Skip to main content
Top
Published in: Inflammation 3/2014

01-06-2014

The Involvement of NADPH Oxidase-Mediated ROS in Cytokine Secretion from Macrophages Induced by Mycobacterium tuberculosis ESAT-6

Authors: Weiwei Liu, Yuan Peng, Yanlin Yin, Zhihui Zhou, Wanding Zhou, Yalei Dai

Published in: Inflammation | Issue 3/2014

Login to get access

Abstract

The 6-kDa early secretory antigenic target (ESAT-6) of Mycobacterium tuberculosis is strongly correlated with subversion of innate immune responses against invading mycobacteria. To understand the role of ESAT-6 in macrophage response against M. tuberculosis, the effects of ESAT-6 on macrophage generation of reactive oxygen species (ROS) and production of cytokines were studied. ESAT-6-induced macrophage secretion of monocyte chemoattractant protein-1 and TNF-α was found in a time- and dose-dependent manner. Signaling inhibition experiments indicate that NF-κB activation mediated by p38/JNK mitogen-activated protein kinase (MAPK) was involved in ESAT-6-triggered cytokine production. Moreover, TLR2 was engaged in ESAT-6-stimulated macrophage activation via rapidly induced ROS production and regulated activation of JNK/p38 MAPKs and NF-κB. More importantly, NADPH oxidase-mediated ROS generation is required during this process. Our study has identified a novel signal transduction pathway involving NADPH-ROS-JNK/p38-NF-κB in ESAT-6-induced cytokine production from macrophages. These findings provide an important evidence to understand the pathogenesis of M. tuberculosis infection in the modulation of the immune response.
Literature
1.
go back to reference Yew, W.W., and C.C. Leung. 2008. Update in tuberculosis 2007. American Journal of Respiratory and Critical Care Medicine 177: 479–485.PubMedCrossRef Yew, W.W., and C.C. Leung. 2008. Update in tuberculosis 2007. American Journal of Respiratory and Critical Care Medicine 177: 479–485.PubMedCrossRef
2.
go back to reference Warner, D.F., and V. Mizrahi. 2006. Tuberculosis chemotherapy: the influence of bacillary stress and damage response pathways on drug efficacy. Clinical Microbiology Reviews 19: 558–570.PubMedCentralPubMedCrossRef Warner, D.F., and V. Mizrahi. 2006. Tuberculosis chemotherapy: the influence of bacillary stress and damage response pathways on drug efficacy. Clinical Microbiology Reviews 19: 558–570.PubMedCentralPubMedCrossRef
3.
go back to reference Pieters, J. 2008. Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host & Microbe 3: 399–407.CrossRef Pieters, J. 2008. Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host & Microbe 3: 399–407.CrossRef
4.
go back to reference Zuñiga, J., D. Torres-García, T. Santos-Mendoza, T.S. Rodriguez-Reyna, J. Granados, and E.J. Yunis. 2012. Cellular and humoral mechanisms involved in the control of tuberculosis. Clinical and Developmental Immunology 2012: 1–18.CrossRef Zuñiga, J., D. Torres-García, T. Santos-Mendoza, T.S. Rodriguez-Reyna, J. Granados, and E.J. Yunis. 2012. Cellular and humoral mechanisms involved in the control of tuberculosis. Clinical and Developmental Immunology 2012: 1–18.CrossRef
5.
go back to reference Kumar, A., A. Farhana, L. Guidry, V. Saini, M. Hondalus, and A.J. Steyn. 2011. Redox homeostasis in mycobacteria: the key to tuberculosis control? Expert Reviews in Molecular Medicine e39: 1–25. Kumar, A., A. Farhana, L. Guidry, V. Saini, M. Hondalus, and A.J. Steyn. 2011. Redox homeostasis in mycobacteria: the key to tuberculosis control? Expert Reviews in Molecular Medicine e39: 1–25.
6.
go back to reference Segal, B.H., M.J. Grimm, A.N. Khan, W. Han, and T.S. Blackwell. 2012. Regulation of innate immunity by NADPH oxidase. Free Radical Biology and Medicine 53: 72–80.PubMedCentralPubMedCrossRef Segal, B.H., M.J. Grimm, A.N. Khan, W. Han, and T.S. Blackwell. 2012. Regulation of innate immunity by NADPH oxidase. Free Radical Biology and Medicine 53: 72–80.PubMedCentralPubMedCrossRef
7.
go back to reference Bafica, A., C.A. Scanga, C.G. Feng, C. Leifer, A. Cheever, and A. Sher. 2005. TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. Journal of Experimental Medicine 202: 1715–1724.PubMedCentralPubMedCrossRef Bafica, A., C.A. Scanga, C.G. Feng, C. Leifer, A. Cheever, and A. Sher. 2005. TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. Journal of Experimental Medicine 202: 1715–1724.PubMedCentralPubMedCrossRef
8.
go back to reference Chow, J.C., D.W. Young, D.T. Golenbock, W.J. Christ, and F. Gusovsky. 1999. Toll-like receptor-4 mediates lipopolysaccharide induced signal transduction. The Journal of Biological Chemistry 274: 10689–10692.PubMedCrossRef Chow, J.C., D.W. Young, D.T. Golenbock, W.J. Christ, and F. Gusovsky. 1999. Toll-like receptor-4 mediates lipopolysaccharide induced signal transduction. The Journal of Biological Chemistry 274: 10689–10692.PubMedCrossRef
9.
