Skip to main content
Top
Published in: Inflammation 2/2016

01-04-2016 | ORIGINAL ARTICLE

Erythropoietin Protects Rat Brain Injury from Carbon Monoxide Poisoning by Inhibiting Toll-Like Receptor 4/NF-kappa B-Dependent Inflammatory Responses

Authors: Li Pang, Nan Zhang, Ning Dong, Da-Wei Wang, Da-Hai Xu, Ping Zhang, Xiang-Wei Meng

Published in: Inflammation | Issue 2/2016

Login to get access

Abstract

Inflammatory responses play critical roles in carbon monoxide (CO) poisoning-induced cerebral injury. The present study investigated whether erythropoietin (EPO) modulates the toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB) inflammatory signaling pathways in brain injury after acute CO poisoning. EPO (2500 and 5000 U/kg) was injected subcutaneously twice a day after acute CO poisoning for 2 days. At 48 h after treatment, the expression levels of TLR4 and NF-κB as well as the levels of inflammatory cytokines in the hippocampal tissues were measured. Our results showed that CO poisoning induced a significant upregulation of TLR4, NF-κB, and inflammatory cytokines in the injured rat hippocampal tissues. Treatment with EPO remarkably suppressed the gene and protein expression levels of TLR4 and NF-κB, as well as the concentrations of TNF-α, IL-1β, and IL-6 in the hippocampal tissues. EPO treatment ameliorated CO poisoning-induced histological edema and neuronal necrosis. These results suggested that EPO protected against CO poisoning-induced brain damage by inhibiting the TLR4–NF-κB inflammatory signaling pathway.
Literature
1.
go back to reference Thom, S.R., V.M. Bhopale, D. Fisher, J. Zhang, and P. Gimotty. 2004. Delayed neuropathology after carbon monoxide poisoning is immune-mediated. Proceedings of the National Academy of Sciences of the United States of America 101: 13660–13665.CrossRefPubMedPubMedCentral Thom, S.R., V.M. Bhopale, D. Fisher, J. Zhang, and P. Gimotty. 2004. Delayed neuropathology after carbon monoxide poisoning is immune-mediated. Proceedings of the National Academy of Sciences of the United States of America 101: 13660–13665.CrossRefPubMedPubMedCentral
2.
go back to reference Wang, W., J. Li, Y. Chang, X. Xie, J. Ren, X. Wang, et al. 2011. Effects of immune reaction in rats after acute carbon monoxide poisoning. Undersea and Hyperbaric Medicine 38: 239–246.PubMed Wang, W., J. Li, Y. Chang, X. Xie, J. Ren, X. Wang, et al. 2011. Effects of immune reaction in rats after acute carbon monoxide poisoning. Undersea and Hyperbaric Medicine 38: 239–246.PubMed
3.
go back to reference Kong, Y., and Y. Le. 2011. Toll-like receptors in inflammation of the central nervous system. International Immunopharmacology 11: 1407–1414.CrossRefPubMed Kong, Y., and Y. Le. 2011. Toll-like receptors in inflammation of the central nervous system. International Immunopharmacology 11: 1407–1414.CrossRefPubMed
4.
go back to reference Kerfoot, S.M., E.M. Long, M.J. Hickey, G. Andonegui, B.M. Lapointe, R.C.O. Zanardo, et al. 2004. TLR4 contributes to disease-inducing mechanisms resulting in central nervous system autoimmune disease. Journal of Immunology 173: 7070–7077.CrossRef Kerfoot, S.M., E.M. Long, M.J. Hickey, G. Andonegui, B.M. Lapointe, R.C.O. Zanardo, et al. 2004. TLR4 contributes to disease-inducing mechanisms resulting in central nervous system autoimmune disease. Journal of Immunology 173: 7070–7077.CrossRef
5.
go back to reference Noelker, C., L. Morel, T. Lescot, A. Osterloh, D. Alvarez-Fischer, M. Breloer, et al. 2013. Toll like receptor 4 mediates cell death in a mouse MPTP model of Parkinson disease. Scientific Reports 3: 1393.CrossRefPubMedPubMedCentral Noelker, C., L. Morel, T. Lescot, A. Osterloh, D. Alvarez-Fischer, M. Breloer, et al. 2013. Toll like receptor 4 mediates cell death in a mouse MPTP model of Parkinson disease. Scientific Reports 3: 1393.CrossRefPubMedPubMedCentral
