Skip to main content
Top
Published in: Inflammation 3/2014

01-06-2014

Angiotensin II-Derived Reactive Oxygen Species Promote Angiogenesis in Human Late Endothelial Progenitor Cells Through Heme Oxygenase-1 via ERK1/2 and AKT/PI3K Pathways

Authors: Jingting Mai, Qiong Qiu, Yong Qing Lin, Nian Sang Luo, Hai Feng Zhang, Zhu Zhi Wen, Jing Feng Wang, Chen YangXin

Published in: Inflammation | Issue 3/2014

Login to get access

Abstract

Angiotensin II (Ang II), the main component of renin-angiotensin system, could mediate pathogenic angiogenesis in cardiovascular disorders. Late endothelial progenitor cells (EPCs) possess potent self-renewal and angiogenic potency superior to early EPCs, but few study focused on the cross-talk between Ang II and late EPCs. We observed that Ang II could increase reactive oxygen species (ROS) and promote capillary formation in late EPCs. Ang II-derived ROS could also upregulate heme oxygenase-1 (HO-1) expression, and treating late EPCs with HO-1 small interfering RNA or heme oxygenase inhibitor (HO inhibitor) could inhibit Ang II-induced tube formation and increase ROS level and apoptosis rate. In addition, PD98059 and LY294002 pretreatment attenuated Ang II-induced HO-1 expression. Accordingly, Ang II-derived ROS could promote angiogenesis in late EPCs by inducing HO-1 expression via ERK1/2 and AKT/PI3K pathways, and we believe HO-1 might be a promising intervention target in EPCs due to its potent proangiogenic, antioxidant, and antiapoptosis potentials.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ferrario, C.M., and W.B. Strawn. 2006. Role of the renin-angiotensin-aldosterone system and proinflammatory mediators in cardiovascular disease. American Journal of Cardiology 98: 121–128.PubMedCrossRef Ferrario, C.M., and W.B. Strawn. 2006. Role of the renin-angiotensin-aldosterone system and proinflammatory mediators in cardiovascular disease. American Journal of Cardiology 98: 121–128.PubMedCrossRef
2.
go back to reference Nicholls, M.G., A.M. Richards, and M. Agarwal. 1998. The importance of the renin-angiotensin system in cardiovascular disease. Journal of Human Hypertension 12: 295–299.PubMedCrossRef Nicholls, M.G., A.M. Richards, and M. Agarwal. 1998. The importance of the renin-angiotensin system in cardiovascular disease. Journal of Human Hypertension 12: 295–299.PubMedCrossRef
3.
go back to reference Egami, K., T. Murohara, T. Shimada, K. Sasaki, S. Shintani, T. Sugaya, M. Ishii, T. Akagi, H. Ikeda, T. Matsuishi, and T. Imaizumi. 2003. Role of host angiotensin II type 1 receptor in tumor angiogenesis and growth. Journal of Clinical Investigation 112: 67–75.PubMedCentralPubMedCrossRef Egami, K., T. Murohara, T. Shimada, K. Sasaki, S. Shintani, T. Sugaya, M. Ishii, T. Akagi, H. Ikeda, T. Matsuishi, and T. Imaizumi. 2003. Role of host angiotensin II type 1 receptor in tumor angiogenesis and growth. Journal of Clinical Investigation 112: 67–75.PubMedCentralPubMedCrossRef
4.
go back to reference Suganuma, T., K. Ino, K. Shibata, H. Kajiyama, T. Nagasaka, S. Mizutani, and F. Kikkawa. 2005. Functional expression of the angiotensin II type 1 receptor in human ovarian carcinoma cells and its blockade therapy resulting in suppression of tumor invasion, angiogenesis, and peritoneal dissemination. Clinical Cancer Research 11: 2686–2694.PubMedCrossRef Suganuma, T., K. Ino, K. Shibata, H. Kajiyama, T. Nagasaka, S. Mizutani, and F. Kikkawa. 2005. Functional expression of the angiotensin II type 1 receptor in human ovarian carcinoma cells and its blockade therapy resulting in suppression of tumor invasion, angiogenesis, and peritoneal dissemination. Clinical Cancer Research 11: 2686–2694.PubMedCrossRef
5.
