Skip to main content
Top
Published in: Inflammation 2/2015

01-04-2015

Aurora Kinase A Regulates M1 Macrophage Polarization and Plays a Role in Experimental Autoimmune Encephalomyelitis

Authors: Lixia Ding, Haijuan Gu, Xiaoming Gao, Sidong Xiong, Biao Zheng

Published in: Inflammation | Issue 2/2015

Login to get access

Abstract

Macrophage polarization is a dynamic and integral process of tissue inflammation and remodeling. Here we demonstrate an important role of Aurora kinase A in the regulation of inflammatory M1 macrophage polarization. We found that there was an elevated expression of Aurora-A in M1 macrophages and inhibition of Aurora-A by small molecules or specific siRNA selectively led to the suppression of M1 polarization, sparing over the M2 macrophage differentiation. At the molecular level, we found that the effects of Aurora-A in M1 macrophages were mediated through the down-regulation of NF-κB pathway and subsequent IRF5 expression. In an autoimmune disease model, experimental autoimmune encephalitis (EAE), treatment with Aurora kinase inhibitor blocked the disease development and shifted the macrophage phenotype from inflammatory M1 to anti-inflammatory M2. Thus, this study reveals a novel function of Aurora-A in controlling the polarization of macrophages, and modification of Aurora-A activity may lead to a new therapeutic approach for chronic inflammatory diseases.
Appendix
Available only for authorised users
Literature
1.
go back to reference Martinez, F.O., L. Helming, and S. Gordon. 2009. Alternative activation of macrophages: an immunologic functional perspective. Annual Review of Immunology 27: 451–483.PubMedCrossRef Martinez, F.O., L. Helming, and S. Gordon. 2009. Alternative activation of macrophages: an immunologic functional perspective. Annual Review of Immunology 27: 451–483.PubMedCrossRef
2.
go back to reference Gordon, S., and F.O. Martinez. 2010. Alternative activation of macrophages: mechanism and functions. Immunity 32: 593–604.PubMedCrossRef Gordon, S., and F.O. Martinez. 2010. Alternative activation of macrophages: mechanism and functions. Immunity 32: 593–604.PubMedCrossRef
3.
go back to reference Mantovani, A., A. Sica, and M. Locati. 2005. Macrophage polarization comes of age. Immunity 23: 344–346.PubMedCrossRef Mantovani, A., A. Sica, and M. Locati. 2005. Macrophage polarization comes of age. Immunity 23: 344–346.PubMedCrossRef
4.
go back to reference Stein, M., S. Keshav, N. Harris, and S. Gordon. 1992. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. Journal of Experimental Medicine 176: 287–292.PubMedCrossRef Stein, M., S. Keshav, N. Harris, and S. Gordon. 1992. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. Journal of Experimental Medicine 176: 287–292.PubMedCrossRef
5.
go back to reference Martinez, F.O., S. Gordon, M. Locati, and A. Mantovani. 2006. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. Journal of Immunology 177: 7303–7311.CrossRef Martinez, F.O., S. Gordon, M. Locati, and A. Mantovani. 2006. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. Journal of Immunology 177: 7303–7311.CrossRef
6.
go back to reference Biswas, S.K., and A. Mantovani. 2010. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nature Immunology 11: 889–896.PubMedCrossRef Biswas, S.K., and A. Mantovani. 2010. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nature Immunology 11: 889–896.PubMedCrossRef