6.
go back to reference Hua, F., J. Ma, T. Ha, Y. Xia, J. Kelley, D.L. Williams, et al. 2007. Activation of Toll-like receptor 4 signaling contributes to hippocampal neuronal death following global cerebral ischemia/reperfusion. Journal of Neuroimmunology 190: 101–111.CrossRefPubMedPubMedCentral Hua, F., J. Ma, T. Ha, Y. Xia, J. Kelley, D.L. Williams, et al. 2007. Activation of Toll-like receptor 4 signaling contributes to hippocampal neuronal death following global cerebral ischemia/reperfusion. Journal of Neuroimmunology 190: 101–111.CrossRefPubMedPubMedCentral
7.
go back to reference Teng, W., L. Wang, W. Xue, and C. Guan. 2009. Activation of TLR4-mediated NFkappaB signaling in hemorrhagic brain in rats. Mediators of Inflammation 2009: 473276.CrossRefPubMedPubMedCentral Teng, W., L. Wang, W. Xue, and C. Guan. 2009. Activation of TLR4-mediated NFkappaB signaling in hemorrhagic brain in rats. Mediators of Inflammation 2009: 473276.CrossRefPubMedPubMedCentral
8.
go back to reference Ma, C.-x., Yin W-n, Wu.J. Cai B-w, J.-y. Wang, M. He, et al. 2009. Toll-like receptor 4/nuclear factor-kappa B signaling detected in brain after early subarachnoid hemorrhage. Chinese Medical Journal 122: 1575–1581.PubMed Ma, C.-x., Yin W-n, Wu.J. Cai B-w, J.-y. Wang, M. He, et al. 2009. Toll-like receptor 4/nuclear factor-kappa B signaling detected in brain after early subarachnoid hemorrhage. Chinese Medical Journal 122: 1575–1581.PubMed
9.
go back to reference Akira, S., K. Takeda, and T. Kaisho. 2001. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunology 2: 675–680.CrossRefPubMed Akira, S., K. Takeda, and T. Kaisho. 2001. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunology 2: 675–680.CrossRefPubMed
10.
go back to reference Barakat, W., N. Safwet, N.N. El-Maraghy, and M.N.M. Zakaria. 2014. Candesartan and glycyrrhizin ameliorate ischemic brain damage through downregulation of the TLR signaling cascade. European Journal of Pharmacology 724: 43–50.CrossRefPubMed Barakat, W., N. Safwet, N.N. El-Maraghy, and M.N.M. Zakaria. 2014. Candesartan and glycyrrhizin ameliorate ischemic brain damage through downregulation of the TLR signaling cascade. European Journal of Pharmacology 724: 43–50.CrossRefPubMed
11.
go back to reference Gassmann, M., K.A. Heinicke, J. Soliz, and O.O. Ogunshola. 2003. Non-erythroid functions of erythropoietin. Hypoxia: Through the Lifecycle 543: 323–330.CrossRef Gassmann, M., K.A. Heinicke, J. Soliz, and O.O. Ogunshola. 2003. Non-erythroid functions of erythropoietin. Hypoxia: Through the Lifecycle 543: 323–330.CrossRef
12.
go back to reference Jelkmann, W., and K. Wagner. 2004. Beneficial and ominous aspects of the pleiotropic action of erythropoietin. Annals of Hematology 83: 673–686.CrossRefPubMed Jelkmann, W., and K. Wagner. 2004. Beneficial and ominous aspects of the pleiotropic action of erythropoietin. Annals of Hematology 83: 673–686.CrossRefPubMed
13.
go back to reference Agnello, D., P. Bigini, P. Villa, T. Mennini, A. Cerami, M.L. Brines, et al. 2002. Erythropoietin exerts an anti-inflammatory effect on the CNS in a model of experimental autoimmune encephalomyelitis. Brain Research 952: 128–134.CrossRefPubMed Agnello, D., P. Bigini, P. Villa, T. Mennini, A. Cerami, M.L. Brines, et al. 2002. Erythropoietin exerts an anti-inflammatory effect on the CNS in a model of experimental autoimmune encephalomyelitis. Brain Research 952: 128–134.CrossRefPubMed
14.