go back to reference Heffelfinger, S.C. 2007. The renin angiotensin system in the regulation of angiogenesis. Current Pharmaceutical Design 13: 1215–1229.PubMedCrossRef Heffelfinger, S.C. 2007. The renin angiotensin system in the regulation of angiogenesis. Current Pharmaceutical Design 13: 1215–1229.PubMedCrossRef
6.
go back to reference Otani, A., H. Takagi, H. Oh, S. Koyama, and Y. Honda. 2001. Angiotensin II induces expression of the Tie2 receptor ligand, angiopoietin-2, in bovine retinal endothelial cells. Diabetes 50: 867–875.PubMedCrossRef Otani, A., H. Takagi, H. Oh, S. Koyama, and Y. Honda. 2001. Angiotensin II induces expression of the Tie2 receptor ligand, angiopoietin-2, in bovine retinal endothelial cells. Diabetes 50: 867–875.PubMedCrossRef
7.
go back to reference Sasaki, K., T. Murohara, H. Ikeda, T. Sugaya, T. Shimada, S. Shintani, and T. Imaizumi. 2002. Evidence for the importance of angiotensin II type 1 receptor in ischemia-induced angiogenesis. Journal of Clinical Investigation 109: 603–611.PubMedCentralPubMedCrossRef Sasaki, K., T. Murohara, H. Ikeda, T. Sugaya, T. Shimada, S. Shintani, and T. Imaizumi. 2002. Evidence for the importance of angiotensin II type 1 receptor in ischemia-induced angiogenesis. Journal of Clinical Investigation 109: 603–611.PubMedCentralPubMedCrossRef
8.
go back to reference De Giusti, V.C., C.D. Garciarena, and E.A. Aiello. 2009. Role of reactive oxygen species (ROS) in angiotensin II-induced stimulation of the cardiac Na+/HCO3- cotransport. Journal of Molecular and Cellular Cardiology 47: 716–722.PubMedCrossRef De Giusti, V.C., C.D. Garciarena, and E.A. Aiello. 2009. Role of reactive oxygen species (ROS) in angiotensin II-induced stimulation of the cardiac Na+/HCO3- cotransport. Journal of Molecular and Cellular Cardiology 47: 716–722.PubMedCrossRef
9.
go back to reference Touyz, R.M. 2004. Reactive oxygen species and angiotensin II signaling in vascular cells—implications in cardiovascular disease. Brazilian Journal of Medical and Biological Research 37: 1263–1273.PubMedCrossRef Touyz, R.M. 2004. Reactive oxygen species and angiotensin II signaling in vascular cells—implications in cardiovascular disease. Brazilian Journal of Medical and Biological Research 37: 1263–1273.PubMedCrossRef
10.
go back to reference Feliers, D., Y. Gorin, G. Ghosh-Choudhury, H.E. Abboud, and B.S. Kasinath. 2006. Angiotensin II stimulation of VEGF mRNA translation requires production of reactive oxygen species. American Journal of Physiology. Renal Physiology 290: F927–F936.PubMedCrossRef Feliers, D., Y. Gorin, G. Ghosh-Choudhury, H.E. Abboud, and B.S. Kasinath. 2006. Angiotensin II stimulation of VEGF mRNA translation requires production of reactive oxygen species. American Journal of Physiology. Renal Physiology 290: F927–F936.PubMedCrossRef
11.
go back to reference Uemura, H., H. Ishiguro, Y. Ishiguro, K. Hoshino, S. Takahashi, and Y. Kubota. 2008. Angiotensin II induces oxidative stress in prostate cancer. Molecular Cancer Research 6: 250–258.PubMedCrossRef Uemura, H., H. Ishiguro, Y. Ishiguro, K. Hoshino, S. Takahashi, and Y. Kubota. 2008. Angiotensin II induces oxidative stress in prostate cancer. Molecular Cancer Research 6: 250–258.PubMedCrossRef
12.
