Skip to main content
Top
Published in: Inflammation 2/2016

01-04-2016 | ORIGINAL ARTICLE

The Protective Role of Autophagy in Matrix Metalloproteinase-Mediated Cell Transmigration and Cell Death in High-Glucose-Treated Endothelial Cells

Authors: Chia-Lun Chao, Chun-Pin Chuang, Yen-Fen Cheng, Kueir-Rarn Lee, Yung Chang, Shun-Ping Cheng, Wan-Khey Chan, Feng-Ming Ho

Published in: Inflammation | Issue 2/2016

Login to get access

Abstract

Diabetes mellitus may cause vascular endothelial damage via endothelial matrix metalloproteinase-2 (MMP-2). The role of endothelial autophagy in MMP-2-mediated cell injury in response to high-glucose (HG) stimulation was rarely described. In this study, we used HG-treated human umbilical vein endothelial cells (HUVECs) to investigate the effect of autophagy on MMP-2-induced cell transmigration and apoptosis. THP-1 transmigration was detected by the transmigration assay. Light chain 3 (LC3, representing autophagy), MMP-2, and poly (ADP-ribose) polymerase (PARP, representing apoptosis) of HG (33 mM)-treated HUVECs were evaluated by western blot analysis. The MMP-2 activity was also examined by gelatin zymography. We used GM6001 (10 μM, an MMP-2 inhibitor) to investigate the relationship of MMP-2 and THP-1 transmigration. Using 3-methyladenine (3MA, 5 mM, an LC3 inhibitor), we explored the effects of autophagy on MMP-2 expression, THP-1 transmigration, and apoptosis. Our results showed that HG increased LC3-II expression, MMP-2 activity, THP-1 transmigration, and cleaved PARP expression in a time-dependent manner (0–48 h); among them, LC3-II appeared earlier (0–24 h) than the others (24–48 h). GM6001 suppressed MMP-2 activity and ameliorated THP-1 transmigration. 3MA suppressed LC3-II expression and increased MMP-2 expression, THP-1 transmigration, and cleaved PARP expression. From these sequential findings, we demonstrated that autophagy plays a protective role in MMP-2-mediated cell transmigration and cell death in HG-stimulated HUVECs.
Literature
1.
go back to reference Haffner, S.M., S. Lehto, T. Rönnemaa, K. Pyörälä, and M. Laakso. 1998. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. New England Journal of Medicine 339: 229–234.CrossRefPubMed Haffner, S.M., S. Lehto, T. Rönnemaa, K. Pyörälä, and M. Laakso. 1998. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. New England Journal of Medicine 339: 229–234.CrossRefPubMed
2.
go back to reference Nandy, D., R. Janardhanan, D. Mukhopadhyay, and A. Basu. 2011. Effect of hyperglycemia on human monocyte activation. Journal of Investigative Medicine 59: 661–667.PubMedPubMedCentral Nandy, D., R. Janardhanan, D. Mukhopadhyay, and A. Basu. 2011. Effect of hyperglycemia on human monocyte activation. Journal of Investigative Medicine 59: 661–667.PubMedPubMedCentral
3.
go back to reference Sena, C.M., A.M. Pereira, and R. Seiça. 2013. Endothelial dysfunction—a major mediator of diabetic vascular disease. Biochimica et Biophysica Acta 1832: 2216–2231.CrossRefPubMed Sena, C.M., A.M. Pereira, and R. Seiça. 2013. Endothelial dysfunction—a major mediator of diabetic vascular disease. Biochimica et Biophysica Acta 1832: 2216–2231.CrossRefPubMed
4.
go back to reference Konior, A., A. Schramm, M. Czesnikiewicz-Guzik, and T.J. Guzik. 2014. NADPH oxidases in vascular pathology. Antioxidants and Redox Signaling 20: 2794–2814.CrossRefPubMedPubMedCentral Konior, A., A. Schramm, M. Czesnikiewicz-Guzik, and T.J. Guzik. 2014. NADPH oxidases in vascular pathology. Antioxidants and Redox Signaling 20: 2794–2814.CrossRefPubMedPubMedCentral
5.