go back to reference Siren, A.-L., T. Fasshauer, C. Bartels, and H. Ehrenreich. 2009. Therapeutic potential of erythropoietin and its structural or functional variants in the nervous system. Neurotherapeutics 6: 108–127.CrossRefPubMed Siren, A.-L., T. Fasshauer, C. Bartels, and H. Ehrenreich. 2009. Therapeutic potential of erythropoietin and its structural or functional variants in the nervous system. Neurotherapeutics 6: 108–127.CrossRefPubMed
15.
go back to reference Pang, L., M. Bian, X.-X. Zang, Y. Wu, D.-H. Xu, N. Dong, et al. 2013. Neuroprotective effects of erythropoietin in patients with carbon monoxide poisoning. Journal of Biochemical and Molecular Toxicology 27: 266–271.CrossRefPubMed Pang, L., M. Bian, X.-X. Zang, Y. Wu, D.-H. Xu, N. Dong, et al. 2013. Neuroprotective effects of erythropoietin in patients with carbon monoxide poisoning. Journal of Biochemical and Molecular Toxicology 27: 266–271.CrossRefPubMed
16.
go back to reference Shahsavand, S., A.H. Mohammadpour, R. Rezaee, E. Behravan, R. Sakhtianchi, and S.A. Moallem. 2012. Effect of erythropoietin on serum brain-derived biomarkers after carbon monoxide poisoning in rats. Iranian Journal of Basic Medical Sciences 15: 752–758.PubMedPubMedCentral Shahsavand, S., A.H. Mohammadpour, R. Rezaee, E. Behravan, R. Sakhtianchi, and S.A. Moallem. 2012. Effect of erythropoietin on serum brain-derived biomarkers after carbon monoxide poisoning in rats. Iranian Journal of Basic Medical Sciences 15: 752–758.PubMedPubMedCentral
17.
go back to reference Wang, Y., Z.G. Zhang, K. Rhodes, M. Renzi, R.L. Zhang, A. Kapke, et al. 2007. Post-ischemic treatment with erythropoietin or carbamylated erythropoietin reduces infarction and improves neurological outcome in a rat model of focal cerebral ischemia. British Journal of Pharmacology 151: 1377–1384.CrossRefPubMedPubMedCentral Wang, Y., Z.G. Zhang, K. Rhodes, M. Renzi, R.L. Zhang, A. Kapke, et al. 2007. Post-ischemic treatment with erythropoietin or carbamylated erythropoietin reduces infarction and improves neurological outcome in a rat model of focal cerebral ischemia. British Journal of Pharmacology 151: 1377–1384.CrossRefPubMedPubMedCentral
18.
go back to reference Tietz, N.W., and E.A. Fiereck. 1973. The spectrophotometric measurement of carboxyhemoglobin. Annals of Clinical Laboratory Science 3: 36–42.PubMed Tietz, N.W., and E.A. Fiereck. 1973. The spectrophotometric measurement of carboxyhemoglobin. Annals of Clinical Laboratory Science 3: 36–42.PubMed
19.
go back to reference Yu, W.H., X.Q. Dong, Y.Y. Hu, M. Huang, Z.Y. Zhang, and B. Ginkgolide. 2012. Reduces neuronal cell apoptosis in the traumatic rat brain: possible involvement of toll-like receptor 4 and nuclear factor kappa B pathway. Phytotherapy Research 26: 1838–1844.CrossRefPubMed Yu, W.H., X.Q. Dong, Y.Y. Hu, M. Huang, Z.Y. Zhang, and B. Ginkgolide. 2012. Reduces neuronal cell apoptosis in the traumatic rat brain: possible involvement of toll-like receptor 4 and nuclear factor kappa B pathway. Phytotherapy Research 26: 1838–1844.CrossRefPubMed
20.
go back to reference D’Hooge, R., and P.P. De Deyn. 2001. Applications of the Morris water maze in the study of learning and memory. Brain Research Reviews 36: 60–90.CrossRefPubMed D’Hooge, R., and P.P. De Deyn. 2001. Applications of the Morris water maze in the study of learning and memory. Brain Research Reviews 36: 60–90.CrossRefPubMed
21.
go back to reference Brown, J., H. Wang, G.N. Hajishengallis, and M. Martin. 2011. TLR-signaling networks: an integration of adaptor molecules, kinases, and cross-talk. Journal of Dental Research 90: 417–427.CrossRefPubMedPubMedCentral Brown, J., H. Wang, G.N. Hajishengallis, and M. Martin. 2011. TLR-signaling networks: an integration of adaptor molecules, kinases, and cross-talk. Journal of Dental Research 90: 417–427.CrossRefPubMedPubMedCentral
22.
