Skip to main content
Top
Published in: Inflammation 1/2016

01-02-2016

Functional Effects of WNT1-Inducible Signaling Pathway Protein-1 on Bronchial Smooth Muscle Cell Migration and Proliferation in OVA-Induced Airway Remodeling

Authors: Mingjin Yang, Yuejun Du, Zhibo Xu, Youfan Jiang

Published in: Inflammation | Issue 1/2016

Login to get access

Abstract

Upregulation of WISP1 has been demonstrated in lung remodeling. Moreover, it has been recently found that some signaling components of WNT pathway can activate GSK3β signaling to mediate remodeling of airway smooth muscle (ASM) in asthma. Therefore, we hypothesized that WISP1, a signaling molecule downstream of the WNT signaling pathway, is involved in PI3K/GSK3β signaling to mediate ASM remodeling in asthma. Our results showed that WISP1 depletion partly suppressed OVA-induced ASM hypertrophy in vivo. In vitro, WISP1 could induce hBSMC hypertrophy and proliferation, accompanied by upregulation of levels of PI3K, p-Akt, p-GSK3β, and its own expression. TGF-β treatment could increase expression of PI3K, p-Akt, p-GSK3β, and WISP1. SH-5 treatment could partly suppress TGF-β-induced hypertrophy and proliferation of hBSMC, and depress expression of p-GSK3β and WISP1. In conclusion, WISP1 may be a potential inducer of ASM proliferation and hypertrophy in asthma. The pro-remodeling effect of WISP1 is likely due to be involved in PI3K-GSK3β-dependent noncanonical TGF-β signaling.
Literature
1.
go back to reference Bousquet, J., P.K. Jeffery, and W.W. Busse. 2000. Asthma. From bronchoconstriction to airways inflammation and remodeling. American Journal of Respiratory and Critical Care Medicine 161: 1720–1745.CrossRefPubMed Bousquet, J., P.K. Jeffery, and W.W. Busse. 2000. Asthma. From bronchoconstriction to airways inflammation and remodeling. American Journal of Respiratory and Critical Care Medicine 161: 1720–1745.CrossRefPubMed
2.
go back to reference Kumar, R.K. 2001. Understanding airway wall remodeling in asthma: a basis for improvements in therapy? Pharmacology and Therapeutics 91: 93–104.CrossRefPubMed Kumar, R.K. 2001. Understanding airway wall remodeling in asthma: a basis for improvements in therapy? Pharmacology and Therapeutics 91: 93–104.CrossRefPubMed
3.
go back to reference Chiappara, G., R. Gagliardo, and A. Siena. 2001. Airway remodelling in the pathogenesis of asthma. Current Opinion in Allergy and Clinical Immunology 1: 85–93.CrossRefPubMed Chiappara, G., R. Gagliardo, and A. Siena. 2001. Airway remodelling in the pathogenesis of asthma. Current Opinion in Allergy and Clinical Immunology 1: 85–93.CrossRefPubMed
4.
go back to reference Dekkers, B.G., H. Maarsingh, H. Meurs, and R. Gosens. 2009. Airway structural components drive airway smooth muscle remodeling in asthma. Proceedings of the American Thoracic Society 6(8): 683–692.CrossRefPubMed Dekkers, B.G., H. Maarsingh, H. Meurs, and R. Gosens. 2009. Airway structural components drive airway smooth muscle remodeling in asthma. Proceedings of the American Thoracic Society 6(8): 683–692.CrossRefPubMed
5.
go back to reference Suganuma, N., S. Ito, H. Aso, M. Kondo, M. Sato, M. Sokabe, and Y. Hasegawa. 2012. STIM1 regulates platelet-derived growth factor-induced migration and Ca2+ influx in human airway smooth muscle cells. PLoS One 7(9), e45056.PubMedCentralCrossRefPubMed Suganuma, N., S. Ito, H. Aso, M. Kondo, M. Sato, M. Sokabe, and Y. Hasegawa. 2012. STIM1 regulates platelet-derived growth factor-induced migration and Ca2+ influx in human airway smooth muscle cells. PLoS One 7(9), e45056.PubMedCentralCrossRefPubMed
6.
go back to reference Michaeloudes, C., M.B. Sukkar, N.M. Khorasani, P.K. Bhavsar, and K.F. Chung. 2011. TGF-β regulates Nox4, MnSOD and catalase expression, and IL-6 release in airway smooth muscle cells. American Journal of Physiology. Lung Cellular and Molecular Physiology 300(2): L295–L304.PubMedCentralCrossRefPubMed Michaeloudes, C., M.B. Sukkar, N.M. Khorasani, P.K. Bhavsar, and K.F. Chung. 2011. TGF-β regulates Nox4, MnSOD and catalase expression, and IL-6 release in airway smooth muscle cells. American Journal of Physiology. Lung Cellular and Molecular Physiology 300(2): L295–L304.PubMedCentralCrossRefPubMed
7.