go back to reference Chen, Y.C., C.C. Hsiao, C.J. Chen, C.H. Chin, S.F. Liu, C.C. Wu, H.L. Eng, T.Y. Chao, C.C. Tsen, Y.H. Wang, and M.C. Lin. 2010. Toll-like receptor 2 gene polymorphisms, pulmonary tuberculosis, and natural killer cell counts. BMC Medical Genetics 11: 1–10. Chen, Y.C., C.C. Hsiao, C.J. Chen, C.H. Chin, S.F. Liu, C.C. Wu, H.L. Eng, T.Y. Chao, C.C. Tsen, Y.H. Wang, and M.C. Lin. 2010. Toll-like receptor 2 gene polymorphisms, pulmonary tuberculosis, and natural killer cell counts. BMC Medical Genetics 11: 1–10.
10.
go back to reference Kleinnijenhuis, J., M. Oosting, L.A.B. Joosten, M.G. Netea, and R. van Crevel. 2011. Innate immune recognition of Mycobacterium tuberculosis. Clinical and Developmental Immunology 2011: 1–12.CrossRef Kleinnijenhuis, J., M. Oosting, L.A.B. Joosten, M.G. Netea, and R. van Crevel. 2011. Innate immune recognition of Mycobacterium tuberculosis. Clinical and Developmental Immunology 2011: 1–12.CrossRef
11.
go back to reference Bloom, B.R., J. Flynn, K. McDonough, Y. Kress, and J. Chan. 1994. Experimental approaches to mechanisms of protection and pathogenesis in M. tuberculosis infection. Immunobiology 191: 526–536.PubMedCrossRef Bloom, B.R., J. Flynn, K. McDonough, Y. Kress, and J. Chan. 1994. Experimental approaches to mechanisms of protection and pathogenesis in M. tuberculosis infection. Immunobiology 191: 526–536.PubMedCrossRef
12.
go back to reference Kaufmann, S.H.E. 2001. How can immunology contribute to the control of tuberculosis? Nature Reviews Immunology 1: 20–30.PubMedCrossRef Kaufmann, S.H.E. 2001. How can immunology contribute to the control of tuberculosis? Nature Reviews Immunology 1: 20–30.PubMedCrossRef
13.
go back to reference Schaible, U.E., S. Sturgill-Koszycki, P.H. Schlesinger, and D.G. Russell. 1998. Cytokine activation leads to acidification and increases maturation of Mycobacterium avium-containing phagosomes in murine macrophages. Journal of Immunology 160: 1290–1296. Schaible, U.E., S. Sturgill-Koszycki, P.H. Schlesinger, and D.G. Russell. 1998. Cytokine activation leads to acidification and increases maturation of Mycobacterium avium-containing phagosomes in murine macrophages. Journal of Immunology 160: 1290–1296.
14.
go back to reference Underhill, D.M., A. Ozinsky, K.D. Smith, and A. Aderem. 1999. Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proceedings of the National Academy of Sciences of the United States of America 96: 14459–14463.PubMedCentralPubMedCrossRef Underhill, D.M., A. Ozinsky, K.D. Smith, and A. Aderem. 1999. Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proceedings of the National Academy of Sciences of the United States of America 96: 14459–14463.PubMedCentralPubMedCrossRef
15.
go back to reference Drennan, M.B., D. Nicolle, V.J. Quesniaux, M. Jacobs, N. Allie, J. Mpagi, C. Fremond, H. Wagner, C. Kirschning, and B. Ryffel. 2004. Toll-like receptor 2-deficient mice succumb to Mycobacterium tuberculosis infection. The American Journal of Pathology 164: 49–57.PubMedCentralPubMedCrossRef Drennan, M.B., D. Nicolle, V.J. Quesniaux, M. Jacobs, N. Allie, J. Mpagi, C. Fremond, H. Wagner, C. Kirschning, and B. Ryffel. 2004. Toll-like receptor 2-deficient mice succumb to Mycobacterium tuberculosis infection. The American Journal of Pathology 164: 49–57.PubMedCentralPubMedCrossRef
16.
go back to reference Reiling, N., C. Holscher, A. Fehrenbach, S. Kroger, C.J. Kirschning, S. Goyert, and S. Ehlers. 2002. Cutting edge: Toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis. The Journal of Immunology 169: 3480–3484.PubMedCrossRef Reiling, N., C. Holscher, A. Fehrenbach, S. Kroger, C.J. Kirschning, S. Goyert, and S. Ehlers. 2002. Cutting edge: Toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis. The Journal of Immunology 169: 3480–3484.PubMedCrossRef
17.
go back to reference Bulut, Y., K.S. Michelsen, L. Hayrapetian, Y. Naiki, R. Spallek, M. Singh, and M. Arditi. 2005. Mycobacterium tuberculosis heat shock proteins use diverse toll like receptor pathways to activate pro-inflammatory signals. Journal of Biological Chemistry 280: 20961–20967.PubMedCrossRef Bulut, Y., K.S. Michelsen, L. Hayrapetian, Y. Naiki, R. Spallek, M. Singh, and M. Arditi. 2005. Mycobacterium tuberculosis heat shock proteins use diverse toll like receptor pathways to activate pro-inflammatory signals. Journal of Biological Chemistry 280: 20961–20967.PubMedCrossRef
18.
