Skip to main content
Top
Published in: Inflammation 2/2016

01-04-2016 | ORIGINAL ARTICLE

Comparison of the Anti-inflammatory Effects of Proanthocyanidin, Quercetin, and Damnacanthal on Benzo(a)pyrene Exposed A549 Alveolar Cell Line

Authors: Ersin Günay, Sefa Celik, Sevinc Sarinc-Ulasli, Arzu Özyürek, Ömer Hazman, Sibel Günay, Mehmet Özdemir, Mehmet Ünlü

Published in: Inflammation | Issue 2/2016

Login to get access

Abstract

Phytochemical compounds are emerging as a new group of anti-inflammatory, antioxidant, and anti-cancer agents that help minimize toxicity in patients with pulmonary diseases. The goal of this study was to investigate the potential curative effects of Quercetin (QC), Damnacanthal (DAM), and Proanthocyanidine (PA) on inflammatory mediators and oxidative stress parameters and to examine the viability of the A549 cell line treated with benzo(a)pyrene (BaP) in vitro. The A549 cell line was treated with BaP, a BaP/QC combination, a BaP/DAM combination, and BaP/PA combination. Inflammatory markers, oxidative stress parameters, mRNA expression levels of apoptotic and antiapoptotic proteins, and cell viability were assessed, and the results were compared. There were higher levels of lactate dehydrogenase after BaP treatment of A549 cell lines. Interferon-γ level significantly decreased in the QC, DAM, and PA-treated group (P < 0.001). IL-1β and TNF-α levels significantly decreased after PA and QC treatments (P < 0.001). Some of the oxidative stress markers (NO, MDA, TOS) and OSI decreased, while antioxidant (GSH) levels increased after treatment with QC, DAM, and PA. The QC and DAM treatments profoundly upregulated apoptotic gene expression and downregulated antiapoptotic gene expression. Viability of QC, DAM, and PA-treated cells was found to be significantly higher in comparison to the control and BaP-treated groups (p < 0.001). Our results revealed that A549 cell lines treated with BaP-stimulated necrosis produced higher level of inflammatory cytokines and oxidative stress parameters. Treatments with PA, QC, and DAM reduced inflammatory response induced by BaP exposure.
Literature
1.
go back to reference Jiang, Y., K. Rao, G. Yang, X. Chen, Q. Wang, A. Liu, et al. 2012. Benzo(a)pyrene induces p73 mRNA expression and necrosis in human lung adenocarcinoma H1299 cells. Environmental Toxicology 27: 202–10.CrossRefPubMed Jiang, Y., K. Rao, G. Yang, X. Chen, Q. Wang, A. Liu, et al. 2012. Benzo(a)pyrene induces p73 mRNA expression and necrosis in human lung adenocarcinoma H1299 cells. Environmental Toxicology 27: 202–10.CrossRefPubMed
2.
go back to reference Min, L., S. He, Q. Chen, F. Peng, H. Peng, and M. Xie. 2011. Comparative proteomic analysis of cellular response of human airway epithelial cells (A549) to benzo(a)pyrene. Toxicology Mechanisms and Methods 21: 374–82.CrossRefPubMed Min, L., S. He, Q. Chen, F. Peng, H. Peng, and M. Xie. 2011. Comparative proteomic analysis of cellular response of human airway epithelial cells (A549) to benzo(a)pyrene. Toxicology Mechanisms and Methods 21: 374–82.CrossRefPubMed
3.
go back to reference Anandakumar, P., S. Kamaraj, S. Jagan, G. Ramakrishnan, S. Asokkumar, C. Naveenkumar, et al. 2012. Capsaicin inhibits benzo(a)pyrene-induced lung carcinogenesis in an in vivo mouse model. Inflammation Research 61: 1169–75.CrossRefPubMed Anandakumar, P., S. Kamaraj, S. Jagan, G. Ramakrishnan, S. Asokkumar, C. Naveenkumar, et al. 2012. Capsaicin inhibits benzo(a)pyrene-induced lung carcinogenesis in an in vivo mouse model. Inflammation Research 61: 1169–75.CrossRefPubMed
4.