go back to reference Pelliccia, F., C. Cianfrocca, G. Rosano, G. Mercuro, G. Speciale, and V. Pasceri. 2010. Role of endothelial progenitor cells in restenosis and progression of coronary atherosclerosis after percutaneous coronary intervention: a prospective study. JACC. Cardiovascular Interventions 3: 78–86.PubMedCrossRef Pelliccia, F., C. Cianfrocca, G. Rosano, G. Mercuro, G. Speciale, and V. Pasceri. 2010. Role of endothelial progenitor cells in restenosis and progression of coronary atherosclerosis after percutaneous coronary intervention: a prospective study. JACC. Cardiovascular Interventions 3: 78–86.PubMedCrossRef
13.
go back to reference Hirschi, K.K., D.A. Ingram, and M.C. Yoder. 2008. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arteriosclerosis, Thrombosis, and Vascular Biology 28: 1584–1595.PubMedCrossRef Hirschi, K.K., D.A. Ingram, and M.C. Yoder. 2008. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arteriosclerosis, Thrombosis, and Vascular Biology 28: 1584–1595.PubMedCrossRef
14.
go back to reference Ribatti, D. 2004. The involvement of endothelial progenitor cells in tumor angiogenesis. Journal of Cellular and Molecular Medicine 8: 294–300.PubMedCrossRef Ribatti, D. 2004. The involvement of endothelial progenitor cells in tumor angiogenesis. Journal of Cellular and Molecular Medicine 8: 294–300.PubMedCrossRef
15.
go back to reference Gao, D., D.J. Nolan, A.S. Mellick, K. Bambino, K. McDonnell, and V. Mittal. 2008. Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 319: 195–198.PubMedCrossRef Gao, D., D.J. Nolan, A.S. Mellick, K. Bambino, K. McDonnell, and V. Mittal. 2008. Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 319: 195–198.PubMedCrossRef
16.
go back to reference Rehman, J., J. Li, C.M. Orschell, and K.L. March. 2003. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107: 1164–1169.PubMedCrossRef Rehman, J., J. Li, C.M. Orschell, and K.L. March. 2003. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107: 1164–1169.PubMedCrossRef
17.
go back to reference Hur, J., C.H. Yoon, H.S. Kim, J.H. Choi, H.J. Kang, K.K. Hwang, B.H. Oh, M.M. Lee, and Y.B. Park. 2004. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology 24: 288–293.PubMedCrossRef Hur, J., C.H. Yoon, H.S. Kim, J.H. Choi, H.J. Kang, K.K. Hwang, B.H. Oh, M.M. Lee, and Y.B. Park. 2004. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology 24: 288–293.PubMedCrossRef
18.
go back to reference Endtmann, C., T. Ebrahimian, T. Czech, O. Arfa, U. Laufs, M. Fritz, K. Wassmann, N. Werner, V. Petoumenos, G. Nickenig, and S. Wassmann. 2011. Angiotensin II impairs endothelial progenitor cell number and function in vitro and in vivo: implications for vascular regeneration. Hypertension 58: 394–403.PubMedCrossRef Endtmann, C., T. Ebrahimian, T. Czech, O. Arfa, U. Laufs, M. Fritz, K. Wassmann, N. Werner, V. Petoumenos, G. Nickenig, and S. Wassmann. 2011. Angiotensin II impairs endothelial progenitor cell number and function in vitro and in vivo: implications for vascular regeneration. Hypertension 58: 394–403.PubMedCrossRef
19.
go back to reference Imanishi, T., T. Hano, and I. Nishio. 2004. Angiotensin II potentiates vascular endothelial growth factor-induced proliferation and network formation of endothelial progenitor cells. Hypertension Research 27: 101–108.PubMedCrossRef Imanishi, T., T. Hano, and I. Nishio. 2004. Angiotensin II potentiates vascular endothelial growth factor-induced proliferation and network formation of endothelial progenitor cells. Hypertension Research 27: 101–108.PubMedCrossRef
20.