go back to reference Abel, B., N. Thieblemont, V.J.F. Quesniaux, N. Brown, J. Mpagi, K. Miyake, F. Bihl, and B. Ryffel. 2002. Toll like receptor 4 expression is required to control chronic Mycobacterium tuberculosis infection in mice. Journal of Immunology 169: 3155–3162.CrossRef Abel, B., N. Thieblemont, V.J.F. Quesniaux, N. Brown, J. Mpagi, K. Miyake, F. Bihl, and B. Ryffel. 2002. Toll like receptor 4 expression is required to control chronic Mycobacterium tuberculosis infection in mice. Journal of Immunology 169: 3155–3162.CrossRef
19.
go back to reference Algood, H.M.S., J. Chan, and J.L. Flynn. 2003. Chemokines and tuberculosis. Cytokine and Growth Factor Reviews 14: 467–477.PubMedCrossRef Algood, H.M.S., J. Chan, and J.L. Flynn. 2003. Chemokines and tuberculosis. Cytokine and Growth Factor Reviews 14: 467–477.PubMedCrossRef
20.
go back to reference Court, N., V. Vasseur, R. Vacher, C. Frémond, Y. Shebzukhov, V.V. Yeremeev, I. Maillet, S.A. Nedospasov, S. Gordon, P.G. Fallon, H. Suzuki, B. Ryffel, and V.F. Quesniaux. 2010. Partial redundancy of the pattern recognition receptors, scavenger receptors, and C-type lectins for the long-term control of Mycobacterium tuberculosis infection. Journal of Immunology 184: 7057–7070.CrossRef Court, N., V. Vasseur, R. Vacher, C. Frémond, Y. Shebzukhov, V.V. Yeremeev, I. Maillet, S.A. Nedospasov, S. Gordon, P.G. Fallon, H. Suzuki, B. Ryffel, and V.F. Quesniaux. 2010. Partial redundancy of the pattern recognition receptors, scavenger receptors, and C-type lectins for the long-term control of Mycobacterium tuberculosis infection. Journal of Immunology 184: 7057–7070.CrossRef
21.
go back to reference Carvalho, N.B., F.S. Oliveira, F.V. Dur˜aes, L.A. de Almeida, M. Flórido, L.O. Prata, M.V. Caliari, R. Appelberg, and S.C. Oliveira. 2011. Toll-like receptor 9 is required for full host resistance to Mycobacterium avium infection but plays no role in induction of Th1 responses. Infection and Immunity 79: 1638–1646.PubMedCentralPubMedCrossRef Carvalho, N.B., F.S. Oliveira, F.V. Dur˜aes, L.A. de Almeida, M. Flórido, L.O. Prata, M.V. Caliari, R. Appelberg, and S.C. Oliveira. 2011. Toll-like receptor 9 is required for full host resistance to Mycobacterium avium infection but plays no role in induction of Th1 responses. Infection and Immunity 79: 1638–1646.PubMedCentralPubMedCrossRef
22.
go back to reference Fietta, A.M., M. Morosini, F. Meloni, A.M. Bianco, and E. Pozzi. 2002. Pharmacological analysis of signal transduction pathways required for Mycobacterium tuberculosis-induced IL-8 and MCP-1 production in human peripheral monocytes. Cytokine 19: 242–249.PubMedCrossRef Fietta, A.M., M. Morosini, F. Meloni, A.M. Bianco, and E. Pozzi. 2002. Pharmacological analysis of signal transduction pathways required for Mycobacterium tuberculosis-induced IL-8 and MCP-1 production in human peripheral monocytes. Cytokine 19: 242–249.PubMedCrossRef
23.
go back to reference Hasan, Z., J.M. Cliff, H.M. Dockrell, B. Jamil, M. Irfan, M. Ashraf, and R. Hussain. 2009. CCL2 responses to Mycobacterium tuberculosis are associated with disease severity in tuberculosis. PLoS One e8459: 1–10. Hasan, Z., J.M. Cliff, H.M. Dockrell, B. Jamil, M. Irfan, M. Ashraf, and R. Hussain. 2009. CCL2 responses to Mycobacterium tuberculosis are associated with disease severity in tuberculosis. PLoS One e8459: 1–10.
24.
go back to reference Siveke, J.T., and A. Hamann. 1998. T helper 1 and T helper 2 cells respond differentially to chemokines. Journal of Immunology 160: 550–554. Siveke, J.T., and A. Hamann. 1998. T helper 1 and T helper 2 cells respond differentially to chemokines. Journal of Immunology 160: 550–554.