go back to reference Borm, P.J., A.M. Knaapen, R.P. Schins, R.W. Godschalk, and F.J. Schooten. 1997. Neutrophils amplify the formation of DNA adducts by benzo[a]pyrene in lung target cells. Environmental Health Perspectives 105: 1089–93.CrossRefPubMedPubMedCentral Borm, P.J., A.M. Knaapen, R.P. Schins, R.W. Godschalk, and F.J. Schooten. 1997. Neutrophils amplify the formation of DNA adducts by benzo[a]pyrene in lung target cells. Environmental Health Perspectives 105: 1089–93.CrossRefPubMedPubMedCentral
5.
go back to reference Rubin, H. 2001. Synergistic mechanisms in carcinogenesis by polycyclic aromatic hydrocarbons and by tobacco smoke: a bio-historical perspective with updates. Carcinogenesis 22: 1903–30.CrossRefPubMed Rubin, H. 2001. Synergistic mechanisms in carcinogenesis by polycyclic aromatic hydrocarbons and by tobacco smoke: a bio-historical perspective with updates. Carcinogenesis 22: 1903–30.CrossRefPubMed
6.
go back to reference Wang, Z., Y. Qi, Q. Chen, D. Yang, S. Tang, X. Jin, et al. 2009. Cyclin A is essential for the p53-modulated inhibition from benzo(a)pyrene toxicity in A549 cells. Toxicology 256: 1–6.CrossRefPubMed Wang, Z., Y. Qi, Q. Chen, D. Yang, S. Tang, X. Jin, et al. 2009. Cyclin A is essential for the p53-modulated inhibition from benzo(a)pyrene toxicity in A549 cells. Toxicology 256: 1–6.CrossRefPubMed
7.
go back to reference Kamaraj, S., R. Vinodhkumar, P. Anandakumar, S. Jagan, G. Ramakrishnan, and T. Devaki. 2007. The effects of quercetin on antioxidant status and tumor markers in the lung and serum of mice treated with benzo(a)pyrene. Biological and Pharmaceutical Bulletin 30: 2268–73.CrossRefPubMed Kamaraj, S., R. Vinodhkumar, P. Anandakumar, S. Jagan, G. Ramakrishnan, and T. Devaki. 2007. The effects of quercetin on antioxidant status and tumor markers in the lung and serum of mice treated with benzo(a)pyrene. Biological and Pharmaceutical Bulletin 30: 2268–73.CrossRefPubMed
8.
go back to reference Kim, H., J.Y. Kim, H.S. Song, K.U. Park, K.C. Mun, and E. Ha. 2011. Grape seed proanthocyanidin extract inhibits interleukin-17-induced interleukin-6 production via MAPK pathway in human pulmonary epithelial cells. Naunyn-Schmiedeberg’s Archives of Pharmacology 383: 555–62.CrossRefPubMed Kim, H., J.Y. Kim, H.S. Song, K.U. Park, K.C. Mun, and E. Ha. 2011. Grape seed proanthocyanidin extract inhibits interleukin-17-induced interleukin-6 production via MAPK pathway in human pulmonary epithelial cells. Naunyn-Schmiedeberg’s Archives of Pharmacology 383: 555–62.CrossRefPubMed
9.
go back to reference Lin, F.L., J.L. Hsu, C.H. Chou, W.J. Wu, C.I. Chang, and H.J. Liu. 2011. Activation of p38 MAPK by damnacanthal mediates apoptosis in SKHep 1 cells through the DR5/TRAIL and TNFR1/TNF-α and p53 pathways. European Journal of Pharmacology 650: 120–9.CrossRefPubMed Lin, F.L., J.L. Hsu, C.H. Chou, W.J. Wu, C.I. Chang, and H.J. Liu. 2011. Activation of p38 MAPK by damnacanthal mediates apoptosis in SKHep 1 cells through the DR5/TRAIL and TNFR1/TNF-α and p53 pathways. European Journal of Pharmacology 650: 120–9.CrossRefPubMed
10.
