. Ballard, K.C. Biju, R.L. Reddick, R.A. Clark, and S. Li. 2016. Hematopoietic knockdown of PPARdelta reduces atherosclerosis in LDLR−/− mice. Gene Therapy 23(1): 78–85. doi:10.​1038/​gt.​2015.​78.CrossRefPubMed
24.
go back to reference Li, Y.L., X.Y. Qi, H. Jiang, X.D. Deng, Y.P. Dong, T.B. Ding, L. Zhou, et al. 2015. Discovery, synthesis and biological evaluation of 2-(4-(N-phenethylsulfamoyl)phenoxy)acetamides (SAPAs) as novel sphingomyelin synthase 1 inhibitors. Bioorganic and Medicinal Chemistry 23(18): 6173–6184. doi:10.1016/j.bmc.2015.07.060.CrossRefPubMed Li, Y.L., X.Y. Qi, H. Jiang, X.D. Deng, Y.P. Dong, T.B. Ding, L. Zhou, et al. 2015. Discovery, synthesis and biological evaluation of 2-(4-(N-phenethylsulfamoyl)phenoxy)acetamides (SAPAs) as novel sphingomyelin synthase 1 inhibitors. Bioorganic and Medicinal Chemistry 23(18): 6173–6184. doi:10.​1016/​j.​bmc.​2015.​07.​060.CrossRefPubMed
25.
go back to reference Li, Z., T.K. Hailemariam, H. Zhou, Y. Li, D.C. Duckworth, D.A. Peake, Y. Zhang, M.S. Kuo, G. Cao, and X.C. Jiang. 2007. Inhibition of sphingomyelin synthase (SMS) affects intracellular sphingomyelin accumulation and plasma membrane lipid organization. Biochimica et Biophysica Acta 1771(9): 1186–1194. doi:10.1016/j.bbalip.2007.05.007.CrossRefPubMedPubMedCentral Li, Z., T.K. Hailemariam, H. Zhou, Y. Li, D.C. Duckworth, D.A. Peake, Y. Zhang, M.S. Kuo, G. Cao, and X.C. Jiang. 2007. Inhibition of sphingomyelin synthase (SMS) affects intracellular sphingomyelin accumulation and plasma membrane lipid organization. Biochimica et Biophysica Acta 1771(9): 1186–1194. doi:10.​1016/​j.​bbalip.​2007.​05.​007.CrossRefPubMedPubMedCentral
26.
27.
go back to reference Merrill Jr., A.H., and D.D. Jones. 1990. An update of the enzymology and regulation of sphingomyelin metabolism. Biochimica et Biophysica Acta 1044(1): 1–12.CrossRefPubMed Merrill Jr., A.H., and D.D. Jones. 1990. An update of the enzymology and regulation of sphingomyelin metabolism. Biochimica et Biophysica Acta 1044(1): 1–12.CrossRefPubMed
28.
go back to reference Miyaji, M., Z.X. Jin, S. Yamaoka, R. Amakawa, S. Fukuhara, S.B. Sato, T. Kobayashi, et al. 2005. Role of membrane sphingomyelin and ceramide in platform formation for Fas-mediated apoptosis. The Journal of Experimental Medicine 202(2): 249–259. doi:10.1084/jem.20041685.CrossRefPubMedPubMedCentral Miyaji, M., Z.X. Jin, S. Yamaoka, R. Amakawa, S. Fukuhara, S.B. Sato, T. Kobayashi, et al. 2005. Role of membrane sphingomyelin and ceramide in platform formation for Fas-mediated apoptosis. The Journal of Experimental Medicine 202(2): 249–259. doi:10.​1084/​jem.​20041685.CrossRefPubMedPubMedCentral
29.
go back to reference Motojima, K., P. Passilly, J.M. Peters, F.J. Gonzalez, and N. Latruffe. 1998. Expression of putative fatty acid transporter genes are regulated by peroxisome proliferator-activated receptor alpha and gamma activators in a tissue- and inducer-specific manner. The Journal of Biological Chemistry 273(27): 16710–16714.CrossRefPubMed Motojima, K., P. Passilly, J.M. Peters, F.J. Gonzalez, and N. Latruffe. 1998. Expression of putative fatty acid transporter genes are regulated by peroxisome proliferator-activated receptor alpha and gamma activators in a tissue- and inducer-specific manner. The Journal of Biological Chemistry 273(27): 16710–16714.CrossRefPubMed
30.