25.
go back to reference Mendez, A., R. Hernandez-Pando, S. Contreras, D. Aguilar, and G.A.W. Rook. 2011. CCL2, CCL18 and sIL-4R in renal, meningeal and pulmonary TB; a 2 year study of patients and contacts. Tuberculosis 91: 140–145.PubMedCrossRef Mendez, A., R. Hernandez-Pando, S. Contreras, D. Aguilar, and G.A.W. Rook. 2011. CCL2, CCL18 and sIL-4R in renal, meningeal and pulmonary TB; a 2 year study of patients and contacts. Tuberculosis 91: 140–145.PubMedCrossRef
26.
go back to reference Hussain, R., A. Ansari, N. Talat, Z. Hasan, and G. Dawood. 2011. CCL2/MCP-1 genotype-phenotype relationship in latent tuberculosis infection. PLoS One 6: 1–7. Hussain, R., A. Ansari, N. Talat, Z. Hasan, and G. Dawood. 2011. CCL2/MCP-1 genotype-phenotype relationship in latent tuberculosis infection. PLoS One 6: 1–7.
27.
go back to reference Triebold, K.J., K. Pfeffer, C.J. Lowenstein, R. Schreiber, T.W. Mak, and B.R. Bloom. 1995. Tumor necrosis factor-α is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2: 561–572.PubMedCrossRef Triebold, K.J., K. Pfeffer, C.J. Lowenstein, R. Schreiber, T.W. Mak, and B.R. Bloom. 1995. Tumor necrosis factor-α is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2: 561–572.PubMedCrossRef
28.
go back to reference Roca, F.J., and L. Ramakrishnan. 2013. TNF dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species. Cell 153: 521–534.PubMedCentralPubMedCrossRef Roca, F.J., and L. Ramakrishnan. 2013. TNF dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species. Cell 153: 521–534.PubMedCentralPubMedCrossRef
29.
go back to reference Roach, D.R., A.G.D. Bean, C. Demangel, M.P. France, H. Briscoe, and W.J. Britton. 2002. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. Journal of Immunology 168: 4620–4627.CrossRef Roach, D.R., A.G.D. Bean, C. Demangel, M.P. France, H. Briscoe, and W.J. Britton. 2002. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. Journal of Immunology 168: 4620–4627.CrossRef
30.
go back to reference Pallen, M.J. 2002. The ESAT-6/WXG100 superfamily—and a new Gram-positive secretion system? Trends in Microbiology 10: 209–212.PubMedCrossRef Pallen, M.J. 2002. The ESAT-6/WXG100 superfamily—and a new Gram-positive secretion system? Trends in Microbiology 10: 209–212.PubMedCrossRef
31.
go back to reference Renshaw, P.S., P. Panagiotidou, A. Whelan, S.V. Gordon, R.G. Hewinson, R.A. Williamson, and M.D. Carr. 2002. Conclusive evidence that the major T-cell antigens of the Mycobacterium tuberculosis complex ESAT-6 and CFP-10 form a tight, 1:1 complex and characterization of the structural properties of ESAT-6, CFP-10, and the ESAT-6*CFP-10 complex. Implications for pathogenesis and virulence. Journal of Biological Chemistry 277: 21598–21603.PubMedCrossRef Renshaw, P.S., P. Panagiotidou, A. Whelan, S.V. Gordon, R.G. Hewinson, R.A. Williamson, and M.D. Carr. 2002. Conclusive evidence that the major T-cell antigens of the Mycobacterium tuberculosis complex ESAT-6 and CFP-10 form a tight, 1:1 complex and characterization of the structural properties of ESAT-6, CFP-10, and the ESAT-6*CFP-10 complex. Implications for pathogenesis and virulence. Journal of Biological Chemistry 277: 21598–21603.PubMedCrossRef
32.
go back to reference Guinn, K.M., M.J. Hickey, S.K. Mathur, K.L. Zakel, J.E. Grotzke, D.M. Lewinsohn, S. Smith, and D.R. Sherman. 2004. Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Molecular Microbiology 51: 359–370.PubMedCentralPubMedCrossRef Guinn, K.M., M.J. Hickey, S.K. Mathur, K.L. Zakel, J.E. Grotzke, D.M. Lewinsohn, S. Smith, and D.R. Sherman. 2004. Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Molecular Microbiology 51: 359–370.PubMedCentralPubMedCrossRef
33.
go back to reference Derrick, S.C., and S.L. Morris. 2007. The ESAT6 protein of Mycobacterium tuberculosis induces apoptosis of macrophages by activating caspase expression. Cellular Microbiology 9: 1547–1555.PubMedCrossRef Derrick, S.C., and S.L. Morris. 2007. The ESAT6 protein of Mycobacterium tuberculosis induces apoptosis of macrophages by activating caspase expression. Cellular Microbiology 9: 1547–1555.PubMedCrossRef
34.
go back to reference Hsu, T., S.M. Hingley-Wilson, B. Chen, M. Chen, A.Z. Dai, P.M. Morin, C.B. Marks, J. Padiyar, C. Goulding, M. Gingery, D. Eisenberg, R.G. Russell, S.C. Derrick, F.M. Collins, S.L. Morris, C.H. King, and W.R. Jacobs Jr. 2003. The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proceedings of the National Academy of Sciences 100: 12420–12425.CrossRef Hsu, T., S.M. Hingley-Wilson, B. Chen, M. Chen, A.Z. Dai, P.M. Morin, C.B. Marks, J. Padiyar, C. Goulding, M. Gingery, D. Eisenberg, R.G. Russell, S.C. Derrick, F.M. Collins, S.L. Morris, C.H. King, and W.R. Jacobs Jr. 2003. The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proceedings of the National Academy of Sciences 100: 12420–12425.CrossRef
35.