go back to reference Ulasli, S.S., S. Celik, E. Gunay, M. Ozdemir, O. Hazman, A. Ozyurek, et al. 2013. Anticancer effects of thymoquinone, caffeic acid phenethyl ester and resveratrol on A549 non-small cell lung cancer cells exposed to benzo(a)pyrene. Asian Pacific Journal of Cancer Prevention 14: 6159–64.CrossRefPubMed Ulasli, S.S., S. Celik, E. Gunay, M. Ozdemir, O. Hazman, A. Ozyurek, et al. 2013. Anticancer effects of thymoquinone, caffeic acid phenethyl ester and resveratrol on A549 non-small cell lung cancer cells exposed to benzo(a)pyrene. Asian Pacific Journal of Cancer Prevention 14: 6159–64.CrossRefPubMed
11.
go back to reference Woo, H.D., B.M. Kim, Y.J. Kim, Y.J. Lee, S.J. Kang, Y.H. Cho, et al. 2008. Quercetin prevents necrotic cell death induced by co-exposure to benzo(a)pyrene and UVA radiation. Toxicology In Vitro 22: 1840–5.CrossRefPubMed Woo, H.D., B.M. Kim, Y.J. Kim, Y.J. Lee, S.J. Kang, Y.H. Cho, et al. 2008. Quercetin prevents necrotic cell death induced by co-exposure to benzo(a)pyrene and UVA radiation. Toxicology In Vitro 22: 1840–5.CrossRefPubMed
12.
go back to reference Nualsanit, T., P. Rojanapanthu, W. Gritsanapan, S.H. Lee, D. Lawson, and S.J. Baek. 2012. Damnacanthal, a noni component, exhibits antitumorigenic activity in human colorectal cancer cells. Journal of Nutrition and Biochemistry 23: 915–23.CrossRef Nualsanit, T., P. Rojanapanthu, W. Gritsanapan, S.H. Lee, D. Lawson, and S.J. Baek. 2012. Damnacanthal, a noni component, exhibits antitumorigenic activity in human colorectal cancer cells. Journal of Nutrition and Biochemistry 23: 915–23.CrossRef
13.
go back to reference Bradford, M.M. 1976. A rapid and sensitive for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–54.CrossRefPubMed Bradford, M.M. 1976. A rapid and sensitive for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–54.CrossRefPubMed
14.
go back to reference Miranda, K.M., M.G. Espey, and D.A. Wink. 2001. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5: 62–71.CrossRefPubMed Miranda, K.M., M.G. Espey, and D.A. Wink. 2001. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5: 62–71.CrossRefPubMed
15.
go back to reference Buetler, E., O. Dubon, and B.M. Kelly. 1963. Improved method for the determination of blood glutathione. Journal of Laboratory and Clinical Medicine 61: 882–8. Buetler, E., O. Dubon, and B.M. Kelly. 1963. Improved method for the determination of blood glutathione. Journal of Laboratory and Clinical Medicine 61: 882–8.