7.
go back to reference Shimada, K. 2009. Immune system and atherosclerotic disease: heterogeneity of leukocyte subsets participating in the pathogenesis of atherosclerosis. Circulation Journal 73: 994–1001.PubMedCrossRef Shimada, K. 2009. Immune system and atherosclerotic disease: heterogeneity of leukocyte subsets participating in the pathogenesis of atherosclerosis. Circulation Journal 73: 994–1001.PubMedCrossRef
8.
9.
go back to reference Gosselin, L.E., and K.M. McCormick. 2004. Targeting the immune system to improve ventilatory function in muscular dystrophy. Medicine and Science in Sports and Exercise 36: 44–51.PubMedCrossRef Gosselin, L.E., and K.M. McCormick. 2004. Targeting the immune system to improve ventilatory function in muscular dystrophy. Medicine and Science in Sports and Exercise 36: 44–51.PubMedCrossRef
10.
go back to reference Mikita, J., N. Dubourdieu-Cassagno, M. S. Deloire, A. Vekris, M. Biran, G. Raffard, B. Brochet, M. H. Canron, J. M. Franconi, C. Boiziau, and K. G. Petry. Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration. Mult Scler 17:2–15. Mikita, J., N. Dubourdieu-Cassagno, M. S. Deloire, A. Vekris, M. Biran, G. Raffard, B. Brochet, M. H. Canron, J. M. Franconi, C. Boiziau, and K. G. Petry. Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration. Mult Scler 17:2–15.
11.
go back to reference Weber, M.S., T. Prod'homme, S. Youssef, S.E. Dunn, C.D. Rundle, L. Lee, J.C. Patarroyo, O. Stuve, R.A. Sobel, L. Steinman, and S.S. Zamvil. 2007. Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nature Medicine 13: 935–943.PubMedCrossRef Weber, M.S., T. Prod'homme, S. Youssef, S.E. Dunn, C.D. Rundle, L. Lee, J.C. Patarroyo, O. Stuve, R.A. Sobel, L. Steinman, and S.S. Zamvil. 2007. Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nature Medicine 13: 935–943.PubMedCrossRef
12.
go back to reference Dar, A.A., L.W. Goff, S. Majid, J. Berlin, and W. El-Rifai. 2010. Aurora kinase inhibitors—rising stars in cancer therapeutics? Molecular Cancer Therapeutics 9: 268–278.PubMedCentralPubMedCrossRef Dar, A.A., L.W. Goff, S. Majid, J. Berlin, and W. El-Rifai. 2010. Aurora kinase inhibitors—rising stars in cancer therapeutics? Molecular Cancer Therapeutics 9: 268–278.PubMedCentralPubMedCrossRef
13.
go back to reference Carmena, M., S. Ruchaud, and W.C. Earnshaw. 2009. Making the Auroras glow: regulation of Aurora A and B kinase function by interacting proteins. Current Opinion in Cell Biology 21: 796–805.PubMedCentralPubMedCrossRef Carmena, M., S. Ruchaud, and W.C. Earnshaw. 2009. Making the Auroras glow: regulation of Aurora A and B kinase function by interacting proteins. Current Opinion in Cell Biology 21: 796–805.PubMedCentralPubMedCrossRef
14.
go back to reference Macarulla, T., F.J. Ramos, and J. Tabernero. 2008. Aurora kinase family: a new target for anticancer drug. Recent Patents on Anti-Cancer Drug Discovery 3: 114–122.PubMedCrossRef Macarulla, T., F.J. Ramos, and J. Tabernero. 2008. Aurora kinase family: a new target for anticancer drug. Recent Patents on Anti-Cancer Drug Discovery 3: 114–122.PubMedCrossRef
15.