go back to reference Mittal, M., M.R. Siddiqui, K. Tran, S.P. Reddy, and A.B. Malik. 2014. Reactive oxygen species in inflammation and tissue injury. Antioxidants and Redox Signaling 20: 1126–1167.CrossRefPubMedPubMedCentral Mittal, M., M.R. Siddiqui, K. Tran, S.P. Reddy, and A.B. Malik. 2014. Reactive oxygen species in inflammation and tissue injury. Antioxidants and Redox Signaling 20: 1126–1167.CrossRefPubMedPubMedCentral
6.
go back to reference Packard, R.R., and P. Libby. 2008. Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clinical Chemistry 54: 24–38.CrossRefPubMed Packard, R.R., and P. Libby. 2008. Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clinical Chemistry 54: 24–38.CrossRefPubMed
8.
go back to reference Chen, Q., M. Jin, F. Yang, J. Zhu, Q. Xiao, and L. Zhang. 2013. Matrix metalloproteinases: inflammatory regulators of cell behaviors in vascular formation and remodeling. Mediators of Inflammation 2013: 928315.PubMedPubMedCentral Chen, Q., M. Jin, F. Yang, J. Zhu, Q. Xiao, and L. Zhang. 2013. Matrix metalloproteinases: inflammatory regulators of cell behaviors in vascular formation and remodeling. Mediators of Inflammation 2013: 928315.PubMedPubMedCentral
9.
go back to reference Lin, J., V. Kakkar, and X. Lu. 2014. Impact of matrix metalloproteinases on atherosclerosis. Current Drug Targets 15: 442–453.CrossRefPubMed Lin, J., V. Kakkar, and X. Lu. 2014. Impact of matrix metalloproteinases on atherosclerosis. Current Drug Targets 15: 442–453.CrossRefPubMed
10.
go back to reference Magné, J., P. Gustafsson, H. Jin, L. Maegdefessel, K. Hultenby, A. Wernerson, P. Eriksson, A. Franco-Cereceda, P.T. Kovanen, I. Gonçalves, and E. Ehrenborg. 2015. ATG16L1 expression in carotid atherosclerotic plaques is associated with plaque vulnerability. Arteriosclerosis, Thrombosis, and Vascular Biology 35: 1226–1235.CrossRefPubMed Magné, J., P. Gustafsson, H. Jin, L. Maegdefessel, K. Hultenby, A. Wernerson, P. Eriksson, A. Franco-Cereceda, P.T. Kovanen, I. Gonçalves, and E. Ehrenborg. 2015. ATG16L1 expression in carotid atherosclerotic plaques is associated with plaque vulnerability. Arteriosclerosis, Thrombosis, and Vascular Biology 35: 1226–1235.CrossRefPubMed
11.
go back to reference Newby, A.C. 2015. Metalloproteinases promote plaque rupture and myocardial infarction: a persuasive concept waiting for clinical translation. Matrix Biology 44-46C: 157–166.CrossRef Newby, A.C. 2015. Metalloproteinases promote plaque rupture and myocardial infarction: a persuasive concept waiting for clinical translation. Matrix Biology 44-46C: 157–166.CrossRef
12.
go back to reference Giebel, S.J., G. Menicucci, P.G. McGuire, and A. Das. 2005. Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood-retinal barrier. Laboratory Investigation 85: 597–607.CrossRefPubMed Giebel, S.J., G. Menicucci, P.G. McGuire, and A. Das. 2005. Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood-retinal barrier. Laboratory Investigation 85: 597–607.CrossRefPubMed
13.
go back to reference Cook-Mills, J.M. 2006. Hydrogen peroxide activation of endothelial cell-associated MMPs during VCAM-1-dependent leukocyte migration. Circulation Research 116: 456–467. Cook-Mills, J.M. 2006. Hydrogen peroxide activation of endothelial cell-associated MMPs during VCAM-1-dependent leukocyte migration. Circulation Research 116: 456–467.
14.
go back to reference Kim, D.S., H.M. Kwon, J.S. Choi, S.W. Kang, G.E. Ji, and Y.H. Kang. 2007. Resveratrol blunts tumor necrosis factor-alpha-induced monocyte adhesion and transmigration. Nutrition Research and Practice 1: 285–290.CrossRefPubMedPubMedCentral Kim, D.S., H.M. Kwon, J.S. Choi, S.W. Kang, G.E. Ji, and Y.H. Kang. 2007. Resveratrol blunts tumor necrosis factor-alpha-induced monocyte adhesion and transmigration. Nutrition Research and Practice 1: 285–290.CrossRefPubMedPubMedCentral
15.