go back to reference Pera, T., C. Atmaj, M. vander Vegt, A.J. Halayko, J. Zaagsma, and H. Meurs. 2012. Role for TAK1 in cigarette smoke-induced proinflammatory signaling and IL-8 release by human airway smooth muscle cells. American Journal of Physiology. Lung Cellular and Molecular Physiology 303(3): L272–L278.CrossRefPubMed Pera, T., C. Atmaj, M. vander Vegt, A.J. Halayko, J. Zaagsma, and H. Meurs. 2012. Role for TAK1 in cigarette smoke-induced proinflammatory signaling and IL-8 release by human airway smooth muscle cells. American Journal of Physiology. Lung Cellular and Molecular Physiology 303(3): L272–L278.CrossRefPubMed
8.
go back to reference Benayoun, L., A. Druilhe, M.C. Dombret, M. Aubier, and M. Pretolani. 2003. Airway structural alterations selectively associated with severe asthma. American Journal of Respiratory and Critical Care Medicine 167: 1360–1368.CrossRefPubMed Benayoun, L., A. Druilhe, M.C. Dombret, M. Aubier, and M. Pretolani. 2003. Airway structural alterations selectively associated with severe asthma. American Journal of Respiratory and Critical Care Medicine 167: 1360–1368.CrossRefPubMed
9.
go back to reference Partridge, M.R., T. van der Molen, S.E. Myrseth, and W.W. Busse. 2006. Attitudes and actions of asthma patients on regular maintenance therapy: the INSPIRE study. BMC Pulmonary Medicine 6: 13.PubMedCentralCrossRefPubMed Partridge, M.R., T. van der Molen, S.E. Myrseth, and W.W. Busse. 2006. Attitudes and actions of asthma patients on regular maintenance therapy: the INSPIRE study. BMC Pulmonary Medicine 6: 13.PubMedCentralCrossRefPubMed
10.
go back to reference Nakagawa, T., and M. Hoshino. 2004. Airway remodeling in asthma: an introduction. Clinical Reviews in Allergy and Immunology 27: 1–2.CrossRef Nakagawa, T., and M. Hoshino. 2004. Airway remodeling in asthma: an introduction. Clinical Reviews in Allergy and Immunology 27: 1–2.CrossRef
11.
go back to reference Barnes, P.J., and I.M. Adcock. 2009. Glucocorticoid resistance in inflammatory diseases. Lancet 373: 1905–1917.CrossRefPubMed Barnes, P.J., and I.M. Adcock. 2009. Glucocorticoid resistance in inflammatory diseases. Lancet 373: 1905–1917.CrossRefPubMed
12.
go back to reference Halayko, A.J., T. Tran, S.Y. Ji, A. Yamasaki, and R. Gosens. 2006. Airway smooth muscle phenotype and function: interactions with current asthma therapies. Current Drug Targets 7: 525e40.CrossRef Halayko, A.J., T. Tran, S.Y. Ji, A. Yamasaki, and R. Gosens. 2006. Airway smooth muscle phenotype and function: interactions with current asthma therapies. Current Drug Targets 7: 525e40.CrossRef
13.
go back to reference Yeganeh, B., S. Mukherjee, L.M. Moir, and K. Kumawat. 2013. Novel non-canonical TGF-β signaling networks: emerging roles in airway smooth muscle phenotype and function. Pulmonary Pharmacology & Therapeutics 26(1): 50–63.CrossRef Yeganeh, B., S. Mukherjee, L.M. Moir, and K. Kumawat. 2013. Novel non-canonical TGF-β signaling networks: emerging roles in airway smooth muscle phenotype and function. Pulmonary Pharmacology & Therapeutics 26(1): 50–63.CrossRef
14.
go back to reference Baarsma, H.A., A.I. Spanjer, G. Haitsma, L.H. Engelbertink, and H. Meurs. 2011. Activation of Wnt/beta-catenin signaling in pulmonary fibroblasts by TGF-beta is increased in chronic obstructive pulmonary disease. PLoS One 6, e25450.PubMedCentralCrossRefPubMed Baarsma, H.A., A.I. Spanjer, G. Haitsma, L.H. Engelbertink, and H. Meurs. 2011. Activation of Wnt/beta-catenin signaling in pulmonary fibroblasts by TGF-beta is increased in chronic obstructive pulmonary disease. PLoS One 6, e25450.PubMedCentralCrossRefPubMed
15.