go back to reference Meher, A.K., N.C. Bal, K.V.R. Chary, and A. Arora. 2006. Mycobacterium tuberculosis H37Rv ESAT-6-CFP-10 complex formation confers thermodynamic and biochemical stability. The FEBS Journal 273: 1445–1462.PubMedCrossRef Meher, A.K., N.C. Bal, K.V.R. Chary, and A. Arora. 2006. Mycobacterium tuberculosis H37Rv ESAT-6-CFP-10 complex formation confers thermodynamic and biochemical stability. The FEBS Journal 273: 1445–1462.PubMedCrossRef
36.
go back to reference Brodin, P., L. Majlessi, L. Marsollier, M.I. de Jonge, D. Bottai, C. Demangel, J. Hinds, O. Neyrolles, P.D. Butcher, C. Leclerc, S.T. Cole, and R. Brosch. 2006. Dissection of ESAT-6 system 1 of Mycobacterium tuberculosis and impact on immunogenicity and virulence. Infection and Immunity 74: 88–98.PubMedCentralPubMedCrossRef Brodin, P., L. Majlessi, L. Marsollier, M.I. de Jonge, D. Bottai, C. Demangel, J. Hinds, O. Neyrolles, P.D. Butcher, C. Leclerc, S.T. Cole, and R. Brosch. 2006. Dissection of ESAT-6 system 1 of Mycobacterium tuberculosis and impact on immunogenicity and virulence. Infection and Immunity 74: 88–98.PubMedCentralPubMedCrossRef
37.
go back to reference Pang, X., B. Samten, G. Cao, X. Wang, A.R. Tvinnereim, X.L. Chen, and S.T. Howard. 2013. MprAB regulates the espA operon in Mycobacterium tuberculosis and modulates ESX-1 function and host cytokine response. Journal of Bacteriology 195: 66–75.PubMedCentralPubMedCrossRef Pang, X., B. Samten, G. Cao, X. Wang, A.R. Tvinnereim, X.L. Chen, and S.T. Howard. 2013. MprAB regulates the espA operon in Mycobacterium tuberculosis and modulates ESX-1 function and host cytokine response. Journal of Bacteriology 195: 66–75.PubMedCentralPubMedCrossRef
38.
go back to reference Chatterjee, S., V.P. Dwivedi, Y. Singh, I. Siddiqui, P. Sharma, L. Van Kaer, D. Chattopadhyay, and G. Das. 2011. Early secreted antigen ESAT-6 of Mycobacterium tuberculosis promotes protective T helper 17 cell responses in a toll-like receptor-2-dependent manner. PLoS Pathogens e1002378: 1–12. Chatterjee, S., V.P. Dwivedi, Y. Singh, I. Siddiqui, P. Sharma, L. Van Kaer, D. Chattopadhyay, and G. Das. 2011. Early secreted antigen ESAT-6 of Mycobacterium tuberculosis promotes protective T helper 17 cell responses in a toll-like receptor-2-dependent manner. PLoS Pathogens e1002378: 1–12.
39.
go back to reference Wang, X., P.F. Barnes, K.M. Dobos-Elder, J.C. Townsend, Y.T. Chung, H. Shams, S.E. Weis, and B. Samten. 2009. ESAT-6 inhibits production of IFN-gamma by Mycobacterium tuberculosis-responsive human T cells. Journal of Immunology 182: 3668–3677.CrossRef Wang, X., P.F. Barnes, K.M. Dobos-Elder, J.C. Townsend, Y.T. Chung, H. Shams, S.E. Weis, and B. Samten. 2009. ESAT-6 inhibits production of IFN-gamma by Mycobacterium tuberculosis-responsive human T cells. Journal of Immunology 182: 3668–3677.CrossRef
40.
go back to reference Zhang, L., H. Zhang, Y. Zhao, F. Mao, J. Wu, B. Bai, Z. Xu, Y. Jiang, and C. Shi. 2012. Effects of Mycobacterium tuberculosis ESAT-6/CFP-10 fusion protein on the autophagy function of mouse macrophages. DNA and Cell Biology 31: 171–179.PubMedCrossRef Zhang, L., H. Zhang, Y. Zhao, F. Mao, J. Wu, B. Bai, Z. Xu, Y. Jiang, and C. Shi. 2012. Effects of Mycobacterium tuberculosis ESAT-6/CFP-10 fusion protein on the autophagy function of mouse macrophages. DNA and Cell Biology 31: 171–179.PubMedCrossRef
41.
go back to reference Mishra, B.B., P. Moura-Alves, A. Sonawane, N. Hacohen, G. Griffiths, L.F. Moita, and E. Anes. 2010. Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome. Cellular Microbiology 12: 1046–1063.PubMedCrossRef Mishra, B.B., P. Moura-Alves, A. Sonawane, N. Hacohen, G. Griffiths, L.F. Moita, and E. Anes. 2010. Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome. Cellular Microbiology 12: 1046–1063.PubMedCrossRef
42.