go back to reference Sanada, F., Y. Taniyama, J. Azuma, K. Iekushi, N. Dosaka, T. Yokoi, N. Koibuchi, H. Kusunoki, Y. Aizawa, and R. Morishita. 2009. Hepatocyte growth factor, but not vascular endothelial growth factor, attenuates angiotensin II-induced endothelial progenitor cell senescence. Hypertension 53: 77–82.PubMedCrossRef Sanada, F., Y. Taniyama, J. Azuma, K. Iekushi, N. Dosaka, T. Yokoi, N. Koibuchi, H. Kusunoki, Y. Aizawa, and R. Morishita. 2009. Hepatocyte growth factor, but not vascular endothelial growth factor, attenuates angiotensin II-induced endothelial progenitor cell senescence. Hypertension 53: 77–82.PubMedCrossRef
21.
go back to reference Roks, A.J., and I.I. Angiotensin. 2011. Deteriorates endothelial progenitor cells: good intentions with bad consequences. Hypertension 58: 356–358.PubMedCrossRef Roks, A.J., and I.I. Angiotensin. 2011. Deteriorates endothelial progenitor cells: good intentions with bad consequences. Hypertension 58: 356–358.PubMedCrossRef
22.
go back to reference Yin, T., X. Ma, L. Zhao, K. Cheng, and H. Wang. 2008. Angiotensin II promotes NO production, inhibits apoptosis and enhances adhesion potential of bone marrow-derived endothelial progenitor cells. Cell Research 18: 792–799.PubMedCrossRef Yin, T., X. Ma, L. Zhao, K. Cheng, and H. Wang. 2008. Angiotensin II promotes NO production, inhibits apoptosis and enhances adhesion potential of bone marrow-derived endothelial progenitor cells. Cell Research 18: 792–799.PubMedCrossRef
23.
go back to reference Aizawa, T., N. Ishizaka, J. Taguchi, R. Nagai, I. Mori, S.S. Tang, J.R. Ingelfinger, and M. Ohno. 2000. Heme oxygenase-1 is upregulated in the kidney of angiotensin II-induced hypertensive rats: possible role in renoprotection. Hypertension 35: 800–806.PubMedCrossRef Aizawa, T., N. Ishizaka, J. Taguchi, R. Nagai, I. Mori, S.S. Tang, J.R. Ingelfinger, and M. Ohno. 2000. Heme oxygenase-1 is upregulated in the kidney of angiotensin II-induced hypertensive rats: possible role in renoprotection. Hypertension 35: 800–806.PubMedCrossRef
24.
go back to reference Dulak, J., J. Deshane, A. Jozkowicz, and A. Agarwal. 2008. Heme oxygenase-1 and carbon monoxide in vascular pathobiology: focus on angiogenesis. Circulation 117: 231–241.PubMedCrossRef Dulak, J., J. Deshane, A. Jozkowicz, and A. Agarwal. 2008. Heme oxygenase-1 and carbon monoxide in vascular pathobiology: focus on angiogenesis. Circulation 117: 231–241.PubMedCrossRef
25.
go back to reference Sunamura, M., D.G. Duda, M.H. Ghattas, L. Lozonschi, F. Motoi, J. Yamauchi, S. Matsuno, S. Shibahara, and N.G. Abraham. 2003. Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer. Angiogenesis 6: 15–24.PubMedCrossRef Sunamura, M., D.G. Duda, M.H. Ghattas, L. Lozonschi, F. Motoi, J. Yamauchi, S. Matsuno, S. Shibahara, and N.G. Abraham. 2003. Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer. Angiogenesis 6: 15–24.PubMedCrossRef
26.
go back to reference Deshane, J., S. Chen, S. Caballero, A. Grochot-Przeczek, H. Was, C.S. Li, R. Lach, T.D. Hock, B. Chen, N. Hill-Kapturczak, G.P. Siegal, J. Dulak, A. Jozkowicz, M.B. Grant, and A. Agarwal. 2007. Stromal cell-derived factor 1 promotes angiogenesis via a heme oxygenase 1-dependent mechanism. Journal of Experimental Medicine 204: 605–618.PubMedCentralPubMedCrossRef Deshane, J., S. Chen, S. Caballero, A. Grochot-Przeczek, H. Was, C.S. Li, R. Lach, T.D. Hock, B. Chen, N. Hill-Kapturczak, G.P. Siegal, J. Dulak, A. Jozkowicz, M.B. Grant, and A. Agarwal. 2007. Stromal cell-derived factor 1 promotes angiogenesis via a heme oxygenase 1-dependent mechanism. Journal of Experimental Medicine 204: 605–618.PubMedCentralPubMedCrossRef
27.
