Skip to main content
Top
Published in: Inflammation 2/2016

01-04-2016 | ORIGINAL ARTICLE

The Golgi-Associated Plant Pathogenesis-Related Protein GAPR-1 Enhances Type I Interferon Signaling Pathway in Response to Toll-Like Receptor 4

Authors: Qing Zhou, Lu Hao, Weiren Huang, Zhiming Cai

Published in: Inflammation | Issue 2/2016

Login to get access

Abstract

Lipopolysaccharide (LPS) activates Toll-like receptor 4 (TLR4) through the TIRAP-MyD88 dependent and TRAM-TRIF dependent signaling pathways, respectively. However, the underlying relevance between two signaling pathways remains largely elusive. Here, we investigated the role of the Golgi-Associated plant Pathogenesis-Related protein (GAPR-1) in type I interferon (IFN) signaling pathway in response to TLR4. We found that TIRAP-MyD88 dependent kinase IRAK1 phosphorylated GAPR-1 at Serine 58 site. The phosphorylation of GAPR-1 promoted its interaction with TRAM-TRIF dependent inhibitor TMED7, and impaired TMED7-mediated disruption of the TRAM-TRIF complex to trigger IFN-β and the IL10 secretion. Collectively, our study identified a previously unrecognized role for GAPR-1 to control a unifying TLR4 signaling complex and to regulate type I IFN signaling activation. Understanding the mechanism of GAPR-1 in type I IFN signaling pathway would provide strategies for treatment of infectious diseases.
Literature
1.
go back to reference Janeway Jr., C.A., and R. Medzhitov. 2002. Innate immune recognition. Annual Review of Immunology 20: 197–216.CrossRefPubMed Janeway Jr., C.A., and R. Medzhitov. 2002. Innate immune recognition. Annual Review of Immunology 20: 197–216.CrossRefPubMed
2.
go back to reference Akira, S., S. Uematsu, and O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell 124: 783–801.CrossRefPubMed Akira, S., S. Uematsu, and O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell 124: 783–801.CrossRefPubMed
3.
go back to reference Beutler, B. 2004. Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430: 257–263.CrossRefPubMed Beutler, B. 2004. Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430: 257–263.CrossRefPubMed
4.
go back to reference Akira, S. 2006. TLR signaling. Current Topics in Microbiology and Immunology 311: 1–16.PubMed Akira, S. 2006. TLR signaling. Current Topics in Microbiology and Immunology 311: 1–16.PubMed
5.
go back to reference Palsson-McDermott, E.M., and L.A. O’Neill. 2004. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 113: 153–162.CrossRefPubMedPubMedCentral Palsson-McDermott, E.M., and L.A. O’Neill. 2004. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 113: 153–162.CrossRefPubMedPubMedCentral
6.
go back to reference Ohashi, K., V. Burkart, S. Flohe, and H. Kolb. 2000. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the Toll-like receptor-4 complex. Journal of Immunology 164: 558–561.CrossRef Ohashi, K., V. Burkart, S. Flohe, and H. Kolb. 2000. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the Toll-like receptor-4 complex. Journal of Immunology 164: 558–561.CrossRef
7.
go back to reference Okamura, Y., M. Watari, E.S. Jerud, D.W. Young, S.T. Ishizaka, J. Rose, et al. 2001. The extra domain A of fibronectin activates Toll-like receptor 4. Journal of Biological Chemistry 276: 10229–10233.CrossRefPubMed Okamura, Y., M. Watari, E.S. Jerud, D.W. Young, S.T. Ishizaka, J. Rose, et al. 2001. The extra domain A of fibronectin activates Toll-like receptor 4. Journal of Biological Chemistry 276: 10229–10233.CrossRefPubMed
8.
go back to reference O’Neill, L.A., and A.G. Bowie. 2007. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nature Reviews Immunology 7: 353–364.CrossRefPubMed O’Neill, L.A., and A.G. Bowie. 2007. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nature Reviews Immunology 7: 353–364.CrossRefPubMed