go back to reference Mountzios, G., E. Terpos, and M.A. Dimopoulos. 2008. Aurora kinases as targets for cancer therapy. Cancer Treatment Reviews 34: 175–182.PubMedCrossRef Mountzios, G., E. Terpos, and M.A. Dimopoulos. 2008. Aurora kinases as targets for cancer therapy. Cancer Treatment Reviews 34: 175–182.PubMedCrossRef
16.
go back to reference Katsha, A., M. Soutto, V. Sehdev, D. Peng, M. K. Washington, M. B. Piazuelo, M. N. Tantawy, H. C. Manning, P. Lu, Y. Shyr, J. Ecsedy, A. Belkhiri, and W. El-Rifai. Aurora kinase A promotes inflammation and tumorigenesis in mice and human gastric neoplasia. Gastroenterology 145:1312–1322 e1311-1318. Katsha, A., M. Soutto, V. Sehdev, D. Peng, M. K. Washington, M. B. Piazuelo, M. N. Tantawy, H. C. Manning, P. Lu, Y. Shyr, J. Ecsedy, A. Belkhiri, and W. El-Rifai. Aurora kinase A promotes inflammation and tumorigenesis in mice and human gastric neoplasia. Gastroenterology 145:1312–1322 e1311-1318.
17.
go back to reference Glant, T. T., T. Besenyei, A. Kadar, J. Kurko, B. Tryniszewska, J. Gal, G. Soos, Z. Szekanecz, G. Hoffmann, J. A. Block, R. S. Katz, K. Mikecz, and T. A. Rauch. Differentially expressed epigenome modifiers, including aurora kinases A and B, in immune cells in rheumatoid arthritis in humans and mouse models. Arthritis Rheum 65:1725–1735. Glant, T. T., T. Besenyei, A. Kadar, J. Kurko, B. Tryniszewska, J. Gal, G. Soos, Z. Szekanecz, G. Hoffmann, J. A. Block, R. S. Katz, K. Mikecz, and T. A. Rauch. Differentially expressed epigenome modifiers, including aurora kinases A and B, in immune cells in rheumatoid arthritis in humans and mouse models. Arthritis Rheum 65:1725–1735.
18.
go back to reference Walter, A.O., W. Seghezzi, W. Korver, J. Sheung, and E. Lees. 2000. The mitotic serine/threonine kinase Aurora2/AIK is regulated by phosphorylation and degradation. Oncogene 19: 4906–4916.PubMedCrossRef Walter, A.O., W. Seghezzi, W. Korver, J. Sheung, and E. Lees. 2000. The mitotic serine/threonine kinase Aurora2/AIK is regulated by phosphorylation and degradation. Oncogene 19: 4906–4916.PubMedCrossRef
19.
go back to reference Garuti, L., M. Roberti, and G. Bottegoni. 2009. Small molecule aurora kinases inhibitors. Current Medicinal Chemistry 16: 1949–1963.PubMedCrossRef Garuti, L., M. Roberti, and G. Bottegoni. 2009. Small molecule aurora kinases inhibitors. Current Medicinal Chemistry 16: 1949–1963.PubMedCrossRef
20.
go back to reference Cheung, C.H., M.S. Coumar, J.Y. Chang, and H.P. Hsieh. 2011. Aurora kinase inhibitor patents and agents in clinical testing: an update (2009–10). Expert Opinion on Therapeutic Patents 21: 857–884.PubMedCrossRef Cheung, C.H., M.S. Coumar, J.Y. Chang, and H.P. Hsieh. 2011. Aurora kinase inhibitor patents and agents in clinical testing: an update (2009–10). Expert Opinion on Therapeutic Patents 21: 857–884.PubMedCrossRef
21.
go back to reference Kollareddy, M., D. Zheleva, P. Dzubak, P.S. Brahmkshatriya, M. Lepsik, and M. Hajduch. 2012. Aurora kinase inhibitors: progress towards the clinic. Investigational New Drugs 30: 2411–2432.PubMedCentralPubMedCrossRef Kollareddy, M., D. Zheleva, P. Dzubak, P.S. Brahmkshatriya, M. Lepsik, and M. Hajduch. 2012. Aurora kinase inhibitors: progress towards the clinic. Investigational New Drugs 30: 2411–2432.PubMedCentralPubMedCrossRef
22.