16.
go back to reference Yoshioka, T., K. Kawada, T. Shimada, and M. Mori. 1979. Lipid peroxidation in maternal and cord blood and protective mechanisms against activated-oxygen toxicity in the blood. American Journal of Obstetrics and Gynecology 135: 372–5.PubMed Yoshioka, T., K. Kawada, T. Shimada, and M. Mori. 1979. Lipid peroxidation in maternal and cord blood and protective mechanisms against activated-oxygen toxicity in the blood. American Journal of Obstetrics and Gynecology 135: 372–5.PubMed
17.
go back to reference Erel, O. 2005. A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry 38: 1103–11.CrossRefPubMed Erel, O. 2005. A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry 38: 1103–11.CrossRefPubMed
18.
go back to reference Erel, O. 2004. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry 37: 277–85.CrossRefPubMed Erel, O. 2004. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry 37: 277–85.CrossRefPubMed
19.
go back to reference Esen, C., B.A. Alkan, M. Kırnap, O. Akgül, S. Işıkoğlu, and O. Erel. 2012. The effects of chronic periodontitis and rheumatoid arthritis on serum and gingival crevicular fluid total antioxidant/oxidant status and oxidative stress index. Journal of Periodontology 83: 773–9.CrossRefPubMed Esen, C., B.A. Alkan, M. Kırnap, O. Akgül, S. Işıkoğlu, and O. Erel. 2012. The effects of chronic periodontitis and rheumatoid arthritis on serum and gingival crevicular fluid total antioxidant/oxidant status and oxidative stress index. Journal of Periodontology 83: 773–9.CrossRefPubMed
20.
21.
go back to reference Qamar, W., R. Khan, A.Q. Khan, M.U. Rehman, A. Lateef, M. Tahir, et al. 2012. Alleviation of lung injury by glycyrrhizic acid in benzo(a)pyrene exposed rats: probable role of soluble epoxide hydrolase and thioredoxin reductase. Toxicology 291: 25–31.CrossRefPubMed Qamar, W., R. Khan, A.Q. Khan, M.U. Rehman, A. Lateef, M. Tahir, et al. 2012. Alleviation of lung injury by glycyrrhizic acid in benzo(a)pyrene exposed rats: probable role of soluble epoxide hydrolase and thioredoxin reductase. Toxicology 291: 25–31.CrossRefPubMed
22.
go back to reference Podechard, N., V. Lecureur, E. Le Ferrec, I. Guenon, L. Sparfel, D. Gilot, et al. 2008. Interleukin-8 induction by the environmental contaminant benzo(a)pyrene is aryl hydrocarbon receptor-dependent and leads to lung inflammation. Toxicology Letters 177: 130–7.CrossRefPubMed Podechard, N., V. Lecureur, E. Le Ferrec, I. Guenon, L. Sparfel, D. Gilot, et al. 2008. Interleukin-8 induction by the environmental contaminant benzo(a)pyrene is aryl hydrocarbon receptor-dependent and leads to lung inflammation. Toxicology Letters 177: 130–7.CrossRefPubMed
23.
go back to reference Xie, J.G., Y.J. Xu, Z.X. Zhang, W. Ni, and S.X. Chen. 2004. Smoking, the level of DNA adducts and chronic obstructive pulmonary diseases. Zhonghua Jie He He Hu Xi Za Zhi 27: 469–73.PubMed Xie, J.G., Y.J. Xu, Z.X. Zhang, W. Ni, and S.X. Chen. 2004. Smoking, the level of DNA adducts and chronic obstructive pulmonary diseases. Zhonghua Jie He He Hu Xi Za Zhi 27: 469–73.PubMed
24.
go back to reference Lin, T., and M.S. Yang. 2007. Benzo[a]pyrene-induced elevation of GSH level protects against oxidative stress and enhances xenobiotic detoxification in human HepG2 cells. Toxicology 235: 1–10.CrossRefPubMed Lin, T., and M.S. Yang. 2007. Benzo[a]pyrene-induced elevation of GSH level protects against oxidative stress and enhances xenobiotic detoxification in human HepG2 cells. Toxicology 235: 1–10.CrossRefPubMed
25.
go back to reference Hung, H. 2007. Dietary quercetin inhibits proliferation of lung carcinoma cells. Forum of Nutrition 60: 146–57.CrossRefPubMed Hung, H. 2007. Dietary quercetin inhibits proliferation of lung carcinoma cells. Forum of Nutrition 60: 146–57.CrossRefPubMed
26.