go back to reference Ho, F.M., S.H. Liu, W.W. Lin, and C.S. Liau. 2007. Opposite effects of high glucose on MMP-2 and TIMP-2 in human endothelial cells. Journal of Cellular Biochemistry 101: 442–450.CrossRefPubMed Ho, F.M., S.H. Liu, W.W. Lin, and C.S. Liau. 2007. Opposite effects of high glucose on MMP-2 and TIMP-2 in human endothelial cells. Journal of Cellular Biochemistry 101: 442–450.CrossRefPubMed
16.
go back to reference Gatica, D., M. Chiong, S. Lavandero, and D.J. Klionsky. 2015. Molecular mechanisms of autophagy in the cardiovascular system. Circulation Research 116: 456–467.CrossRefPubMedPubMedCentral Gatica, D., M. Chiong, S. Lavandero, and D.J. Klionsky. 2015. Molecular mechanisms of autophagy in the cardiovascular system. Circulation Research 116: 456–467.CrossRefPubMedPubMedCentral
17.
go back to reference Ouyang, C., J. You, and Z. Xie. 2014. The interplay between autophagy and apoptosis in the diabetic heart. Journal of Molecular and Cellular Cardiology 71: 71–80.CrossRefPubMed Ouyang, C., J. You, and Z. Xie. 2014. The interplay between autophagy and apoptosis in the diabetic heart. Journal of Molecular and Cellular Cardiology 71: 71–80.CrossRefPubMed
18.
go back to reference Xu, Q., X. Li, Y. Lu, L. Shen, J. Zhang, S. Cao, X. Huang, J. Bin, and Y. Liao. 2015. Pharmacological modulation of autophagy to protect cardiomyocytes according to the time windows of ischaemia/reperfusion. British Journal of Pharmacology 172: 3072–3085.CrossRefPubMed Xu, Q., X. Li, Y. Lu, L. Shen, J. Zhang, S. Cao, X. Huang, J. Bin, and Y. Liao. 2015. Pharmacological modulation of autophagy to protect cardiomyocytes according to the time windows of ischaemia/reperfusion. British Journal of Pharmacology 172: 3072–3085.CrossRefPubMed
19.
go back to reference Zhang, J., H. Deng, L. Liu, X. Liu, X. Zuo, Q. Xu, Z. Wu, X. Peng, and A. Ji. 2015. α-Lipoic acid protects against hypoxia/reoxygenation-induced injury in human umbilical vein endothelial cells through suppression of apoptosis and autophagy. Molecular Medicine Reports 12: 180–186.PubMedPubMedCentral Zhang, J., H. Deng, L. Liu, X. Liu, X. Zuo, Q. Xu, Z. Wu, X. Peng, and A. Ji. 2015. α-Lipoic acid protects against hypoxia/reoxygenation-induced injury in human umbilical vein endothelial cells through suppression of apoptosis and autophagy. Molecular Medicine Reports 12: 180–186.PubMedPubMedCentral
20.
go back to reference Chen, F., B. Chen, F.Q. Xiao, Y.T. Wu, R.H. Wang, Z.W. Sun, G.S. Fu, Y. Mou, W. Tao, X.S. Hu, and S.J. Hu. 2014. Autophagy protects against senescence and apoptosis via the RAS-mitochondria in high-glucose-induced endothelial cells. Cellular Physiology and Biochemistry 33: 1058–1074.CrossRefPubMed Chen, F., B. Chen, F.Q. Xiao, Y.T. Wu, R.H. Wang, Z.W. Sun, G.S. Fu, Y. Mou, W. Tao, X.S. Hu, and S.J. Hu. 2014. Autophagy protects against senescence and apoptosis via the RAS-mitochondria in high-glucose-induced endothelial cells. Cellular Physiology and Biochemistry 33: 1058–1074.CrossRefPubMed
21.
go back to reference Ding, Z., X. Wang, L. Schnackenberg, M. Khaidakov, S. Liu, S. Singla, Y. Dai, and J.L. Mehta. 2013. Regulation of autophagy and apoptosis in response to ox-LDL in vascular smooth muscle cells, and the modulatory effects of the microRNA hsa-let-7 g. International Journal of Cardiology 168: 1378–1385.CrossRefPubMed Ding, Z., X. Wang, L. Schnackenberg, M. Khaidakov, S. Liu, S. Singla, Y. Dai, and J.L. Mehta. 2013. Regulation of autophagy and apoptosis in response to ox-LDL in vascular smooth muscle cells, and the modulatory effects of the microRNA hsa-let-7 g. International Journal of Cardiology 168: 1378–1385.CrossRefPubMed
22.