go back to reference Nakamura, F., Y. Ishida, D. Sawada, N. Ashida, T. Sugawara, M. Sakai, T. Goto, T. Kawada, and S. Fujiwara. 2016. Fragmented lactic acid bacterial cells activate peroxisome proliferator-activated receptors and ameliorate dyslipidemia in obese mice. Journal of Agricultural and Food Chemistry 64(12): 2549–2559. doi:10.1021/acs.jafc.5b05827.CrossRefPubMed Nakamura, F., Y. Ishida, D. Sawada, N. Ashida, T. Sugawara, M. Sakai, T. Goto, T. Kawada, and S. Fujiwara. 2016. Fragmented lactic acid bacterial cells activate peroxisome proliferator-activated receptors and ameliorate dyslipidemia in obese mice. Journal of Agricultural and Food Chemistry 64(12): 2549–2559. doi:10.​1021/​acs.​jafc.​5b05827.CrossRefPubMed
31.
go back to reference Naya, N., K. Fukao, A. Nakamura, T. Hamada, M. Sugimoto, M. Kojima, N. Yoshimura, et al. 2016. A selective peroxisome proliferator-activated receptor delta agonist PYPEP suppresses atherosclerosis in association with improvement of the serum lipoprotein profiles in human apolipoprotein B100 and cholesteryl ester transfer protein double transgenic mice. Metabolism 65(1): 16–25. doi:10.1016/j.metabol.2015.09.016.CrossRefPubMed Naya, N., K. Fukao, A. Nakamura, T. Hamada, M. Sugimoto, M. Kojima, N. Yoshimura, et al. 2016. A selective peroxisome proliferator-activated receptor delta agonist PYPEP suppresses atherosclerosis in association with improvement of the serum lipoprotein profiles in human apolipoprotein B100 and cholesteryl ester transfer protein double transgenic mice. Metabolism 65(1): 16–25. doi:10.​1016/​j.​metabol.​2015.​09.​016.CrossRefPubMed
32.
go back to reference Noel, C., Y.L. Marcel, and J. Davignon. 1972. Plasma phospholipids in the different types of primary hyperlipoproteinemia. The Journal of Laboratory and Clinical Medicine 79(4): 611–621.PubMed Noel, C., Y.L. Marcel, and J. Davignon. 1972. Plasma phospholipids in the different types of primary hyperlipoproteinemia. The Journal of Laboratory and Clinical Medicine 79(4): 611–621.PubMed
33.
go back to reference Oliver Jr., W.R., J.L. Shenk, M.R. Snaith, C.S. Russell, K.D. Plunket, N.L. Bodkin, M.C. Lewis, et al. 2001. A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proceedings of the National Academy of Sciences of the United States of America 98(9): 5306–5311. doi:10.1073/pnas.091021198.CrossRefPubMedPubMedCentral Oliver Jr., W.R., J.L. Shenk, M.R. Snaith, C.S. Russell, K.D. Plunket, N.L. Bodkin, M.C. Lewis, et al. 2001. A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proceedings of the National Academy of Sciences of the United States of America 98(9): 5306–5311. doi:10.​1073/​pnas.​091021198.CrossRefPubMedPubMedCentral
34.
go back to reference Park, T.S., R.L. Panek, S.B. Mueller, J.C. Hanselman, W.S. Rosebury, A.W. Robertson, E.K. Kindt, R. Homan, S.K. Karathanasis, and M.D. Rekhter. 2004. Inhibition of sphingomyelin synthesis reduces atherogenesis in apolipoprotein E-knockout mice. Circulation 110(22): 3465–3471. doi:10.1161/01.CIR.0000148370.60535.22.CrossRefPubMed Park, T.S., R.L. Panek, S.B. Mueller, J.C. Hanselman, W.S. Rosebury, A.W. Robertson, E.K. Kindt, R. Homan, S.K. Karathanasis, and M.D. Rekhter. 2004. Inhibition of sphingomyelin synthesis reduces atherogenesis in apolipoprotein E-knockout mice. Circulation 110(22): 3465–3471. doi:10.​1161/​01.​CIR.​0000148370.​60535.​22.CrossRefPubMed
35.
