Skip to main content
Top
Published in: Inflammation 2/2014

01-04-2014

An Alternative Pathway Through the Fenton Reaction for the Formation of Advanced Oxidation Protein Products, a New Class of Inflammatory Mediators

Authors: Guilherme Vargas Bochi, Vanessa Dorneles Torbitz, Lara Peruzzolo Cargnin, José Antonio Mainardi de Carvalho, Patrícia Gomes, Rafael Noal Moresco

Published in: Inflammation | Issue 2/2014

Login to get access

Abstract

The accumulation of advanced oxidation protein products (AOPPs) has been linked to several pathological conditions, and their levels are formed during oxidative stress as a result of reactions between plasma proteins and chlorinated oxidants produced by myeloperoxidase (MPO). However, it was suggested that the generation of this mediator of inflammation may also occur via an MPO-independent pathway. The aim of this study was to induce the formation of AOPPs in vitro through Fenton reaction and to investigate whether this generation could be counteracted by N-acetylcysteine (NAC) and fructose-1,6-bisphosphate (FBP). The complete Fenton system increased the AOPPs levels and both NAC and FBP were capable of inhibiting the formation of Fenton reaction-induced AOPPs. These data provide a new hypothesis about another pathway of AOPPs formation, as well as report that NAC and FBP may be good candidates to neutralize pro-inflammatory and pro-oxidant effects of AOPPs in several diseases.
Literature
1.
go back to reference Halliwell, B. 2012. Free radicals and antioxidants: updating a personal view. Nutrition Reviews 70: 257–265.PubMedCrossRef Halliwell, B. 2012. Free radicals and antioxidants: updating a personal view. Nutrition Reviews 70: 257–265.PubMedCrossRef
2.
go back to reference Ray, P.D., B.W. Huang, and Y. Tsuji. 2012. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling 24: 981–990.PubMedCentralPubMedCrossRef Ray, P.D., B.W. Huang, and Y. Tsuji. 2012. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling 24: 981–990.PubMedCentralPubMedCrossRef
3.
go back to reference Sorescu, D., D. Weiss, B. Lassegue, R.E. Clempus, K. Szocs, G.P. Sorescu, L. Valppu, M.T. Quinn, J.D. Lambeth, J.D. Vega, W.R. Taylor, and K.K. Griendling. 2002. Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation 105: 1429–1435.PubMedCrossRef Sorescu, D., D. Weiss, B. Lassegue, R.E. Clempus, K. Szocs, G.P. Sorescu, L. Valppu, M.T. Quinn, J.D. Lambeth, J.D. Vega, W.R. Taylor, and K.K. Griendling. 2002. Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation 105: 1429–1435.PubMedCrossRef
4.
go back to reference Brownlee, M. 2001. Biochemistry and molecular cell biology of diabetic complications. Nature 414: 813–820.PubMedCrossRef Brownlee, M. 2001. Biochemistry and molecular cell biology of diabetic complications. Nature 414: 813–820.PubMedCrossRef
5.
go back to reference Kaneda, H., J. Taguchi, K. Ogasawara, T. Aizawa, and M. Ohno. 2002. Increased level of advanced oxidation protein products in patients with coronary artery disease. Atherosclerosis 162: 221–225.PubMedCrossRef Kaneda, H., J. Taguchi, K. Ogasawara, T. Aizawa, and M. Ohno. 2002. Increased level of advanced oxidation protein products in patients with coronary artery disease. Atherosclerosis 162: 221–225.PubMedCrossRef
6.
go back to reference Kalousova, M., J. Skrha, and T. Zima. 2002. Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus. Physiological Research 51: 597–604.PubMed Kalousova, M., J. Skrha, and T. Zima. 2002. Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus. Physiological Research 51: 597–604.PubMed
7.
go back to reference Witko-Sarsat, V., M. Friedlander, C. Capeillere-Blandin, T. Nguyen-Khoa, A.T. Nguyen, J. Zingraff, P. Jungers, and B. Descamps-Latscha. 1996. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney International 49: 1304–1313.PubMedCrossRef Witko-Sarsat, V., M. Friedlander, C. Capeillere-Blandin, T. Nguyen-Khoa, A.T. Nguyen, J. Zingraff, P. Jungers, and B. Descamps-Latscha. 1996. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney International 49: 1304–1313.PubMedCrossRef
8.
go back to reference Guo, Z.J., H.X. Niu, F.F. Hou, L. Zhang, N. Fu, R. Nagai, X. Lu, B.H. Chen, Y.X. Shan, J.W. Tian, R.H. Nagaraj, D. Xie, and X. Zhang. 2008. Advanced oxidation protein products activate vascular endothelial cells via a RAGE-mediated signaling pathway. Antioxidants and Redox Signaling 10: 1699–1712.PubMedCrossRef Guo, Z.J., H.X. Niu, F.F. Hou, L. Zhang, N. Fu, R. Nagai, X. Lu, B.H. Chen, Y.X. Shan, J.W. Tian, R.H. Nagaraj, D. Xie, and X. Zhang. 2008. Advanced oxidation protein products activate vascular endothelial cells via a RAGE-mediated signaling pathway. Antioxidants and Redox Signaling 10: 1699–1712.PubMedCrossRef