go back to reference Carthy, J.M., F.S. Garmaroudi, Z. Luo, and B.M. McManus. 2011. Wnt3a induces myofibroblast differentiation by upregulating TGF-β signaling through Smad2 in a beta-catenin-dependent manner. PLoS One 6, e19809.PubMedCentralCrossRefPubMed Carthy, J.M., F.S. Garmaroudi, Z. Luo, and B.M. McManus. 2011. Wnt3a induces myofibroblast differentiation by upregulating TGF-β signaling through Smad2 in a beta-catenin-dependent manner. PLoS One 6, e19809.PubMedCentralCrossRefPubMed
16.
go back to reference Gosens, R., H.A. Baarsma, I.H. Heijink, T.A. Oenema, and A.J. Halayko. 2010. De novo synthesis of {beta}-catenin via H-Ras and Mek regulates airway smooth muscle growth. FASEB Journal 24: 757e68.CrossRef Gosens, R., H.A. Baarsma, I.H. Heijink, T.A. Oenema, and A.J. Halayko. 2010. De novo synthesis of {beta}-catenin via H-Ras and Mek regulates airway smooth muscle growth. FASEB Journal 24: 757e68.CrossRef
17.
go back to reference Kumawat, K., M.H. Menzen, I.S. Bos, H.A. Baarsma, P. Borger, M. Roth, M. Tamm, A.J. Halayko, M. Simoons, A. Prins, D.S. Postma, M. Schmidt, and R. Gosens. 2013. Noncanonical WNT-5A signaling regulates TGF-β-induced extracellular matrix production by airway smooth muscle cells. FASEB Journal 27(4): 1631–1643.CrossRefPubMed Kumawat, K., M.H. Menzen, I.S. Bos, H.A. Baarsma, P. Borger, M. Roth, M. Tamm, A.J. Halayko, M. Simoons, A. Prins, D.S. Postma, M. Schmidt, and R. Gosens. 2013. Noncanonical WNT-5A signaling regulates TGF-β-induced extracellular matrix production by airway smooth muscle cells. FASEB Journal 27(4): 1631–1643.CrossRefPubMed
18.
go back to reference Xu, L., R.B. Corcoran, J.W. Welsh, D. Pennica, and A.J. Levine. 2000. WISP-1 is a Wnt-1- and β-catenin-responsive oncogene. Genes and Development 14: 585–595.PubMedCentralPubMed Xu, L., R.B. Corcoran, J.W. Welsh, D. Pennica, and A.J. Levine. 2000. WISP-1 is a Wnt-1- and β-catenin-responsive oncogene. Genes and Development 14: 585–595.PubMedCentralPubMed
19.
go back to reference Colston, J.T., S.D. de la Rosa, and M. Koehler. 2007. Wnt-induced secreted protein 1 is a prohypertrophic and profibrotic growth factor. Am J Physiol H eart Circ Physiol 293: H1839–H1846.CrossRef Colston, J.T., S.D. de la Rosa, and M. Koehler. 2007. Wnt-induced secreted protein 1 is a prohypertrophic and profibrotic growth factor. Am J Physiol H eart Circ Physiol 293: H1839–H1846.CrossRef
20.
go back to reference Jiang, F., C.J. Parsons, and B. Stefanovic. 2006. Gene expression profile of quiescent and activated rat hepatic stellate cells implicates Wnt signaling pathway in activation. Journal of Hepatology 45: 401–409.CrossRefPubMed Jiang, F., C.J. Parsons, and B. Stefanovic. 2006. Gene expression profile of quiescent and activated rat hepatic stellate cells implicates Wnt signaling pathway in activation. Journal of Hepatology 45: 401–409.CrossRefPubMed
21.
go back to reference Yang, M., X. Zhao, and Y. Liu. 2013. A role for WNT1-inducible signaling protein-1 in airway remodeling in a rat asthma model. International Immunopharmacology 17(2): 350–357.CrossRefPubMed Yang, M., X. Zhao, and Y. Liu. 2013. A role for WNT1-inducible signaling protein-1 in airway remodeling in a rat asthma model. International Immunopharmacology 17(2): 350–357.CrossRefPubMed
22.
go back to reference Reddy, V.S., A.J. Valente, and P. Delafontaine. 2011. Interleukin-18/WNT1-inducible signaling pathway protein-1 signaling mediates human saphenous vein smooth muscle cell proliferation. Journal of Cellular Physiology 226(12): 3303–3315.PubMedCentralCrossRefPubMed Reddy, V.S., A.J. Valente, and P. Delafontaine. 2011. Interleukin-18/WNT1-inducible signaling pathway protein-1 signaling mediates human saphenous vein smooth muscle cell proliferation. Journal of Cellular Physiology 226(12): 3303–3315.PubMedCentralCrossRefPubMed
23.
go back to reference Katoh, M., and M. Katoh. 2006. Cross-talk of WNT and FGF signaling pathways at GSK3beta to regulate beta-catenin and SNAIL signaling cascades. Cancer Biology and Therapy 5(9): 1059–1064.CrossRefPubMed Katoh, M., and M. Katoh. 2006. Cross-talk of WNT and FGF signaling pathways at GSK3beta to regulate beta-catenin and SNAIL signaling cascades. Cancer Biology and Therapy 5(9): 1059–1064.CrossRefPubMed
24.