go back to reference Formica, J.V., and W. Regelson. 1995. Review of the biology of quercetin and related bioflavonoids. Food and Chemical Toxicology 33: 1061–80.CrossRefPubMed Formica, J.V., and W. Regelson. 1995. Review of the biology of quercetin and related bioflavonoids. Food and Chemical Toxicology 33: 1061–80.CrossRefPubMed
27.
go back to reference Hayashi, Y., M. Matsushima, T. Nakamura, M. Shibasaki, N. Hashimoto, K. Imaizumi, et al. 2012. Quercetin protects against pulmonary oxidant stress via heme oxygenase-1 induction in lung epithelial cells. Biochemical and Biophysical Research Communications 417: 169–74.CrossRefPubMed Hayashi, Y., M. Matsushima, T. Nakamura, M. Shibasaki, N. Hashimoto, K. Imaizumi, et al. 2012. Quercetin protects against pulmonary oxidant stress via heme oxygenase-1 induction in lung epithelial cells. Biochemical and Biophysical Research Communications 417: 169–74.CrossRefPubMed
28.
go back to reference Park, H.K., S.J. Kim, Y. Kwon do, J.H. Park, and Y.C. Kim. 2010. Protective effect of quercetin against paraquat-induced lung injury in rats. Life Sciences 87: 181–6.CrossRefPubMed Park, H.K., S.J. Kim, Y. Kwon do, J.H. Park, and Y.C. Kim. 2010. Protective effect of quercetin against paraquat-induced lung injury in rats. Life Sciences 87: 181–6.CrossRefPubMed
29.
go back to reference Taslidere, E., M. Esrefoglu, H. Elbe, A. Cetin, and B. Ates. 2014. Protective effects of melatonin and quercetin on experimental lung injury induced by carbon tetrachloride in rats. Experimental Lung Research 40: 59–65.CrossRefPubMed Taslidere, E., M. Esrefoglu, H. Elbe, A. Cetin, and B. Ates. 2014. Protective effects of melatonin and quercetin on experimental lung injury induced by carbon tetrachloride in rats. Experimental Lung Research 40: 59–65.CrossRefPubMed
30.
go back to reference Terao, J., and M.K. Piskula. 1999. Flavonoids and membrane lipid peroxidation inhibition. Nutrition 15: 790–1.CrossRefPubMed Terao, J., and M.K. Piskula. 1999. Flavonoids and membrane lipid peroxidation inhibition. Nutrition 15: 790–1.CrossRefPubMed
31.
go back to reference Verma, R., L. Kushwah, D. Gohel, M. Patel, T. Marvania, and S. Balakrishnan. 2013. Evaluating the ameliorative potential of quercetin against the bleomycin-induced pulmonary fibrosis in Wistar rats. Pulmonary Medicine 2013: 921724.CrossRefPubMedPubMedCentral Verma, R., L. Kushwah, D. Gohel, M. Patel, T. Marvania, and S. Balakrishnan. 2013. Evaluating the ameliorative potential of quercetin against the bleomycin-induced pulmonary fibrosis in Wistar rats. Pulmonary Medicine 2013: 921724.CrossRefPubMedPubMedCentral
32.
go back to reference Yamagishi, M., M. Natsume, N. Osakabe, K. Okazaki, F. Furukawa, T. Imazawa, et al. 2003. Chemoprevention of lung carcinogenesis by cacao liquor proanthocyanidins in a male rat multi-organ carcinogenesis model. Cancer Letters 191: 49–57.CrossRefPubMed Yamagishi, M., M. Natsume, N. Osakabe, K. Okazaki, F. Furukawa, T. Imazawa, et al. 2003. Chemoprevention of lung carcinogenesis by cacao liquor proanthocyanidins in a male rat multi-organ carcinogenesis model. Cancer Letters 191: 49–57.CrossRefPubMed
33.