go back to reference Lambertsen, K.L., R. Gregersen, M. Meldgaard, B.F.H. Clausen, E.K. Heibol, R. Ladeby, et al. 2004. A role for interferon-gamma in focal cerebral ischemia in mice. Journal of Neuropathology and Experimental Neurology 63: 942–955.CrossRefPubMed Lambertsen, K.L., R. Gregersen, M. Meldgaard, B.F.H. Clausen, E.K. Heibol, R. Ladeby, et al. 2004. A role for interferon-gamma in focal cerebral ischemia in mice. Journal of Neuropathology and Experimental Neurology 63: 942–955.CrossRefPubMed
24.
go back to reference Hyakkoku, K., J. Hamanaka, K. Tsuruma, M. Shimazawa, H. Tanaka, S. Uematsu, et al. 2010. Toll-like receptor 4 (TLR4), but not TLR3 OR TLR9, knock-out mice have neuroprotective effects against focal cerebral ischemia. Neuroscience 171: 258–267.CrossRefPubMed Hyakkoku, K., J. Hamanaka, K. Tsuruma, M. Shimazawa, H. Tanaka, S. Uematsu, et al. 2010. Toll-like receptor 4 (TLR4), but not TLR3 OR TLR9, knock-out mice have neuroprotective effects against focal cerebral ischemia. Neuroscience 171: 258–267.CrossRefPubMed
25.
go back to reference Ock, J., J. Jeong, W.S. Choi, W.-H. Lee, S.-H. Kim, I.K. Kim, et al. 2007. Regulation of toll-like receptor 4 expression and its signaling by hypoxia in cultured microglia. Journal of Neuroscience Research 85: 1989–1995.CrossRefPubMed Ock, J., J. Jeong, W.S. Choi, W.-H. Lee, S.-H. Kim, I.K. Kim, et al. 2007. Regulation of toll-like receptor 4 expression and its signaling by hypoxia in cultured microglia. Journal of Neuroscience Research 85: 1989–1995.CrossRefPubMed
26.
go back to reference Caso, J.R., J.M. Pradillo, O. Hurtado, P. Lorenzo, M.A. Moro, and I. Lizasoain. 2007. Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation 115: 1599–1608.CrossRefPubMed Caso, J.R., J.M. Pradillo, O. Hurtado, P. Lorenzo, M.A. Moro, and I. Lizasoain. 2007. Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation 115: 1599–1608.CrossRefPubMed
27.
go back to reference Bell, M.T., F. Puskas, V.A. Agoston, J.C. Cleveland Jr., K.A. Freeman, F. Gamboni, et al. 2013. Toll-like receptor 4-dependent microglial activation mediates spinal cord ischemia-reperfusion injury. Circulation 128: S152–S156.CrossRefPubMed Bell, M.T., F. Puskas, V.A. Agoston, J.C. Cleveland Jr., K.A. Freeman, F. Gamboni, et al. 2013. Toll-like receptor 4-dependent microglial activation mediates spinal cord ischemia-reperfusion injury. Circulation 128: S152–S156.CrossRefPubMed
28.
go back to reference Liu, J., P. Narasimhan, F.S. Yu, and P.H. Chan. 2005. Neuroprotection by hypoxic preconditioning involves oxidative stress-mediated expression of hypoxia-inducible factor and erythropoietin. Stroke 36: 1264–1269.CrossRefPubMed Liu, J., P. Narasimhan, F.S. Yu, and P.H. Chan. 2005. Neuroprotection by hypoxic preconditioning involves oxidative stress-mediated expression of hypoxia-inducible factor and erythropoietin. Stroke 36: 1264–1269.CrossRefPubMed
29.
go back to reference Dame, C., S.E. Juul, and R.D. Christensen. 2001. The biology of erythropoietin in the central nervous system and its neurotrophic and neuroprotective potential. Biology of the Neonate 79: 228–235.CrossRefPubMed Dame, C., S.E. Juul, and R.D. Christensen. 2001. The biology of erythropoietin in the central nervous system and its neurotrophic and neuroprotective potential. Biology of the Neonate 79: 228–235.CrossRefPubMed
30.
go back to reference Ehrenreich, H., M. Hasselblatt, C. Dembowski, L. Cepek, P. Lewczuk, M. Stiefel, et al. 2002. Erythropoietin therapy for acute stroke is both safe and beneficial. Molecular Medicine 8: 495–505.PubMedPubMedCentral Ehrenreich, H., M. Hasselblatt, C. Dembowski, L. Cepek, P. Lewczuk, M. Stiefel, et al. 2002. Erythropoietin therapy for acute stroke is both safe and beneficial. Molecular Medicine 8: 495–505.PubMedPubMedCentral