go back to reference Deng, H., G.A. Dokshin, J. Lei, A.M. Goldsmith, and K.N. Bitar. 2008. Inhibition of glycogen synthase kinase-3beta is sufficient for airway smooth muscle hypertrophy. Journal of Biological Chemistry 283(15): 10198–10207.PubMedCentralCrossRefPubMed Deng, H., G.A. Dokshin, J. Lei, A.M. Goldsmith, and K.N. Bitar. 2008. Inhibition of glycogen synthase kinase-3beta is sufficient for airway smooth muscle hypertrophy. Journal of Biological Chemistry 283(15): 10198–10207.PubMedCentralCrossRefPubMed
25.
go back to reference Oenema, T.A., M. Smit, L. Smedinga, K. Racké, A.J. Halayko, H. Meurs, and R. Gosens. 2012. Muscarinic receptor stimulation augments TGF-β1-induced contractile protein expression by airway smooth muscle cells. American Journal of Physiology. Lung Cellular and Molecular Physiology 303(7): L589–L597.CrossRefPubMed Oenema, T.A., M. Smit, L. Smedinga, K. Racké, A.J. Halayko, H. Meurs, and R. Gosens. 2012. Muscarinic receptor stimulation augments TGF-β1-induced contractile protein expression by airway smooth muscle cells. American Journal of Physiology. Lung Cellular and Molecular Physiology 303(7): L589–L597.CrossRefPubMed
26.
go back to reference Baarsma, H.A., M.H. Menzen, A.J. Halayko, H. Meurs, H.A. Kerstjens, and R. Gosens. 2011. Beta-catenin signaling is required for TGF-β1-induced extracellular matrix production by airway smooth muscle cells. American Journal of Physiology. Lung Cellular and Molecular Physiology 301(6): L956–L965.CrossRefPubMed Baarsma, H.A., M.H. Menzen, A.J. Halayko, H. Meurs, H.A. Kerstjens, and R. Gosens. 2011. Beta-catenin signaling is required for TGF-β1-induced extracellular matrix production by airway smooth muscle cells. American Journal of Physiology. Lung Cellular and Molecular Physiology 301(6): L956–L965.CrossRefPubMed
27.
go back to reference National Research Council. 1996. Guide for the care and use of laboratory animals, 21–55. Washington, DC: National Academy Press. National Research Council. 1996. Guide for the care and use of laboratory animals, 21–55. Washington, DC: National Academy Press.
28.
go back to reference Nabe, T., C.L. Zindl, Y.W. Jung, R. Stephens, and A. Sakamoto. 2005. Induction of a late asthmatic response associated with airway inflammation in mice. European Journal of Pharmacology 521: 144–155.CrossRefPubMed Nabe, T., C.L. Zindl, Y.W. Jung, R. Stephens, and A. Sakamoto. 2005. Induction of a late asthmatic response associated with airway inflammation in mice. European Journal of Pharmacology 521: 144–155.CrossRefPubMed
29.
go back to reference Ho, W., and A. Furst. 1973. Intratracheal instillation method for mouse lungs. Oncology 27: 385–393.CrossRefPubMed Ho, W., and A. Furst. 1973. Intratracheal instillation method for mouse lungs. Oncology 27: 385–393.CrossRefPubMed
30.
go back to reference Königshoff, M., M. Kramer, and N. Balsara. 2009. WNT1-inducible signaling protein-1 mediates pulmonary fibrosis in mice and is upregulated in humans with idiopathic pulmonary fibrosis. Journal of Clinical Investigation 119(4): 772–787.PubMedCentralPubMed Königshoff, M., M. Kramer, and N. Balsara. 2009. WNT1-inducible signaling protein-1 mediates pulmonary fibrosis in mice and is upregulated in humans with idiopathic pulmonary fibrosis. Journal of Clinical Investigation 119(4): 772–787.PubMedCentralPubMed
31.
go back to reference Cho, J.Y., M. Miller, K.J. Baek, J.W. Han, J. Nayar, and S.Y. Lee. 2004. Inhibition of airway remodeling in IL-5-deficient mice. Journal of Clinical Investigation 113(4): 551–560.PubMedCentralCrossRefPubMed Cho, J.Y., M. Miller, K.J. Baek, J.W. Han, J. Nayar, and S.Y. Lee. 2004. Inhibition of airway remodeling in IL-5-deficient mice. Journal of Clinical Investigation 113(4): 551–560.PubMedCentralCrossRefPubMed
32.