go back to reference Berberat, P.O., Z. Dambrauskas, A. Gulbinas, T. Giese, N. Giese, B. Kunzli, F. Autschbach, S. Meuer, M.W. Buchler, and H. Friess. 2005. Inhibition of heme oxygenase-1 increases responsiveness of pancreatic cancer cells to anticancer treatment. Clinical Cancer Research 11: 3790–3798.PubMedCrossRef Berberat, P.O., Z. Dambrauskas, A. Gulbinas, T. Giese, N. Giese, B. Kunzli, F. Autschbach, S. Meuer, M.W. Buchler, and H. Friess. 2005. Inhibition of heme oxygenase-1 increases responsiveness of pancreatic cancer cells to anticancer treatment. Clinical Cancer Research 11: 3790–3798.PubMedCrossRef
28.
go back to reference Hanna, I.R., Y. Taniyama, K. Szocs, P. Rocic, and K.K. Griendling. 2002. NAD(P)H oxidase-derived reactive oxygen species as mediators of angiotensin II signaling. Antioxidants and Redox Signaling 4: 899–914.PubMedCrossRef Hanna, I.R., Y. Taniyama, K. Szocs, P. Rocic, and K.K. Griendling. 2002. NAD(P)H oxidase-derived reactive oxygen species as mediators of angiotensin II signaling. Antioxidants and Redox Signaling 4: 899–914.PubMedCrossRef
29.
go back to reference Imanishi, T., T. Hano, and I. Nishio. 2005. Angiotensin II accelerates endothelial progenitor cell senescence through induction of oxidative stress. Journal of Hypertension 23: 97–104.PubMedCrossRef Imanishi, T., T. Hano, and I. Nishio. 2005. Angiotensin II accelerates endothelial progenitor cell senescence through induction of oxidative stress. Journal of Hypertension 23: 97–104.PubMedCrossRef
30.
go back to reference Dandapat, A., C. Hu, L. Sun, and J.L. Mehta. 2007. Small concentrations of oxLDL induce capillary tube formation from endothelial cells via LOX-1-dependent redox-sensitive pathway. Arteriosclerosis, Thrombosis, and Vascular Biology 27: 2435–2442.PubMedCrossRef Dandapat, A., C. Hu, L. Sun, and J.L. Mehta. 2007. Small concentrations of oxLDL induce capillary tube formation from endothelial cells via LOX-1-dependent redox-sensitive pathway. Arteriosclerosis, Thrombosis, and Vascular Biology 27: 2435–2442.PubMedCrossRef
31.
go back to reference Ushio-Fukai, M. 2006. Redox signaling in angiogenesis: role of NADPH oxidase. Cardiovascular Research 71: 226–235.PubMedCrossRef Ushio-Fukai, M. 2006. Redox signaling in angiogenesis: role of NADPH oxidase. Cardiovascular Research 71: 226–235.PubMedCrossRef
32.
33.
go back to reference Wu, B.J., R.G. Midwinter, C. Cassano, K. Beck, Y. Wang, D. Changsiri, J.R. Gamble, and R. Stocker. 2009. Heme oxygenase-1 increases endothelial progenitor cells. Arteriosclerosis, Thrombosis, and Vascular Biology 29: 1537–1542.PubMedCrossRef Wu, B.J., R.G. Midwinter, C. Cassano, K. Beck, Y. Wang, D. Changsiri, J.R. Gamble, and R. Stocker. 2009. Heme oxygenase-1 increases endothelial progenitor cells. Arteriosclerosis, Thrombosis, and Vascular Biology 29: 1537–1542.PubMedCrossRef
34.