go back to reference Park, T.S., R.L. Panek, M.D. Rekhter, S.B. Mueller, W.S. Rosebury, A. Robertson, J.C. Hanselman, E. Kindt, R. Homan, and S.K. Karathanasis. 2006. Modulation of lipoprotein metabolism by inhibition of sphingomyelin synthesis in ApoE knockout mice. Atherosclerosis 189(2): 264–272. doi:10.1016/j.atherosclerosis.2005.12.029.CrossRefPubMed Park, T.S., R.L. Panek, M.D. Rekhter, S.B. Mueller, W.S. Rosebury, A. Robertson, J.C. Hanselman, E. Kindt, R. Homan, and S.K. Karathanasis. 2006. Modulation of lipoprotein metabolism by inhibition of sphingomyelin synthesis in ApoE knockout mice. Atherosclerosis 189(2): 264–272. doi:10.​1016/​j.​atherosclerosis.​2005.​12.​029.CrossRefPubMed
36.
go back to reference Peters, J.M., N. Hennuyer, B. Staels, J.C. Fruchart, C. Fievet, F.J. Gonzalez, and J. Auwerx. 1997. Alterations in lipoprotein metabolism in peroxisome proliferator-activated receptor alpha-deficient mice. The Journal of Biological Chemistry 272(43): 27307–27312.CrossRefPubMed Peters, J.M., N. Hennuyer, B. Staels, J.C. Fruchart, C. Fievet, F.J. Gonzalez, and J. Auwerx. 1997. Alterations in lipoprotein metabolism in peroxisome proliferator-activated receptor alpha-deficient mice. The Journal of Biological Chemistry 272(43): 27307–27312.CrossRefPubMed
37.
go back to reference Peters, J.M., S.S. Lee, W. Li, J.M. Ward, O. Gavrilova, C. Everett, M.L. Reitman, L.D. Hudson, and F.J. Gonzalez. 2000. Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor beta(delta). Molecular and Cellular Biology 20(14): 5119–5128.CrossRefPubMedPubMedCentral Peters, J.M., S.S. Lee, W. Li, J.M. Ward, O. Gavrilova, C. Everett, M.L. Reitman, L.D. Hudson, and F.J. Gonzalez. 2000. Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor beta(delta). Molecular and Cellular Biology 20(14): 5119–5128.CrossRefPubMedPubMedCentral
38.
go back to reference Rodriguez, J.L., G.C. Ghiselli, D. Torreggiani, and C.R. Sirtori. 1976. Very low density lipoproteins in normal and cholesterol-fed rabbits: lipid and protein composition and metabolism. Part 1. Chemical composition of very low density lipoproteins in rabbits. Atherosclerosis 23(1): 73–83.CrossRefPubMed Rodriguez, J.L., G.C. Ghiselli, D. Torreggiani, and C.R. Sirtori. 1976. Very low density lipoproteins in normal and cholesterol-fed rabbits: lipid and protein composition and metabolism. Part 1. Chemical composition of very low density lipoproteins in rabbits. Atherosclerosis 23(1): 73–83.CrossRefPubMed
39.
go back to reference Spiegelman, B.M. 1998. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 47(4): 507–514.CrossRefPubMed Spiegelman, B.M. 1998. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 47(4): 507–514.CrossRefPubMed
40.
go back to reference Sprecher, D.L., C. Massien, G. Pearce, A.N. Billin, I. Perlstein, T.M. Willson, D.G. Hassall, et al. 2007. Triglyceride: high-density lipoprotein cholesterol effects in healthy subjects administered a peroxisome proliferator activated receptor delta agonist. Arteriosclerosis, Thrombosis, and Vascular Biology 27(2): 359–365. doi:10.1161/01.ATV.0000252790.70572.0c.CrossRefPubMed Sprecher, D.L., C. Massien, G. Pearce, A.N. Billin, I. Perlstein, T.M. Willson, D.G. Hassall, et al. 2007. Triglyceride: high-density lipoprotein cholesterol effects in healthy subjects administered a peroxisome proliferator activated receptor delta agonist. Arteriosclerosis, Thrombosis, and Vascular Biology 27(2): 359–365. doi:10.​1161/​01.​ATV.​0000252790.​70572.​0c.CrossRefPubMed
42.