go back to reference Qiao, Chong, W. Chunhui, Z. Jiao, L. Caixia, and S. Tao. 2012. Elevated expression of KiSS-1 in placenta of Chinese women with early-onset preeclampsia. PLoS One 7(11), e48937.PubMedCentralCrossRefPubMed Qiao, Chong, W. Chunhui, Z. Jiao, L. Caixia, and S. Tao. 2012. Elevated expression of KiSS-1 in placenta of Chinese women with early-onset preeclampsia. PLoS One 7(11), e48937.PubMedCentralCrossRefPubMed
33.
go back to reference Nabe, T., T. Morishita, K. Matsuya, A. Ikedo, M. Fujii, N. Mizutani, and S. Yoshino. 2011. Complete dependence on CD4+ cells in late asthmatic response, but limited contribution of the cells to airway remodeling in sensitized mice. Journal of Pharmacological Sciences 116(4): 373–383.CrossRefPubMed Nabe, T., T. Morishita, K. Matsuya, A. Ikedo, M. Fujii, N. Mizutani, and S. Yoshino. 2011. Complete dependence on CD4+ cells in late asthmatic response, but limited contribution of the cells to airway remodeling in sensitized mice. Journal of Pharmacological Sciences 116(4): 373–383.CrossRefPubMed
34.
go back to reference Bogard, A.S., C. Xu, and R.S. Ostrom. 2011. Human bronchial smooth muscle cells express adenylyl cyclase isoforms 2, 4, and 6 in distinct membrane microdomains. Journal of Pharmacology and Experimental Therapeutics 337(1): 209–217.PubMedCentralCrossRefPubMed Bogard, A.S., C. Xu, and R.S. Ostrom. 2011. Human bronchial smooth muscle cells express adenylyl cyclase isoforms 2, 4, and 6 in distinct membrane microdomains. Journal of Pharmacology and Experimental Therapeutics 337(1): 209–217.PubMedCentralCrossRefPubMed
35.
go back to reference Cui, X.L., A.M. Schlesier, E.L. Fisher, C. Cerqueira, and R.P. Ferraris. 2005. Fructose-induced increases in neonatal rat intestinal fructose transport involve the PI3-kinase/Akt signaling pathway. American Journal of Physiology. Gastrointestinal and Liver Physiology 288: G1310–G1320.CrossRefPubMed Cui, X.L., A.M. Schlesier, E.L. Fisher, C. Cerqueira, and R.P. Ferraris. 2005. Fructose-induced increases in neonatal rat intestinal fructose transport involve the PI3-kinase/Akt signaling pathway. American Journal of Physiology. Gastrointestinal and Liver Physiology 288: G1310–G1320.CrossRefPubMed
36.
go back to reference Kierbel, A., A. Gassama-Diagne, K. Mostov, and J. Engel. 2005. The phosphoinositol-3-kinase-protein kinase B/Akt pathway is critical for Pseudomonas aeruginosa strain PAK internalization. Molecular Biology of the Cell 16: 2577–2585.PubMedCentralCrossRefPubMed Kierbel, A., A. Gassama-Diagne, K. Mostov, and J. Engel. 2005. The phosphoinositol-3-kinase-protein kinase B/Akt pathway is critical for Pseudomonas aeruginosa strain PAK internalization. Molecular Biology of the Cell 16: 2577–2585.PubMedCentralCrossRefPubMed
37.
go back to reference Kozikowski, A.P., H. Sun, J. Brognard, and P.A. Dennis. 2003. Novel PI analogues selectively block activation of the pro-survival serine/threonine kinase Akt. Journal of the American Chemical Society 125: 1144–1145.CrossRefPubMed Kozikowski, A.P., H. Sun, J. Brognard, and P.A. Dennis. 2003. Novel PI analogues selectively block activation of the pro-survival serine/threonine kinase Akt. Journal of the American Chemical Society 125: 1144–1145.CrossRefPubMed
38.
go back to reference Chandrasekar, B., S. Mummidi, W.C. Claycomb, and R. Mestril. 2005. Interleukin-18 is a prohypertrophic cytokine that acts through a phosphatidylinositol 3-kinase-phosphoinositide-dependent kinase-1-Akt-GATA4 signaling pathway in cardiomyocytes. Journal of Biological Chemistry 280(6): 4553–4567.CrossRefPubMed Chandrasekar, B., S. Mummidi, W.C. Claycomb, and R. Mestril. 2005. Interleukin-18 is a prohypertrophic cytokine that acts through a phosphatidylinositol 3-kinase-phosphoinositide-dependent kinase-1-Akt-GATA4 signaling pathway in cardiomyocytes. Journal of Biological Chemistry 280(6): 4553–4567.CrossRefPubMed
39.