go back to reference Song, X., N. Siriwardhana, K. Rathore, D. Lin, and H.C. Wang. 2010. Grape seed proanthocyanidin suppression of breast cell carcinogenesis induced by chronic exposure to combined 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and benzo[a]pyrene. Molecular Carcinogenesis 49: 450–63.PubMedPubMedCentral Song, X., N. Siriwardhana, K. Rathore, D. Lin, and H.C. Wang. 2010. Grape seed proanthocyanidin suppression of breast cell carcinogenesis induced by chronic exposure to combined 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and benzo[a]pyrene. Molecular Carcinogenesis 49: 450–63.PubMedPubMedCentral
34.
go back to reference Agackiran, Y., H. Gul, E. Gunay, N. Akyurek, L. Memis, S. Gunay, et al. 2012. The efficiency of proanthocyanidin in an experimental pulmonary fibrosis model: comparison with taurine. Inflammation 35: 1402–10.CrossRefPubMed Agackiran, Y., H. Gul, E. Gunay, N. Akyurek, L. Memis, S. Gunay, et al. 2012. The efficiency of proanthocyanidin in an experimental pulmonary fibrosis model: comparison with taurine. Inflammation 35: 1402–10.CrossRefPubMed
35.
go back to reference Anekpankul, T., M. Goto, M. Sasaki, P. Pavasanta, and A. Shotipruk. 2007. Extraction of anti-cancer damnacanthal from roots of Morinda citrifolia by subcritical water. Separation and Purification Technology 55: 343–9.CrossRef Anekpankul, T., M. Goto, M. Sasaki, P. Pavasanta, and A. Shotipruk. 2007. Extraction of anti-cancer damnacanthal from roots of Morinda citrifolia by subcritical water. Separation and Purification Technology 55: 343–9.CrossRef
36.
go back to reference Taşkin, E.I., K. Akgün-Dar, A. Kapucu, E. Osanç, H. Doğruman, H. Eraltan, et al. 2009. Apoptosis-inducing effects of Morinda citrifolia L. and doxorubicin on the Ehrlich ascites tumor in Balb-c mice. Cell Biochemistry and Function 27: 542–6.CrossRefPubMed Taşkin, E.I., K. Akgün-Dar, A. Kapucu, E. Osanç, H. Doğruman, H. Eraltan, et al. 2009. Apoptosis-inducing effects of Morinda citrifolia L. and doxorubicin on the Ehrlich ascites tumor in Balb-c mice. Cell Biochemistry and Function 27: 542–6.CrossRefPubMed
37.
go back to reference Nualsanit, T., P. Rojanapanthu, W. Gritsanapan, T. Kwankitpraniti, K.W. Min, and S.J. Baek. 2011. Damnacanthal-induced anti-inflammation is associated with inhibition of NF-κB activity. Inflammation & Allergy Drug Targets 10: 455–63.CrossRefPubMed Nualsanit, T., P. Rojanapanthu, W. Gritsanapan, T. Kwankitpraniti, K.W. Min, and S.J. Baek. 2011. Damnacanthal-induced anti-inflammation is associated with inhibition of NF-κB activity. Inflammation & Allergy Drug Targets 10: 455–63.CrossRefPubMed
Metadata
Title
Comparison of the Anti-inflammatory Effects of Proanthocyanidin, Quercetin, and Damnacanthal on Benzo(a)pyrene Exposed A549 Alveolar Cell Line
Authors
Ersin Günay
Sefa Celik
Sevinc Sarinc-Ulasli
Arzu Özyürek
Ömer Hazman
Sibel Günay
Mehmet Özdemir
Mehmet Ünlü
Publication date
01-04-2016
Publisher
Springer US
Published in
Inflammation / Issue 2/2016
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-015-0301-3

Other articles of this Issue 2/2016

Inflammation 2/2016 Go to the issue