9.
go back to reference Kagan, J.C., and R. Medzhitov. 2006. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell 125: 943–955.CrossRefPubMed Kagan, J.C., and R. Medzhitov. 2006. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell 125: 943–955.CrossRefPubMed
10.
go back to reference Kagan, J.C., T. Su, T. Horng, A. Chow, S. Akira, and R. Medzhitov. 2008. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nature Immunology 9: 361–368.CrossRefPubMedPubMedCentral Kagan, J.C., T. Su, T. Horng, A. Chow, S. Akira, and R. Medzhitov. 2008. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nature Immunology 9: 361–368.CrossRefPubMedPubMedCentral
11.
go back to reference Gottipati, S., N.L. Rao, and W.P. Fung-Leung. 2008. IRAK1: a critical signaling mediator of innate immunity. Cellular Signalling 20: 269–276.CrossRefPubMed Gottipati, S., N.L. Rao, and W.P. Fung-Leung. 2008. IRAK1: a critical signaling mediator of innate immunity. Cellular Signalling 20: 269–276.CrossRefPubMed
12.
go back to reference Yamamoto, M., S. Sato, H. Hemmi, S. Uematsu, K. Hoshino, T. Kaisho, et al. 2003. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nature Immunology 4: 1144–1150.CrossRefPubMed Yamamoto, M., S. Sato, H. Hemmi, S. Uematsu, K. Hoshino, T. Kaisho, et al. 2003. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nature Immunology 4: 1144–1150.CrossRefPubMed
13.
go back to reference Siegemund, S., and K. Sauer. 2012. Balancing pro- and anti-inflammatory TLR4 signaling. Nature Immunology 13: 1031–1033.CrossRefPubMed Siegemund, S., and K. Sauer. 2012. Balancing pro- and anti-inflammatory TLR4 signaling. Nature Immunology 13: 1031–1033.CrossRefPubMed
14.
go back to reference Rowe, D.C., A.F. McGettrick, E. Latz, B.G. Monks, N.J. Gay, M. Yamamoto, et al. 2006. The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. Proceedings of the National Academy of Sciences of the United States of America 103: 6299–6304.CrossRefPubMedPubMedCentral Rowe, D.C., A.F. McGettrick, E. Latz, B.G. Monks, N.J. Gay, M. Yamamoto, et al. 2006. The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. Proceedings of the National Academy of Sciences of the United States of America 103: 6299–6304.CrossRefPubMedPubMedCentral
15.
go back to reference Palsson-McDermott, E.M., S.L. Doyle, A.F. McGettrick, M. Hardy, H. Husebye, K. Banahan, M. Gong, et al. 2009. TAG, a splice variant of the adaptor TRAM, negatively regulates the adaptor MyD88-independent TLR4 pathway. Nature Immunology 10: 579–586.CrossRefPubMed Palsson-McDermott, E.M., S.L. Doyle, A.F. McGettrick, M. Hardy, H. Husebye, K. Banahan, M. Gong, et al. 2009. TAG, a splice variant of the adaptor TRAM, negatively regulates the adaptor MyD88-independent TLR4 pathway. Nature Immunology 10: 579–586.CrossRefPubMed
16.
go back to reference Doyle, S.L., H. Husebye, D.J. Connolly, T. Espevik, L.A. O’Neill, and A.F. McGettrick. 2012. The GOLD domain-containing protein TMED7 inhibits TLR4 signalling from the endosome upon LPS stimulation. Nature Communications 3: 707.CrossRefPubMed Doyle, S.L., H. Husebye, D.J. Connolly, T. Espevik, L.A. O’Neill, and A.F. McGettrick. 2012. The GOLD domain-containing protein TMED7 inhibits TLR4 signalling from the endosome upon LPS stimulation. Nature Communications 3: 707.CrossRefPubMed
17.
go back to reference Serrano, R.L., A. Kuhn, A. Hendricks, J.B. Helms, I. Sinning, and M.R. Groves. 2004. Structural analysis of the human Golgi-associated plant pathogenesis related protein GAPR-1 implicates dimerization as a regulatory mechanism. Journal of Molecular Biology 339: 173–183.CrossRefPubMed Serrano, R.L., A. Kuhn, A. Hendricks, J.B. Helms, I. Sinning, and M.R. Groves. 2004. Structural analysis of the human Golgi-associated plant pathogenesis related protein GAPR-1 implicates dimerization as a regulatory mechanism. Journal of Molecular Biology 339: 173–183.CrossRefPubMed