go back to reference Goncharova, E.A., D.A. Goncharov, and V.P. Krymskaya. 2006. Assays for in vitro monitoring of human airway smooth muscle (ASM) and human pulmonary arterial vascular smooth muscle (VSM) cell migration. Nature Protocols 1: 2933–2939.CrossRefPubMed Goncharova, E.A., D.A. Goncharov, and V.P. Krymskaya. 2006. Assays for in vitro monitoring of human airway smooth muscle (ASM) and human pulmonary arterial vascular smooth muscle (VSM) cell migration. Nature Protocols 1: 2933–2939.CrossRefPubMed
40.
go back to reference Zhang, J., L. Shan, L. Koussih, N.S. Redhu, A.J. Halayko, J. Chakir, and A.S. Gounni. 2012. Pentraxin 3 (PTX3) expression in allergic asthmatic airways: role in airway smooth muscle migration and chemokine production. PLoS One 7(4), e34965.PubMedCentralCrossRefPubMed Zhang, J., L. Shan, L. Koussih, N.S. Redhu, A.J. Halayko, J. Chakir, and A.S. Gounni. 2012. Pentraxin 3 (PTX3) expression in allergic asthmatic airways: role in airway smooth muscle migration and chemokine production. PLoS One 7(4), e34965.PubMedCentralCrossRefPubMed
41.
go back to reference Balachandar, V., D. Sumanth, K.V. Prabhu, and M. Srinivas. 2010. WNT1-inducible signaling pathway protein-1 activates diverse cell survival pathways and blocks doxorubicin-induced cardiomyocyte death. Cellular Signalling 22(5): 809–820.CrossRef Balachandar, V., D. Sumanth, K.V. Prabhu, and M. Srinivas. 2010. WNT1-inducible signaling pathway protein-1 activates diverse cell survival pathways and blocks doxorubicin-induced cardiomyocyte death. Cellular Signalling 22(5): 809–820.CrossRef
42.
go back to reference Jude, J.A., K.G. Tirumurugaan, B.N. Kang, R.A. Panettieri, T.F. Walseth, and M.S. Kannan. 2012. Regulation of CD38 expression in human airway smooth muscle cells: role of class I phosphatidylinositol 3 kinases. American Journal of Respiratory Cell and Molecular Biology 47(4): 427–435.PubMedCentralCrossRefPubMed Jude, J.A., K.G. Tirumurugaan, B.N. Kang, R.A. Panettieri, T.F. Walseth, and M.S. Kannan. 2012. Regulation of CD38 expression in human airway smooth muscle cells: role of class I phosphatidylinositol 3 kinases. American Journal of Respiratory Cell and Molecular Biology 47(4): 427–435.PubMedCentralCrossRefPubMed
43.
go back to reference Bentley, J.K., H. Deng, M.J. Linn, J. Lei, G.A. Dokshin, D.C. Fingar, K.N. Bitar, W.R. Henderson Jr., and M.B. Hershenson. 2009. Airway smooth muscle hyperplasia and hypertrophy correlate with glycogen synthase kinase-3(β) phosphorylation in a mouse model of asthma. American Journal of Physiology. Lung Cellular and Molecular Physiology 296(2): L176–L184.PubMedCentralCrossRefPubMed Bentley, J.K., H. Deng, M.J. Linn, J. Lei, G.A. Dokshin, D.C. Fingar, K.N. Bitar, W.R. Henderson Jr., and M.B. Hershenson. 2009. Airway smooth muscle hyperplasia and hypertrophy correlate with glycogen synthase kinase-3(β) phosphorylation in a mouse model of asthma. American Journal of Physiology. Lung Cellular and Molecular Physiology 296(2): L176–L184.PubMedCentralCrossRefPubMed
44.
go back to reference Mohamed, J.S., M.A. Lopez, and A.M. Boriek. 2010. Mechanical stretch up-regulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-3β. Journal of Biological Chemistry 285(38): 29336–29347.PubMedCentralCrossRefPubMed Mohamed, J.S., M.A. Lopez, and A.M. Boriek. 2010. Mechanical stretch up-regulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-3β. Journal of Biological Chemistry 285(38): 29336–29347.PubMedCentralCrossRefPubMed
45.
go back to reference Clifford, R.L., K. Deacon, and A.J. Knox. 2008. Novel regulation of vascular endothelial growth factor-a (Vegfa) by transforming growth factor (Beta)1: requirement for Smads, (beta)-catenin, and Gsk(beta). Journal of Biological Chemistry 283(51): 35337–35353.CrossRefPubMed Clifford, R.L., K. Deacon, and A.J. Knox. 2008. Novel regulation of vascular endothelial growth factor-a (Vegfa) by transforming growth factor (Beta)1: requirement for Smads, (beta)-catenin, and Gsk(beta). Journal of Biological Chemistry 283(51): 35337–35353.CrossRefPubMed
46.