go back to reference Pathak, S.K., S. Basu, K.K. Basu, A. Banerjee, S. Pathak, A. Bhattacharyya, T. Kaisho, M. Kundu, and J. Basu. 2007. Direct extracellular interaction between the early secreted antigen ESAT-6 of Mycobacterium tuberculosis and TLR2 inhibits TLR signaling in macrophages. Nature Immunology 8: 610–618.PubMedCrossRef Pathak, S.K., S. Basu, K.K. Basu, A. Banerjee, S. Pathak, A. Bhattacharyya, T. Kaisho, M. Kundu, and J. Basu. 2007. Direct extracellular interaction between the early secreted antigen ESAT-6 of Mycobacterium tuberculosis and TLR2 inhibits TLR signaling in macrophages. Nature Immunology 8: 610–618.PubMedCrossRef
43.
go back to reference Yin, Y., W. Liu, G. Ji, and Y. Dai. 2013. The essential role of p38 MAPK in mediating the interplay of oxLDL and IL-10 in regulating endothelial cell apoptosis. European Journal of Cell Biology 92: 150–159.PubMedCrossRef Yin, Y., W. Liu, G. Ji, and Y. Dai. 2013. The essential role of p38 MAPK in mediating the interplay of oxLDL and IL-10 in regulating endothelial cell apoptosis. European Journal of Cell Biology 92: 150–159.PubMedCrossRef
44.
go back to reference Brodin, P., I. Rosenkrands, P. Andersen, S.T. Cole, and R. Brosch. 2004. ESAT-6 proteins: protective antigens and virulence factors? Trends in Microbiology 12: 500–508.PubMedCrossRef Brodin, P., I. Rosenkrands, P. Andersen, S.T. Cole, and R. Brosch. 2004. ESAT-6 proteins: protective antigens and virulence factors? Trends in Microbiology 12: 500–508.PubMedCrossRef
45.
go back to reference Guinn, K.M., M.J. Hickey, S.K. Mathur, K.L. Zakel, J.E. Grotzke, D.M. Lewinsohn, S. Smith, and D.R. Sherman. 2004. Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Molecular Microbiology 51: 359–370.PubMedCentralPubMedCrossRef Guinn, K.M., M.J. Hickey, S.K. Mathur, K.L. Zakel, J.E. Grotzke, D.M. Lewinsohn, S. Smith, and D.R. Sherman. 2004. Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Molecular Microbiology 51: 359–370.PubMedCentralPubMedCrossRef
46.
go back to reference Song, C.H., J.S. Lee, S.H. Lee, K. Lim, H.J. Kim, J.K. Park, T.H. Paik, and E.K. Jo. 2003. Role of mitogen-activated protein kinase pathways in the production of tumor necrosis factor-alpha, interleukin-10, and monocyte chemotactic protein-1 by Mycobacterium tuberculosis H37Rv-infected human monocytes. Journal of Clinical Immunology 23: 194–201.PubMedCrossRef Song, C.H., J.S. Lee, S.H. Lee, K. Lim, H.J. Kim, J.K. Park, T.H. Paik, and E.K. Jo. 2003. Role of mitogen-activated protein kinase pathways in the production of tumor necrosis factor-alpha, interleukin-10, and monocyte chemotactic protein-1 by Mycobacterium tuberculosis H37Rv-infected human monocytes. Journal of Clinical Immunology 23: 194–201.PubMedCrossRef
47.
go back to reference Schorey, J.S., and A.M. Cooper. 2003. Macrophage signalling upon mycobacterial infection: the MAP kinases lead the way. Cellular Microbiology 5: 133–142.PubMedCrossRef Schorey, J.S., and A.M. Cooper. 2003. Macrophage signalling upon mycobacterial infection: the MAP kinases lead the way. Cellular Microbiology 5: 133–142.PubMedCrossRef
48.
go back to reference A, S.K., K. Bansal, S. Holla, S. Verma-Kumar, P. Sharma, and K.N. Balaji. 2012. ESAT-6 induced COX-2 expression involves coordinated interplay between PI3K and MAPK signaling. Molecular Immunology 49: 655–663.PubMedCrossRef A, S.K., K. Bansal, S. Holla, S. Verma-Kumar, P. Sharma, and K.N. Balaji. 2012. ESAT-6 induced COX-2 expression involves coordinated interplay between PI3K and MAPK signaling. Molecular Immunology 49: 655–663.PubMedCrossRef
49.
go back to reference Ganguly, N., P.H. Giang, S.K. Basu, F. Mir, I. Siddiqui, and P. Sharma. 2007. Mycobacterium tuberculosis 6-kDa early secreted antigenic target (ESAT-6) protein downregulates lipopolysaccharide induced c-myc expression by modulating the extracellular signal regulated kinases 1/2. BMC Immunology 8: 1–12.CrossRef Ganguly, N., P.H. Giang, S.K. Basu, F. Mir, I. Siddiqui, and P. Sharma. 2007. Mycobacterium tuberculosis 6-kDa early secreted antigenic target (ESAT-6) protein downregulates lipopolysaccharide induced c-myc expression by modulating the extracellular signal regulated kinases 1/2. BMC Immunology 8: 1–12.CrossRef
50.