31.
go back to reference Zhu, C., W. Kang, F. Xu, X. Cheng, Z. Zhang, L. Jia, et al. 2009. Erythropoietin improved neurologic outcomes in newborns with hypoxic-ischemic encephalopathy. Pediatrics 124: E218–E226.CrossRefPubMed Zhu, C., W. Kang, F. Xu, X. Cheng, Z. Zhang, L. Jia, et al. 2009. Erythropoietin improved neurologic outcomes in newborns with hypoxic-ischemic encephalopathy. Pediatrics 124: E218–E226.CrossRefPubMed
32.
go back to reference Rocchetta, F., S. Solini, M. Mister, C. Mele, P. Cassis, M. Noris, et al. 2011. Erythropoietin enhances immunostimulatory properties of immature dendritic cells. Clinical and Experimental Immunology 165: 202–210.CrossRefPubMedPubMedCentral Rocchetta, F., S. Solini, M. Mister, C. Mele, P. Cassis, M. Noris, et al. 2011. Erythropoietin enhances immunostimulatory properties of immature dendritic cells. Clinical and Experimental Immunology 165: 202–210.CrossRefPubMedPubMedCentral
33.
go back to reference Wang, X.Y., C.L. Zhu, X.H. Wang, J.G. Gerwien, A. Schrattenholz, M. Sandberg, et al. 2004. The nonerythropoietic asialoerythropoietin protects against neonatal hypoxia-ischemia as potently as erythropoietin. Journal of Neurochemistry 91: 900–910.CrossRefPubMed Wang, X.Y., C.L. Zhu, X.H. Wang, J.G. Gerwien, A. Schrattenholz, M. Sandberg, et al. 2004. The nonerythropoietic asialoerythropoietin protects against neonatal hypoxia-ischemia as potently as erythropoietin. Journal of Neurochemistry 91: 900–910.CrossRefPubMed
34.
35.
go back to reference Prockop, L.D. 2005. Carbon monoxide brain toxicity: clinical, magnetic resonance imaging, magnetic resonance spectroscopy, and neuropsychological effects in 9 people. Journal of Neuroimaging 15: 144–149.CrossRefPubMed Prockop, L.D. 2005. Carbon monoxide brain toxicity: clinical, magnetic resonance imaging, magnetic resonance spectroscopy, and neuropsychological effects in 9 people. Journal of Neuroimaging 15: 144–149.CrossRefPubMed
36.
go back to reference Gorman, D., A. Drewry, Y.L. Huang, and C. Sames. 2003. The clinical toxicology of carbon monoxide. Toxicology 187: 25–38.CrossRefPubMed Gorman, D., A. Drewry, Y.L. Huang, and C. Sames. 2003. The clinical toxicology of carbon monoxide. Toxicology 187: 25–38.CrossRefPubMed
37.
go back to reference Xiang, W.-P., H. Xue, and B.-J. Wang. 2014. Delayed encephalopathy of acute carbon monoxide intoxication in rats: potential mechanism and intervention of dexamethasone. Pakistan Journal of Pharmaceutical Sciences 27: 2025–2028.PubMed Xiang, W.-P., H. Xue, and B.-J. Wang. 2014. Delayed encephalopathy of acute carbon monoxide intoxication in rats: potential mechanism and intervention of dexamethasone. Pakistan Journal of Pharmaceutical Sciences 27: 2025–2028.PubMed
38.
go back to reference Thom, S.R., V.M. Bhopale, and D. Fisher. 2006. Hyperbaric oxygen reduces delayed immune-mediated neuropathology in experimental carbon monoxide toxicity. Toxicology and Applied Pharmacology 213: 152–159.CrossRefPubMed Thom, S.R., V.M. Bhopale, and D. Fisher. 2006. Hyperbaric oxygen reduces delayed immune-mediated neuropathology in experimental carbon monoxide toxicity. Toxicology and Applied Pharmacology 213: 152–159.CrossRefPubMed
Metadata
Title
Erythropoietin Protects Rat Brain Injury from Carbon Monoxide Poisoning by Inhibiting Toll-Like Receptor 4/NF-kappa B-Dependent Inflammatory Responses
Authors
Li Pang
Nan Zhang
Ning Dong
Da-Wei Wang
Da-Hai Xu
Ping Zhang
Xiang-Wei Meng
Publication date
01-04-2016
Publisher
Springer US
Published in
Inflammation / Issue 2/2016
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-015-0280-4

Other articles of this Issue 2/2016

Inflammation 2/2016 Go to the issue