go back to reference Takata, Y., J. Liu, F. Yin, A.R. Collins, C.J. Lyon, C.H. Lee, A.R. Atkins, et al. 2008. PPARdelta-mediated antiinflammatory mechanisms inhibit angiotensin II-accelerated atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America 105(11): 4277–4282. doi:10.1073/pnas.0708647105.CrossRefPubMedPubMedCentral Takata, Y., J. Liu, F. Yin, A.R. Collins, C.J. Lyon, C.H. Lee, A.R. Atkins, et al. 2008. PPARdelta-mediated antiinflammatory mechanisms inhibit angiotensin II-accelerated atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America 105(11): 4277–4282. doi:10.​1073/​pnas.​0708647105.CrossRefPubMedPubMedCentral
43.
go back to reference Toral, M., M. Gomez-Guzman, R. Jimenez, M. Romero, M.J. Zarzuelo, M.P. Utrilla, C. Hermenegildo, et al. 2015. Chronic peroxisome proliferator-activated receptor beta/delta agonist GW0742 prevents hypertension, vascular inflammatory and oxidative status, and endothelial dysfunction in diet-induced obesity. Journal of Hypertension 33(9): 1831–1844. doi:10.1097/HJH.0000000000000634.CrossRefPubMed Toral, M., M. Gomez-Guzman, R. Jimenez, M. Romero, M.J. Zarzuelo, M.P. Utrilla, C. Hermenegildo, et al. 2015. Chronic peroxisome proliferator-activated receptor beta/delta agonist GW0742 prevents hypertension, vascular inflammatory and oxidative status, and endothelial dysfunction in diet-induced obesity. Journal of Hypertension 33(9): 1831–1844. doi:10.​1097/​HJH.​0000000000000634​.CrossRefPubMed
44.
go back to reference Van der Luit, A.H., M. Budde, S. Zerp, W. Caan, J.B. Klarenbeek, M. Verheij, and W.J. Van Blitterswijk. 2007. Resistance to alkyl-lysophospholipid-induced apoptosis due to downregulated sphingomyelin synthase 1 expression with consequent sphingomyelin- and cholesterol-deficiency in lipid rafts. The Biochemical Journal 401(2): 541–549. doi:10.1042/BJ20061178.CrossRefPubMed Van der Luit, A.H., M. Budde, S. Zerp, W. Caan, J.B. Klarenbeek, M. Verheij, and W.J. Van Blitterswijk. 2007. Resistance to alkyl-lysophospholipid-induced apoptosis due to downregulated sphingomyelin synthase 1 expression with consequent sphingomyelin- and cholesterol-deficiency in lipid rafts. The Biochemical Journal 401(2): 541–549. doi:10.​1042/​BJ20061178.CrossRefPubMed
45.
go back to reference Wallace, J.M., M. Schwarz, P. Coward, J. Houze, J.K. Sawyer, K.L. Kelley, A. Chai, and L.L. Rudel. 2005. Effects of peroxisome proliferator-activated receptor alpha/delta agonists on HDL-cholesterol in vervet monkeys. Journal of Lipid Research 46(5): 1009–1016. doi:10.1194/jlr.M500002-JLR200.CrossRefPubMed Wallace, J.M., M. Schwarz, P. Coward, J. Houze, J.K. Sawyer, K.L. Kelley, A. Chai, and L.L. Rudel. 2005. Effects of peroxisome proliferator-activated receptor alpha/delta agonists on HDL-cholesterol in vervet monkeys. Journal of Lipid Research 46(5): 1009–1016. doi:10.​1194/​jlr.​M500002-JLR200.CrossRefPubMed
46.
go back to reference Wang, Y.X., C.H. Lee, S. Tiep, R.T. Yu, J. Ham, H. Kang, and R.M. Evans. 2003. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 113(2): 159–170.CrossRefPubMed Wang, Y.X., C.H. Lee, S. Tiep, R.T. Yu, J. Ham, H. Kang, and R.M. Evans. 2003. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 113(2): 159–170.CrossRefPubMed
Metadata
Title
Pharmacological Activation of Peroxisome Proliferator-Activated Receptor {Delta} Increases Sphingomyelin Synthase Activity in THP-1 Macrophage-Derived Foam Cell
Authors
Dongsheng Mou
Hua Yang
Changhua Qu
Juan Chen
Chaogui Zhang
Publication date
01-08-2016
Publisher
Springer US
Published in
Inflammation / Issue 4/2016
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0389-0

Other articles of this Issue 4/2016

Inflammation 4/2016 Go to the issue