go back to reference Cheon, S.S., P. Nadesan, R. Poon, and B.A. Alman. 2004. Growth factors regulate beta-catenin-mediated Tcf-dependent transcriptional activation in fibroblasts during the proliferative phase of wound healing. Experimental Cell Research 293(2): 267–274.CrossRefPubMed Cheon, S.S., P. Nadesan, R. Poon, and B.A. Alman. 2004. Growth factors regulate beta-catenin-mediated Tcf-dependent transcriptional activation in fibroblasts during the proliferative phase of wound healing. Experimental Cell Research 293(2): 267–274.CrossRefPubMed
47.
go back to reference Venkatachalam, K., B. Venkatesan, A.J. Valente, P.C. Melby, S. Nandish, J.E. Reusch, R.A. Clark, and B. Chandrasekar. 2009. WISP1, a pro-mitogenic, pro-survival factor, mediates tumor necrosis factor-alpha (TNF-alpha)-stimulated cardiac fibroblast proliferation but inhibits TNF-alpha-induced cardiomyocyte death. Journal of Biological Chemistry 284(21): 14414–14427.PubMedCentralCrossRefPubMed Venkatachalam, K., B. Venkatesan, A.J. Valente, P.C. Melby, S. Nandish, J.E. Reusch, R.A. Clark, and B. Chandrasekar. 2009. WISP1, a pro-mitogenic, pro-survival factor, mediates tumor necrosis factor-alpha (TNF-alpha)-stimulated cardiac fibroblast proliferation but inhibits TNF-alpha-induced cardiomyocyte death. Journal of Biological Chemistry 284(21): 14414–14427.PubMedCentralCrossRefPubMed
48.
go back to reference Sunita, S., T. Kelan, and C. Vincent. 2010. A role for Wnt signaling genes in the pathogenesis of impaired lung function in asthma. American Journal of Respiratory and Critical Care Medicine 181: 328–336.CrossRef Sunita, S., T. Kelan, and C. Vincent. 2010. A role for Wnt signaling genes in the pathogenesis of impaired lung function in asthma. American Journal of Respiratory and Critical Care Medicine 181: 328–336.CrossRef
49.
go back to reference Broide, David H. 2008. Immunologic and inflammatory mechanisms that drive asthma progression to remodeling. Journal of Allergy and Clinical Immunology 121(3): 560–572.PubMedCentralCrossRefPubMed Broide, David H. 2008. Immunologic and inflammatory mechanisms that drive asthma progression to remodeling. Journal of Allergy and Clinical Immunology 121(3): 560–572.PubMedCentralCrossRefPubMed
50.
go back to reference Murphy, J., R. Summer, and A. Fine. 2008. Stem cells in airway smooth muscle: state of the art. Proceedings of the American Thoracic Society 5(1): 11–14.PubMedCentralCrossRefPubMed Murphy, J., R. Summer, and A. Fine. 2008. Stem cells in airway smooth muscle: state of the art. Proceedings of the American Thoracic Society 5(1): 11–14.PubMedCentralCrossRefPubMed
51.
go back to reference Yu, F., X. Zhao, C. Li, Y. Li, Y. Yan, and L. Shi. 2012. Airway stem cells: review of potential impact on understanding of upper airway diseases. Laryngoscope 122(7): 1463–1469.CrossRefPubMed Yu, F., X. Zhao, C. Li, Y. Li, Y. Yan, and L. Shi. 2012. Airway stem cells: review of potential impact on understanding of upper airway diseases. Laryngoscope 122(7): 1463–1469.CrossRefPubMed
52.
go back to reference Damera, G., K.M. Druey, P.R. Cooper, V.P. Krymskaya, R.J. Soberman, Y. Amrani, and T. Hoshi. 2012. An RGS4-mediated phenotypic switch of bronchial smooth muscle cells promotes fixed airway obstruction in asthma. PLoS One 7(1), e28504.PubMedCentralCrossRefPubMed Damera, G., K.M. Druey, P.R. Cooper, V.P. Krymskaya, R.J. Soberman, Y. Amrani, and T. Hoshi. 2012. An RGS4-mediated phenotypic switch of bronchial smooth muscle cells promotes fixed airway obstruction in asthma. PLoS One 7(1), e28504.PubMedCentralCrossRefPubMed
53.
go back to reference Panettieri Jr., R.A., R. Covar, and E. Grant. 2008. Natural history of asthma: persistence versus progression—does the beginning predict the end? Journal of Allergy and Clinical Immunology 121: 607–613.CrossRefPubMed Panettieri Jr., R.A., R. Covar, and E. Grant. 2008. Natural history of asthma: persistence versus progression—does the beginning predict the end? Journal of Allergy and Clinical Immunology 121: 607–613.CrossRefPubMed
54.