go back to reference Karin, M., and Y. Ben-Neriah. 2000. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annual Review of Immunology 18: 621–663.PubMedCrossRef Karin, M., and Y. Ben-Neriah. 2000. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annual Review of Immunology 18: 621–663.PubMedCrossRef
51.
go back to reference Fang, F.C. 2004. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nature Reviews Microbiology 2: 820–832.PubMedCrossRef Fang, F.C. 2004. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nature Reviews Microbiology 2: 820–832.PubMedCrossRef
52.
go back to reference Li, Q., and J.F. Engelhardt. 2006. Interleukin-1beta induction of NF kappaB is partially regulated by H2O2-mediated activation of NF kappaB-inducing kinase. Journal of Biological Chemistry 281: 1495–1505.PubMedCrossRef Li, Q., and J.F. Engelhardt. 2006. Interleukin-1beta induction of NF kappaB is partially regulated by H2O2-mediated activation of NF kappaB-inducing kinase. Journal of Biological Chemistry 281: 1495–1505.PubMedCrossRef
53.
go back to reference Lu, Y., and L.M. Wahl. 2005. Oxidative stress augments the production of matrix metalloproteinase-1, cyclooxygenase-2 and prostaglandin E2 through enhancement of NF-kappa B activity in lipopolysaccharide-activated human primary monocytes. Journal of Immunology 175: 5423–5429.CrossRef Lu, Y., and L.M. Wahl. 2005. Oxidative stress augments the production of matrix metalloproteinase-1, cyclooxygenase-2 and prostaglandin E2 through enhancement of NF-kappa B activity in lipopolysaccharide-activated human primary monocytes. Journal of Immunology 175: 5423–5429.CrossRef
54.
go back to reference Segal, B.H., M.J. Grimm, A.N. Khan, W. Han, and T.S. Blackwell. 2012. Regulation of innate immunity by NADPH oxidase. Free Radical Biology and Medicine 53: 72–80.PubMedCentralPubMedCrossRef Segal, B.H., M.J. Grimm, A.N. Khan, W. Han, and T.S. Blackwell. 2012. Regulation of innate immunity by NADPH oxidase. Free Radical Biology and Medicine 53: 72–80.PubMedCentralPubMedCrossRef
55.
go back to reference Cave, A. 2009. Selective targeting of NADPH oxidase for cardiovascular protection. Current Opinion in Pharmacology 9: 208–213.PubMedCrossRef Cave, A. 2009. Selective targeting of NADPH oxidase for cardiovascular protection. Current Opinion in Pharmacology 9: 208–213.PubMedCrossRef
56.
go back to reference Brodin, P., I. Rosenkrands, P. Andersen, S.T. Cole, and R. Brosch. 2004. ESAT-6 proteins: protective antigens and virulence factors? Trends in Microbiology 12: 500–508.PubMedCrossRef Brodin, P., I. Rosenkrands, P. Andersen, S.T. Cole, and R. Brosch. 2004. ESAT-6 proteins: protective antigens and virulence factors? Trends in Microbiology 12: 500–508.PubMedCrossRef
57.
go back to reference Blumenthal, A., S. Ehlers, M. Ernst, H.D. Flad, and N. Reiling. 2002. Control of mycobacterial replication in human macrophages: roles of extracellular signal-regulated kinases 1 and 2 and p38 mitogen-activated protein kinase pathways. Infection and Immunity 70: 4961–4967.PubMedCentralPubMedCrossRef Blumenthal, A., S. Ehlers, M. Ernst, H.D. Flad, and N. Reiling. 2002. Control of mycobacterial replication in human macrophages: roles of extracellular signal-regulated kinases 1 and 2 and p38 mitogen-activated protein kinase pathways. Infection and Immunity 70: 4961–4967.PubMedCentralPubMedCrossRef
58.
go back to reference Green, J.A., P.T. Elkington, C.J. Pennington, F. Roncaroli, S. Dholakia, R.C. Moores, A. Bullen, J.C. Porter, D. Agranoff, D.R. Edwards, and J.S. Friedland. 2010. Mycobacterium tuberculosis upregulates microglial matrix metalloproteinase-1 and -3 expression and secretion via NF-kappaB- and activator protein-1-dependent monocyte networks. Journal of Immunology 184: 6492–6503.CrossRef Green, J.A., P.T. Elkington, C.J. Pennington, F. Roncaroli, S. Dholakia, R.C. Moores, A. Bullen, J.C. Porter, D. Agranoff, D.R. Edwards, and J.S. Friedland. 2010. Mycobacterium tuberculosis upregulates microglial matrix metalloproteinase-1 and -3 expression and secretion via NF-kappaB- and activator protein-1-dependent monocyte networks. Journal of Immunology 184: 6492–6503.CrossRef
59.
go back to reference Feng, Y., X. Yang, Z. Liu, Y. Liu, B. Su, Y. Ding, L. Qin, H. Yang, R. Zheng, and Z. Hu. 2008. Continuous treatment with recombinant Mycobacterium tuberculosis CFP-10-ESAT-6 protein activated human monocyte while deactivated LPS-stimulated macrophage. Biochemical and Biophysical Research Communications 365: 534–540.PubMedCrossRef Feng, Y., X. Yang, Z. Liu, Y. Liu, B. Su, Y. Ding, L. Qin, H. Yang, R. Zheng, and Z. Hu. 2008. Continuous treatment with recombinant Mycobacterium tuberculosis CFP-10-ESAT-6 protein activated human monocyte while deactivated LPS-stimulated macrophage. Biochemical and Biophysical Research Communications 365: 534–540.PubMedCrossRef
60.