go back to reference Perrotta, I., and S. Aquila. 2015. The role of oxidative stress and autophagy in atherosclerosis. Oxidative Medicine and Cellular Longevity 2015: 130315.CrossRefPubMedPubMedCentral Perrotta, I., and S. Aquila. 2015. The role of oxidative stress and autophagy in atherosclerosis. Oxidative Medicine and Cellular Longevity 2015: 130315.CrossRefPubMedPubMedCentral
23.
go back to reference Chao, C.L., Y.C. Hou, P.D. Chao, C.S. Weng, and F.M. Ho. 2009. The antioxidant effects of quercetin metabolites on the prevention of high glucose-induced apoptosis of human umbilical vein endothelial cells. British Journal of Nutrition 101: 1165–1170.CrossRefPubMed Chao, C.L., Y.C. Hou, P.D. Chao, C.S. Weng, and F.M. Ho. 2009. The antioxidant effects of quercetin metabolites on the prevention of high glucose-induced apoptosis of human umbilical vein endothelial cells. British Journal of Nutrition 101: 1165–1170.CrossRefPubMed
24.
go back to reference Chao, C.L., N.C. Chang, C.S. Weng, K.R. Lee, S.T. Kao, J.C. Hsu, and F.M. Ho. 2011. Grape seed extract ameliorates tumor necrosis factor-α-induced inflammatory status of human umbilical vein endothelial cells. European Journal of Nutrition 50: 401–409.CrossRefPubMed Chao, C.L., N.C. Chang, C.S. Weng, K.R. Lee, S.T. Kao, J.C. Hsu, and F.M. Ho. 2011. Grape seed extract ameliorates tumor necrosis factor-α-induced inflammatory status of human umbilical vein endothelial cells. European Journal of Nutrition 50: 401–409.CrossRefPubMed
27.
go back to reference Beckman, J.A., M.A. Creager, and P. Libby. 2002. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 287: 2570–2581.CrossRefPubMed Beckman, J.A., M.A. Creager, and P. Libby. 2002. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 287: 2570–2581.CrossRefPubMed
28.
go back to reference Nesto, R.W. 2004. Correlation between cardiovascular disease and diabetes mellitus: current concepts. American Journal of Medicine 116(Suppl 5A): 11S–22S.CrossRefPubMed Nesto, R.W. 2004. Correlation between cardiovascular disease and diabetes mellitus: current concepts. American Journal of Medicine 116(Suppl 5A): 11S–22S.CrossRefPubMed
29.
go back to reference Shiau, M.Y., S.T. Tsai, K.J. Tsai, M.L. Haung, Y.T. Hsu, and Y.H. Chang. 2006. Increased circulatory MMP-2 and MMP-9 levels and activities in patients with type 1 diabetes mellitus. Mount Sinai Journal of Medicine 73: 1024–1028.PubMed Shiau, M.Y., S.T. Tsai, K.J. Tsai, M.L. Haung, Y.T. Hsu, and Y.H. Chang. 2006. Increased circulatory MMP-2 and MMP-9 levels and activities in patients with type 1 diabetes mellitus. Mount Sinai Journal of Medicine 73: 1024–1028.PubMed
30.
go back to reference Yang, R., H. Liu, I. Williams, and B. Chaqour. 2007. Matrix metalloproteinase-2 expression and apoptogenic activity in retinal pericytes: implications in diabetic retinopathy. Annals of the New York Academy of Sciences 1103: 196–201.CrossRefPubMed Yang, R., H. Liu, I. Williams, and B. Chaqour. 2007. Matrix metalloproteinase-2 expression and apoptogenic activity in retinal pericytes: implications in diabetic retinopathy. Annals of the New York Academy of Sciences 1103: 196–201.CrossRefPubMed
31.
go back to reference Kowluru, R.A., and M. Kanwar. 2009. Oxidative stress and the development of diabetic retinopathy: contributory role of matrix metalloproteinase-2. Free Radical Biology and Medicine 46: 1677–1685.CrossRefPubMedPubMedCentral Kowluru, R.A., and M. Kanwar. 2009. Oxidative stress and the development of diabetic retinopathy: contributory role of matrix metalloproteinase-2. Free Radical Biology and Medicine 46: 1677–1685.CrossRefPubMedPubMedCentral
32.
go back to reference De Meyer, G.R., M.O. Grootaert, C.F. Michiels, A. Kurdi, D.M. Schrijvers, and W. Martinet. 2015. Autophagy in vascular disease. Circulation Research 116: 468–479.CrossRefPubMed De Meyer, G.R., M.O. Grootaert, C.F. Michiels, A. Kurdi, D.M. Schrijvers, and W. Martinet. 2015. Autophagy in vascular disease. Circulation Research 116: 468–479.CrossRefPubMed