go back to reference Bergmann, C., A. Akhmetshina, C. Dees, K. Palumbo, P. Zerr, C. Beyer, and J. Zwerina. 2011. Inhibition of glycogen synthase kinase 3β induces dermal fibrosis by activation of the canonical Wnt pathway. Annals of the Rheumatic Diseases 70(12): 2191–2198.CrossRefPubMed Bergmann, C., A. Akhmetshina, C. Dees, K. Palumbo, P. Zerr, C. Beyer, and J. Zwerina. 2011. Inhibition of glycogen synthase kinase 3β induces dermal fibrosis by activation of the canonical Wnt pathway. Annals of the Rheumatic Diseases 70(12): 2191–2198.CrossRefPubMed
55.
go back to reference Rahmani, M., J.T. Read, J.M. Carthy, P.C. McDonald, and B.W. Wong. 2005. Regulation of the versican promoter by the β-catenin-T-cell factor complex in vascular smooth muscle cells. Journal of Biological Chemistry 280: 13019–13028.CrossRefPubMed Rahmani, M., J.T. Read, J.M. Carthy, P.C. McDonald, and B.W. Wong. 2005. Regulation of the versican promoter by the β-catenin-T-cell factor complex in vascular smooth muscle cells. Journal of Biological Chemistry 280: 13019–13028.CrossRefPubMed
56.
go back to reference Halayko, A.J., T. Tran, S.Y. Ji, A. Yamasaki, and R. Gosens. 2006. Airway smooth muscle phenotype and function: interactions with current asthma therapies. Current Drug Targets 7(5): 525–540.CrossRefPubMed Halayko, A.J., T. Tran, S.Y. Ji, A. Yamasaki, and R. Gosens. 2006. Airway smooth muscle phenotype and function: interactions with current asthma therapies. Current Drug Targets 7(5): 525–540.CrossRefPubMed
57.
go back to reference Li, H.Y., Q.G. Zhang, J.W. Chen, S.Q. Chen, and S.Y. Chen. 2013. The fibrotic role of phosphatidylinositol-3-kinase/Akt pathway in injured skeletal muscle after acute contusion. International Journal of Sports Medicine 34(9): 789–794.CrossRefPubMed Li, H.Y., Q.G. Zhang, J.W. Chen, S.Q. Chen, and S.Y. Chen. 2013. The fibrotic role of phosphatidylinositol-3-kinase/Akt pathway in injured skeletal muscle after acute contusion. International Journal of Sports Medicine 34(9): 789–794.CrossRefPubMed
58.
go back to reference Yi, J.Y., I. Shin, and C.L. Arteaga. 2005. Type I transforming growth factor beta receptor binds to and activates phosphatidylinositol 3-Kinase. Journal of Biological Chemistry 280: 10870–10876.CrossRefPubMed Yi, J.Y., I. Shin, and C.L. Arteaga. 2005. Type I transforming growth factor beta receptor binds to and activates phosphatidylinositol 3-Kinase. Journal of Biological Chemistry 280: 10870–10876.CrossRefPubMed
59.
go back to reference Moir, L.M., T. Trian, Q. Ge, and P.R. Shepherd. 2011. Phosphatidylinositol 3-kinase isoform-specific effects in airway mesenchymal cell function. Journal of Pharmacology and Experimental Therapeutics 337: 557–566.CrossRefPubMed Moir, L.M., T. Trian, Q. Ge, and P.R. Shepherd. 2011. Phosphatidylinositol 3-kinase isoform-specific effects in airway mesenchymal cell function. Journal of Pharmacology and Experimental Therapeutics 337: 557–566.CrossRefPubMed
60.
go back to reference Wang, S., Z.Z. Chong, Y.C. Shang, and K. Maiese. 2012. Wnt1 inducible signaling pathway protein 1 (WISP1) blocks neurodegeneration through phosphoinositide 3 kinase/Akt1 and apoptotic mitochondrial signaling involving Bad, Bax, Bim, and Bcl-xL. Current Neurovascular Research 9(1): 20–31.PubMedCentralCrossRefPubMed Wang, S., Z.Z. Chong, Y.C. Shang, and K. Maiese. 2012. Wnt1 inducible signaling pathway protein 1 (WISP1) blocks neurodegeneration through phosphoinositide 3 kinase/Akt1 and apoptotic mitochondrial signaling involving Bad, Bax, Bim, and Bcl-xL. Current Neurovascular Research 9(1): 20–31.PubMedCentralCrossRefPubMed
Metadata
Title
Functional Effects of WNT1-Inducible Signaling Pathway Protein-1 on Bronchial Smooth Muscle Cell Migration and Proliferation in OVA-Induced Airway Remodeling
Authors
Mingjin Yang
Yuejun Du
Zhibo Xu
Youfan Jiang
Publication date
01-02-2016
Publisher
Springer US
Published in
Inflammation / Issue 1/2016
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-015-0218-x

Other articles of this Issue 1/2016

Inflammation 1/2016 Go to the issue