go back to reference Wang, Z., J. Hong, W. Sun, G. Xu, N. Li, X. Chen, A. Liu, L. Xu, B. Sun, and J.Z. Zhang. 2006. Role of IFN-gamma in induction of Foxp3 and conversion of CD4+ CD25- T cells to CD4+ Tregs. Journal of Clinical Investigation 116: 2434–2441.PubMedCentralPubMed Wang, Z., J. Hong, W. Sun, G. Xu, N. Li, X. Chen, A. Liu, L. Xu, B. Sun, and J.Z. Zhang. 2006. Role of IFN-gamma in induction of Foxp3 and conversion of CD4+ CD25- T cells to CD4+ Tregs. Journal of Clinical Investigation 116: 2434–2441.PubMedCentralPubMed
23.
go back to reference Okuda, Y., S. Sakoda, H. Fujimura, and T. Yanagihara. 2000. The effect of apoptosis inhibitors on experimental autoimmune encephalomyelitis: apoptosis as a regulatory factor. Biochemical and Biophysical Research Communications 267: 826–830.PubMedCrossRef Okuda, Y., S. Sakoda, H. Fujimura, and T. Yanagihara. 2000. The effect of apoptosis inhibitors on experimental autoimmune encephalomyelitis: apoptosis as a regulatory factor. Biochemical and Biophysical Research Communications 267: 826–830.PubMedCrossRef
24.
go back to reference Zappia, E., S. Casazza, E. Pedemonte, F. Benvenuto, I. Bonanni, E. Gerdoni, D. Giunti, A. Ceravolo, F. Cazzanti, F. Frassoni, G. Mancardi, and A. Uccelli. 2005. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106: 1755–1761.PubMedCrossRef Zappia, E., S. Casazza, E. Pedemonte, F. Benvenuto, I. Bonanni, E. Gerdoni, D. Giunti, A. Ceravolo, F. Cazzanti, F. Frassoni, G. Mancardi, and A. Uccelli. 2005. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106: 1755–1761.PubMedCrossRef
25.
go back to reference Davis, M.J., T.M. Tsang, Y. Qiu, J.K. Dayrit, J.B. Freij, G.B. Huffnagle, and M.A. Olszewski. 2013. Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection. MBio 4: e00264–00213.PubMedCentralPubMedCrossRef Davis, M.J., T.M. Tsang, Y. Qiu, J.K. Dayrit, J.B. Freij, G.B. Huffnagle, and M.A. Olszewski. 2013. Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection. MBio 4: e00264–00213.PubMedCentralPubMedCrossRef
26.
go back to reference Krausgruber, T., K. Blazek, T. Smallie, S. Alzabin, H. Lockstone, N. Sahgal, T. Hussell, M. Feldmann, and I.A. Udalova. 2011. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nature Immunology 12: 231–238.PubMedCrossRef Krausgruber, T., K. Blazek, T. Smallie, S. Alzabin, H. Lockstone, N. Sahgal, T. Hussell, M. Feldmann, and I.A. Udalova. 2011. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nature Immunology 12: 231–238.PubMedCrossRef
27.
go back to reference Harrington, E.A., D. Bebbington, J. Moore, R.K. Rasmussen, A.O. Ajose-Adeogun, T. Nakayama, J.A. Graham, C. Demur, T. Hercend, A. Diu-Hercend, M. Su, J.M. Golec, and K.M. Miller. 2004. VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nature Medicine 10: 262–267.PubMedCrossRef Harrington, E.A., D. Bebbington, J. Moore, R.K. Rasmussen, A.O. Ajose-Adeogun, T. Nakayama, J.A. Graham, C. Demur, T. Hercend, A. Diu-Hercend, M. Su, J.M. Golec, and K.M. Miller. 2004. VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nature Medicine 10: 262–267.PubMedCrossRef
28.
go back to reference Sehdev, V., D. Peng, M. Soutto, M. K. Washington, F. Revetta, J. Ecsedy, A. Zaika, T. T. Rau, R. Schneider-Stock, A. Belkhiri, and W. El-Rifai. The aurora kinase A inhibitor MLN8237 enhances cisplatin-induced cell death in esophageal adenocarcinoma cells. Mol Cancer Ther 11:763–774. Sehdev, V., D. Peng, M. Soutto, M. K. Washington, F. Revetta, J. Ecsedy, A. Zaika, T. T. Rau, R. Schneider-Stock, A. Belkhiri, and W. El-Rifai. The aurora kinase A inhibitor MLN8237 enhances cisplatin-induced cell death in esophageal adenocarcinoma cells. Mol Cancer Ther 11:763–774.