go back to reference Bishai Jr., W.R., S. Chatterjee, V.P. Dwivedi, Y. Singh, I. Siddiqui, P. Sharma, L. Van Kaer, D. Chattopadhyay, and G. Das. 2011. Early secreted antigen ESAT-6 of Mycobacterium tuberculosis promotes protective T helper 17 cell responses in a toll-like receptor-2-dependent manner. PLoS Pathogens e1002378: 1–12. Bishai Jr., W.R., S. Chatterjee, V.P. Dwivedi, Y. Singh, I. Siddiqui, P. Sharma, L. Van Kaer, D. Chattopadhyay, and G. Das. 2011. Early secreted antigen ESAT-6 of Mycobacterium tuberculosis promotes protective T helper 17 cell responses in a toll-like receptor-2-dependent manner. PLoS Pathogens e1002378: 1–12.
61.
go back to reference Yang, C.S., D.M. Shin, H.M. Lee, J.W. Son, S.J. Lee, S. Akira, M.A. Gougerot-Pocidalo, J. El-Benna, H. Ichijo, and E.K. Jo. 2008. ASK1-p38 MAPK-p47phox activation is essential for inflammatory responses during tuberculosis via TLR2-ROS signalling. Cellular Microbiology 10: 741–754.PubMedCrossRef Yang, C.S., D.M. Shin, H.M. Lee, J.W. Son, S.J. Lee, S. Akira, M.A. Gougerot-Pocidalo, J. El-Benna, H. Ichijo, and E.K. Jo. 2008. ASK1-p38 MAPK-p47phox activation is essential for inflammatory responses during tuberculosis via TLR2-ROS signalling. Cellular Microbiology 10: 741–754.PubMedCrossRef
62.
go back to reference Martindale, J.L., and N.J. Holbrook. 2002. Cellular response to oxidative stress: signaling for suicide and survival. Journal of Cellular Physiology 192: 1–15.PubMedCrossRef Martindale, J.L., and N.J. Holbrook. 2002. Cellular response to oxidative stress: signaling for suicide and survival. Journal of Cellular Physiology 192: 1–15.PubMedCrossRef
63.
go back to reference Mossman, B.T., K.M. Lounsbury, and S.P. Reddy. 2006. Oxidants and signaling by mitogen-activated protein kinases in lung epithelium. American Journal of Respiratory Cell and Molecular Biology 34: 666–669.PubMedCentralPubMedCrossRef Mossman, B.T., K.M. Lounsbury, and S.P. Reddy. 2006. Oxidants and signaling by mitogen-activated protein kinases in lung epithelium. American Journal of Respiratory Cell and Molecular Biology 34: 666–669.PubMedCentralPubMedCrossRef
64.
go back to reference Thannickal, V.J., and B.L. Fanburg. 2000. Reactive oxygen species in cell signaling. American Journal of Physiology - Lung Cellular and Molecular Physiology 279: L1005–L1028.PubMed Thannickal, V.J., and B.L. Fanburg. 2000. Reactive oxygen species in cell signaling. American Journal of Physiology - Lung Cellular and Molecular Physiology 279: L1005–L1028.PubMed
65.
go back to reference Leto, T.L., S. Morand, D. Hurt, and T. Ueyama. 2009. Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxidants and Redox Signaling 11: 2607–2619.PubMedCentralPubMedCrossRef Leto, T.L., S. Morand, D. Hurt, and T. Ueyama. 2009. Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxidants and Redox Signaling 11: 2607–2619.PubMedCentralPubMedCrossRef
66.
go back to reference Yang, C.S., D.M. Shin, K.H. Kim, Z.W. Lee, C.H. Lee, S.G. Park, Y.S. Bae, and E.K. Jo. 2009. NADPH oxidase 2 interaction with TLR2 is required for efficient innate immune responses to mycobacteria via cathelicidin expression. Journal of Immunology 182: 3696–3705.CrossRef Yang, C.S., D.M. Shin, K.H. Kim, Z.W. Lee, C.H. Lee, S.G. Park, Y.S. Bae, and E.K. Jo. 2009. NADPH oxidase 2 interaction with TLR2 is required for efficient innate immune responses to mycobacteria via cathelicidin expression. Journal of Immunology 182: 3696–3705.CrossRef
Metadata
Title
The Involvement of NADPH Oxidase-Mediated ROS in Cytokine Secretion from Macrophages Induced by Mycobacterium tuberculosis ESAT-6
Authors
Weiwei Liu
Yuan Peng
Yanlin Yin
Zhihui Zhou
Wanding Zhou
Yalei Dai
Publication date
01-06-2014
Publisher
Springer US
Published in
Inflammation / Issue 3/2014
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-013-9808-7

Other articles of this Issue 3/2014

Inflammation 3/2014 Go to the issue