33.
go back to reference Mellor, K.M., J.R. Bell, M.J. Young, R.H. Ritchie, and L.M. Delbridge. 2011. Myocardial autophagy activation and suppressed survival signaling is associated with insulin resistance in fructose-fed mice. Journal of Molecular and Cellular Cardiology 50: 1035–1043.CrossRefPubMed Mellor, K.M., J.R. Bell, M.J. Young, R.H. Ritchie, and L.M. Delbridge. 2011. Myocardial autophagy activation and suppressed survival signaling is associated with insulin resistance in fructose-fed mice. Journal of Molecular and Cellular Cardiology 50: 1035–1043.CrossRefPubMed
34.
go back to reference Wu, X., L. He, F. Chen, X. He, Y. Cai, G. Zhang, Q. Yi, M. He, and J. Luo. 2014. Impaired autophagy contributes to adverse cardiac remodeling in acute myocardial infarction. PLoS One 9, e112891.CrossRefPubMedPubMedCentral Wu, X., L. He, F. Chen, X. He, Y. Cai, G. Zhang, Q. Yi, M. He, and J. Luo. 2014. Impaired autophagy contributes to adverse cardiac remodeling in acute myocardial infarction. PLoS One 9, e112891.CrossRefPubMedPubMedCentral
35.
go back to reference Kobayashi, S., X. Xu, K. Chen, and Q. Liang. 2012. Suppression of autophagy is protective in high glucose-induced cardiomyocyte injury. Autophagy 8: 577–592.CrossRefPubMedPubMedCentral Kobayashi, S., X. Xu, K. Chen, and Q. Liang. 2012. Suppression of autophagy is protective in high glucose-induced cardiomyocyte injury. Autophagy 8: 577–592.CrossRefPubMedPubMedCentral
36.
go back to reference Chen, H.R., Y.C. Chuang, C.H. Chao, and T.M. Yeh. 2015. Macrophage migration inhibitory factor induces vascular leakage via autophagy. Biology Open 4: 244–252.CrossRefPubMedPubMedCentral Chen, H.R., Y.C. Chuang, C.H. Chao, and T.M. Yeh. 2015. Macrophage migration inhibitory factor induces vascular leakage via autophagy. Biology Open 4: 244–252.CrossRefPubMedPubMedCentral
37.
go back to reference Ho, F.M., S.H. Liu, C.S. Liau, P.J. Huang, S.G. Shiah, and S.Y. Lin-Shiau. 1999. Nitric oxide prevents apoptosis of human endothelial cells from high glucose exposure during early stage. Journal of Cellular Biochemistry 75: 258–263.CrossRefPubMed Ho, F.M., S.H. Liu, C.S. Liau, P.J. Huang, S.G. Shiah, and S.Y. Lin-Shiau. 1999. Nitric oxide prevents apoptosis of human endothelial cells from high glucose exposure during early stage. Journal of Cellular Biochemistry 75: 258–263.CrossRefPubMed
38.
go back to reference Ho, F.M., W.W. Lin, B.C. Chen, C.M. Chao, C.R. Yang, L.Y. Lin, C.C. Lai, S.H. Liu, and C.S. Liau. 2006. High glucose-induced apoptosis in human vascular endothelial cells is mediated through NF-kappaB and c-Jun NH2-terminal kinase pathway and prevented by PI3K/Akt/eNOS pathway. Cellular Signalling 18: 391–399.CrossRefPubMed Ho, F.M., W.W. Lin, B.C. Chen, C.M. Chao, C.R. Yang, L.Y. Lin, C.C. Lai, S.H. Liu, and C.S. Liau. 2006. High glucose-induced apoptosis in human vascular endothelial cells is mediated through NF-kappaB and c-Jun NH2-terminal kinase pathway and prevented by PI3K/Akt/eNOS pathway. Cellular Signalling 18: 391–399.CrossRefPubMed
Metadata
Title
The Protective Role of Autophagy in Matrix Metalloproteinase-Mediated Cell Transmigration and Cell Death in High-Glucose-Treated Endothelial Cells
Authors
Chia-Lun Chao
Chun-Pin Chuang
Yen-Fen Cheng
Kueir-Rarn Lee
Yung Chang
Shun-Ping Cheng
Wan-Khey Chan
Feng-Ming Ho
Publication date
01-04-2016
Publisher
Springer US
Published in
Inflammation / Issue 2/2016
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0313-7

Other articles of this Issue 2/2016

Inflammation 2/2016 Go to the issue