29.
go back to reference Karin, M. 2006. Nuclear factor-kappaB in cancer development and progression. Nature 441: 431–436.PubMedCrossRef Karin, M. 2006. Nuclear factor-kappaB in cancer development and progression. Nature 441: 431–436.PubMedCrossRef
30.
go back to reference Dar, A.A., A. Zaika, M.B. Piazuelo, P. Correa, T. Koyama, A. Belkhiri, K. Washington, A. Castells, M. Pera, and W. El-Rifai. 2008. Frequent overexpression of Aurora kinase A in upper gastrointestinal adenocarcinomas correlates with potent antiapoptotic functions. Cancer 112: 1688–1698.PubMedCentralPubMedCrossRef Dar, A.A., A. Zaika, M.B. Piazuelo, P. Correa, T. Koyama, A. Belkhiri, K. Washington, A. Castells, M. Pera, and W. El-Rifai. 2008. Frequent overexpression of Aurora kinase A in upper gastrointestinal adenocarcinomas correlates with potent antiapoptotic functions. Cancer 112: 1688–1698.PubMedCentralPubMedCrossRef
31.
go back to reference Madrid, L.V., M.W. Mayo, J.Y. Reuther, and A.S. Baldwin Jr. 2001. Akt stimulates the transactivation potential of the RelA/p65 Subunit of NF-kappa B through utilization of the Ikappa B kinase and activation of the mitogen-activated protein kinase p38. Journal of Biological Chemistry 276: 18934–18940.PubMedCrossRef Madrid, L.V., M.W. Mayo, J.Y. Reuther, and A.S. Baldwin Jr. 2001. Akt stimulates the transactivation potential of the RelA/p65 Subunit of NF-kappa B through utilization of the Ikappa B kinase and activation of the mitogen-activated protein kinase p38. Journal of Biological Chemistry 276: 18934–18940.PubMedCrossRef
32.
go back to reference Yao, J.E., M. Yan, Z. Guan, C.B. Pan, L.P. Xia, C.X. Li, L.H. Wang, Z.J. Long, Y. Zhao, M.W. Li, F.M. Zheng, J. Xu, D.J. Lin, and Q. Liu. 2009. Aurora-A down-regulates IkappaBalpha via Akt activation and interacts with insulin-like growth factor-1 induced phosphatidylinositol 3-kinase pathway for cancer cell survival. Molecular Cancer 8: 95.PubMedCentralPubMedCrossRef Yao, J.E., M. Yan, Z. Guan, C.B. Pan, L.P. Xia, C.X. Li, L.H. Wang, Z.J. Long, Y. Zhao, M.W. Li, F.M. Zheng, J. Xu, D.J. Lin, and Q. Liu. 2009. Aurora-A down-regulates IkappaBalpha via Akt activation and interacts with insulin-like growth factor-1 induced phosphatidylinositol 3-kinase pathway for cancer cell survival. Molecular Cancer 8: 95.PubMedCentralPubMedCrossRef
33.
go back to reference Song, J., S. Salek-Ardakani, T. So, and M. Croft. 2007. The kinases aurora B and mTOR regulate the G1-S cell cycle progression of T lymphocytes. Nature Immunology 8: 64–73.PubMedCrossRef Song, J., S. Salek-Ardakani, T. So, and M. Croft. 2007. The kinases aurora B and mTOR regulate the G1-S cell cycle progression of T lymphocytes. Nature Immunology 8: 64–73.PubMedCrossRef
Metadata
Title
Aurora Kinase A Regulates M1 Macrophage Polarization and Plays a Role in Experimental Autoimmune Encephalomyelitis
Authors
Lixia Ding
Haijuan Gu
Xiaoming Gao
Sidong Xiong
Biao Zheng
Publication date
01-04-2015
Publisher
Springer US
Published in
Inflammation / Issue 2/2015
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-014-9990-2

Other articles of this Issue 2/2015

Inflammation 2/2015 Go to the issue