go back to reference Lin, H.H., Y.H. Chen, S.F. Yet, and L.Y. Chau. 2009. After vascular injury, heme oxygenase-1/carbon monoxide enhances re-endothelialization via promoting mobilization of circulating endothelial progenitor cells. Journal of Thrombosis and Haemostasis 7: 1401–1408.PubMedCrossRef Lin, H.H., Y.H. Chen, S.F. Yet, and L.Y. Chau. 2009. After vascular injury, heme oxygenase-1/carbon monoxide enhances re-endothelialization via promoting mobilization of circulating endothelial progenitor cells. Journal of Thrombosis and Haemostasis 7: 1401–1408.PubMedCrossRef
35.
go back to reference Hur, J., C.H. Yoon, C.S. Lee, T.Y. Kim, I.Y. Oh, K.W. Park, J.H. Kim, H.S. Lee, H.J. Kang, I.H. Chae, B.H. Oh, Y.B. Park, and H.S. Kim. 2007. Akt is a key modulator of endothelial progenitor cell trafficking in ischemic muscle. Stem Cells 25: 1769–1778.PubMedCrossRef Hur, J., C.H. Yoon, C.S. Lee, T.Y. Kim, I.Y. Oh, K.W. Park, J.H. Kim, H.S. Lee, H.J. Kang, I.H. Chae, B.H. Oh, Y.B. Park, and H.S. Kim. 2007. Akt is a key modulator of endothelial progenitor cell trafficking in ischemic muscle. Stem Cells 25: 1769–1778.PubMedCrossRef
36.
go back to reference Friedrich, E.B., C. Werner, K. Walenta, M. Bohm, and B. Scheller. 2009. Role of extracellular signal-regulated kinase for endothelial progenitor cell dysfunction in coronary artery disease. Basic Research in Cardiology 104: 613–620.PubMedCrossRef Friedrich, E.B., C. Werner, K. Walenta, M. Bohm, and B. Scheller. 2009. Role of extracellular signal-regulated kinase for endothelial progenitor cell dysfunction in coronary artery disease. Basic Research in Cardiology 104: 613–620.PubMedCrossRef
37.
go back to reference Wang, J.Y., Y.T. Lee, P.F. Chang, and L.Y. Chau. 2009. Hemin promotes proliferation and differentiation of endothelial progenitor cells via activation of AKT and ERK. Journal of Cellular Physiology 219: 617–625.PubMedCrossRef Wang, J.Y., Y.T. Lee, P.F. Chang, and L.Y. Chau. 2009. Hemin promotes proliferation and differentiation of endothelial progenitor cells via activation of AKT and ERK. Journal of Cellular Physiology 219: 617–625.PubMedCrossRef
38.
go back to reference Khurana, R., M. Simons, J.F. Martin, and I.C. Zachary. 2005. Role of angiogenesis in cardiovascular disease: a critical appraisal. Circulation 112: 1813–1824.PubMedCrossRef Khurana, R., M. Simons, J.F. Martin, and I.C. Zachary. 2005. Role of angiogenesis in cardiovascular disease: a critical appraisal. Circulation 112: 1813–1824.PubMedCrossRef
39.
go back to reference Virmani, R., F.D. Kolodgie, A.P. Burke, A.V. Finn, H.K. Gold, T.N. Tulenko, S.P. Wrenn, and J. Narula. 2005. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arteriosclerosis, Thrombosis, and Vascular Biology 25: 2054–2061.PubMedCrossRef Virmani, R., F.D. Kolodgie, A.P. Burke, A.V. Finn, H.K. Gold, T.N. Tulenko, S.P. Wrenn, and J. Narula. 2005. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arteriosclerosis, Thrombosis, and Vascular Biology 25: 2054–2061.PubMedCrossRef
Metadata
Title
Angiotensin II-Derived Reactive Oxygen Species Promote Angiogenesis in Human Late Endothelial Progenitor Cells Through Heme Oxygenase-1 via ERK1/2 and AKT/PI3K Pathways
Authors
Jingting Mai
Qiong Qiu
Yong Qing Lin
Nian Sang Luo
Hai Feng Zhang
Zhu Zhi Wen
Jing Feng Wang
Chen YangXin
Publication date
01-06-2014
Publisher
Springer US
Published in
Inflammation / Issue 3/2014
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-013-9806-9

Other articles of this Issue 3/2014

Inflammation 3/2014 Go to the issue