18.
go back to reference Olrichs, N.K., A.K. Mahalka, D. Kaloyanova, P.K. Kinnunen, and J. Bernd Helms. 2014. Golgi-associated plant pathogenesis related protein 1 (GAPR-1) forms amyloid-like fibrils by interaction with acidic phospholipids and inhibits Abeta aggregation. Amyloid 21: 88–96.CrossRefPubMed Olrichs, N.K., A.K. Mahalka, D. Kaloyanova, P.K. Kinnunen, and J. Bernd Helms. 2014. Golgi-associated plant pathogenesis related protein 1 (GAPR-1) forms amyloid-like fibrils by interaction with acidic phospholipids and inhibits Abeta aggregation. Amyloid 21: 88–96.CrossRefPubMed
19.
go back to reference Van Galen, J., N.K. Olrichs, A. Schouten, R.L. Serrano, E.N. Nolte-’t Hoen, R. Eerland, et al. 2012. Interaction of GAPR-1 with lipid bilayers is regulated by alternative homodimerization. Biochimica et Biophysica Acta 1818: 2175–2183.CrossRefPubMed Van Galen, J., N.K. Olrichs, A. Schouten, R.L. Serrano, E.N. Nolte-’t Hoen, R. Eerland, et al. 2012. Interaction of GAPR-1 with lipid bilayers is regulated by alternative homodimerization. Biochimica et Biophysica Acta 1818: 2175–2183.CrossRefPubMed
20.
go back to reference Eberle, H.B., R.L. Serrano, J. Fullekrug, A. Schlosser, W.D. Lehmann, F. Lottspeich, et al. 2002. Identification and characterization of a novel human plant pathogenesis-related protein that localizes to lipid-enriched microdomains in the Golgi complex. Journal of Cell Science 115: 827–838.PubMed Eberle, H.B., R.L. Serrano, J. Fullekrug, A. Schlosser, W.D. Lehmann, F. Lottspeich, et al. 2002. Identification and characterization of a novel human plant pathogenesis-related protein that localizes to lipid-enriched microdomains in the Golgi complex. Journal of Cell Science 115: 827–838.PubMed
21.
go back to reference Baxter, R.M., T.P. Crowell, J.A. George, M.E. Getman, and H. Gardner. 2007. The plant pathogenesis related protein GLIPR-2 is highly expressed in fibrotic kidney and promotes epithelial to mesenchymal transition in vitro. Matrix Biology 26: 20–29.CrossRefPubMed Baxter, R.M., T.P. Crowell, J.A. George, M.E. Getman, and H. Gardner. 2007. The plant pathogenesis related protein GLIPR-2 is highly expressed in fibrotic kidney and promotes epithelial to mesenchymal transition in vitro. Matrix Biology 26: 20–29.CrossRefPubMed
22.
go back to reference Huang, S., F. Liu, Q. Niu, Y. Li, C. Liu, L. Zhang, et al. 2013. GLIPR-2 overexpression in HK-2 cells promotes cell EMT and migration through ERK1/2 activation. PloS One 8: e58574.CrossRefPubMedPubMedCentral Huang, S., F. Liu, Q. Niu, Y. Li, C. Liu, L. Zhang, et al. 2013. GLIPR-2 overexpression in HK-2 cells promotes cell EMT and migration through ERK1/2 activation. PloS One 8: e58574.CrossRefPubMedPubMedCentral
23.
go back to reference Huang, S.G., L.L. Zhang, Q. Niu, G.M. Xiang, L.L. Liu, D.N. Jiang, et al. 2013. Hypoxia promotes epithelial–mesenchymal transition of hepatocellular carcinoma cells via inducing GLIPR-2 expression. PloS One 8: e77497.CrossRefPubMedPubMedCentral Huang, S.G., L.L. Zhang, Q. Niu, G.M. Xiang, L.L. Liu, D.N. Jiang, et al. 2013. Hypoxia promotes epithelial–mesenchymal transition of hepatocellular carcinoma cells via inducing GLIPR-2 expression. PloS One 8: e77497.CrossRefPubMedPubMedCentral
24.
go back to reference Shoji-Kawata, S., R. Sumpter, M. Leveno, G.R. Campbell, Z. Zou, L. Kinch, et al. 2013. Identification of a candidate therapeutic autophagy-inducing peptide. Nature 494: 201–206.CrossRefPubMedPubMedCentral Shoji-Kawata, S., R. Sumpter, M. Leveno, G.R. Campbell, Z. Zou, L. Kinch, et al. 2013. Identification of a candidate therapeutic autophagy-inducing peptide. Nature 494: 201–206.CrossRefPubMedPubMedCentral
25.
go back to reference Blom, N., S. Gammeltoft, and S. Brunak. 1999. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. Journal of Molecular Biology 294: 1351–1362.CrossRefPubMed Blom, N., S. Gammeltoft, and S. Brunak. 1999. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. Journal of Molecular Biology 294: 1351–1362.CrossRefPubMed
26.
go back to reference Cao, Z., W.J. Henzel, and X. Gao. 1996. IRAK: a kinase associated with the interleukin-1 receptor. Science 271: 1128–1131.CrossRefPubMed Cao, Z., W.J. Henzel, and X. Gao. 1996. IRAK: a kinase associated with the interleukin-1 receptor. Science 271: 1128–1131.CrossRefPubMed
27.
go back to reference An, H., J. Hou, J. Zhou, W. Zhao, H. Xu, Y. Zheng, et al. 2008. Phosphatase SHP-1 promotes TLR- and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1. Nature Immunology 9: 542–550.CrossRefPubMed An, H., J. Hou, J. Zhou, W. Zhao, H. Xu, Y. Zheng, et al. 2008. Phosphatase SHP-1 promotes TLR- and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1. Nature Immunology 9: 542–550.CrossRefPubMed
28.
go back to reference Takeda, K., and S. Akira. 2005. Toll-like receptors in innate immunity. International Immunology 17: 1–14.CrossRefPubMed Takeda, K., and S. Akira. 2005. Toll-like receptors in innate immunity. International Immunology 17: 1–14.CrossRefPubMed
29.
go back to reference Xu, L.G., Y.Y. Wang, K.J. Han, L.Y. Li, Z. Zhai, and H.B. Shu. 2005. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Molecular Cell 19: 727–740.CrossRefPubMed Xu, L.G., Y.Y. Wang, K.J. Han, L.Y. Li, Z. Zhai, and H.B. Shu. 2005. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Molecular Cell 19: 727–740.CrossRefPubMed
30.
go back to reference Zhong, B., Y. Yang, S. Li, Y.Y. Wang, Y. Li, F. Diao, et al. 2008. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29: 538–550.CrossRefPubMed Zhong, B., Y. Yang, S. Li, Y.Y. Wang, Y. Li, F. Diao, et al. 2008. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29: 538–550.CrossRefPubMed
31.
32.
go back to reference Brinkmann, M.M., E. Spooner, K. Hoebe, B. Beutler, H.L. Ploegh, and Y.M. Kim. 2007. The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. Journal of Cell Biology 177: 265–275.CrossRefPubMedPubMedCentral Brinkmann, M.M., E. Spooner, K. Hoebe, B. Beutler, H.L. Ploegh, and Y.M. Kim. 2007. The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. Journal of Cell Biology 177: 265–275.CrossRefPubMedPubMedCentral
34.
35.
go back to reference Aksoy, E., S. Taboubi, D. Torres, S. Delbauve, A. Hachani, M.A. Whitehead, et al. 2012. The p110delta isoform of the kinase PI(3)K controls the subcellular compartmentalization of TLR4 signaling and protects from endotoxic shock. Nature Immunology 13: 1045–1054.CrossRefPubMedPubMedCentral Aksoy, E., S. Taboubi, D. Torres, S. Delbauve, A. Hachani, M.A. Whitehead, et al. 2012. The p110delta isoform of the kinase PI(3)K controls the subcellular compartmentalization of TLR4 signaling and protects from endotoxic shock. Nature Immunology 13: 1045–1054.CrossRefPubMedPubMedCentral
Metadata
Title
The Golgi-Associated Plant Pathogenesis-Related Protein GAPR-1 Enhances Type I Interferon Signaling Pathway in Response to Toll-Like Receptor 4
Authors
Qing Zhou
Lu Hao
Weiren Huang
Zhiming Cai
Publication date
01-04-2016
Publisher
Springer US
Published in
Inflammation / Issue 2/2016
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-015-0297-8

Other articles of this Issue 2/2016

Inflammation 2/2016 Go to the issue