9.
go back to reference Zhou, L.L., W. Cao, C. Xie, J. Tian, Z. Zhou, Q. Zhou, P. Zhu, A. Li, Y. Liu, T. Miyata, F.F. Hou, and J. Nie. 2012. The receptor of advanced glycation end products plays a central role in advanced oxidation protein products-induced podocyte apoptosis. Kidney International 82: 759–770.PubMedCrossRef Zhou, L.L., W. Cao, C. Xie, J. Tian, Z. Zhou, Q. Zhou, P. Zhu, A. Li, Y. Liu, T. Miyata, F.F. Hou, and J. Nie. 2012. The receptor of advanced glycation end products plays a central role in advanced oxidation protein products-induced podocyte apoptosis. Kidney International 82: 759–770.PubMedCrossRef
10.
go back to reference Himmelfarb, J., and E. McMonagle. 2001. Albumin is the major plasma protein target of oxidant stress in uremia. Kidney International 60: 358–363.PubMedCrossRef Himmelfarb, J., and E. McMonagle. 2001. Albumin is the major plasma protein target of oxidant stress in uremia. Kidney International 60: 358–363.PubMedCrossRef
11.
go back to reference Mera, K., M. Anraku, K. Kitamura, K. Nakajou, T. Maruyama, and M. Otagiri. 2005. The structure and function of oxidized albumin in hemodialysis patients: Its role in elevated oxidative stress via neutrophil burst. Biochemical and Biophysical Research Communications 334: 1322–1328.PubMedCrossRef Mera, K., M. Anraku, K. Kitamura, K. Nakajou, T. Maruyama, and M. Otagiri. 2005. The structure and function of oxidized albumin in hemodialysis patients: Its role in elevated oxidative stress via neutrophil burst. Biochemical and Biophysical Research Communications 334: 1322–1328.PubMedCrossRef
12.
go back to reference Shi, X.Y., F.F. Hou, H.X. Niu, G. Wang, D. Xie, Z.J. Guo, Z.M. Zhou, F. Yang, J.W. Tian, and X. Zhang. 2008. Advanced oxidation protein products promote inflammation in diabetic kidney through activation of renal nicotinamide adenine dinucleotide phosphate oxidase. Endocrinology 149: 1829–1839.PubMedCrossRef Shi, X.Y., F.F. Hou, H.X. Niu, G. Wang, D. Xie, Z.J. Guo, Z.M. Zhou, F. Yang, J.W. Tian, and X. Zhang. 2008. Advanced oxidation protein products promote inflammation in diabetic kidney through activation of renal nicotinamide adenine dinucleotide phosphate oxidase. Endocrinology 149: 1829–1839.PubMedCrossRef
13.
go back to reference Zhou, L.L., F.F. Hou, G.B. Wang, F. Yang, D. Xie, Y.P. Wang, and J.W. Tian. 2009. Accumulation of advanced oxidation protein products induces podocyte apoptosis and deletion through NADPH-dependent mechanisms. Kidney International 76: 1148–1160.PubMedCrossRef Zhou, L.L., F.F. Hou, G.B. Wang, F. Yang, D. Xie, Y.P. Wang, and J.W. Tian. 2009. Accumulation of advanced oxidation protein products induces podocyte apoptosis and deletion through NADPH-dependent mechanisms. Kidney International 76: 1148–1160.PubMedCrossRef
14.
go back to reference Hanasand, M., R. Omdal, K.B. Norheim, L.G. Gøransson, C. Brede, and G. Jonsson. 2012. Improved detection of advanced oxidation protein products in plasma. Clinica Chimica Acta 413: 901–906.CrossRef Hanasand, M., R. Omdal, K.B. Norheim, L.G. Gøransson, C. Brede, and G. Jonsson. 2012. Improved detection of advanced oxidation protein products in plasma. Clinica Chimica Acta 413: 901–906.CrossRef
15.
go back to reference Capeillère-Blandin, C., V. Gausson, B. Descamps-Latscha, and V. Witko-Sarsat. 2004. Biochemical and spectrophotometric significance of advanced oxidized protein products. Biochimica et Biophysica Acta 1689: 91–102.PubMedCrossRef Capeillère-Blandin, C., V. Gausson, B. Descamps-Latscha, and V. Witko-Sarsat. 2004. Biochemical and spectrophotometric significance of advanced oxidized protein products. Biochimica et Biophysica Acta 1689: 91–102.PubMedCrossRef
16.
go back to reference Capeillère-Blandin, C., V. Gausson, A.T. Nguyen, B. Descamps-Latscha, T. Drüeke, and V. Witko-Sarsat. 2006. Respective role of uraemic toxins and myeloperoxidase in the uraemic state. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association – European Renal Association 21: 1555–1563.CrossRef Capeillère-Blandin, C., V. Gausson, A.T. Nguyen, B. Descamps-Latscha, T. Drüeke, and V. Witko-Sarsat. 2006. Respective role of uraemic toxins and myeloperoxidase in the uraemic state. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association – European Renal Association 21: 1555–1563.CrossRef
17.
go back to reference Bochi, G.V., V.D. Torbitz, L.P. Cargnin, M.B. Sangoi, R.C. Santos, P. Gomes, and R.N. Moresco. 2012. Fructose-1,6-bisphosphate and N-acetylcysteine attenuate the formation of advanced oxidation protein products, a new class of inflammatory mediators, in vitro. Inflammation 35: 1786–1792.PubMedCrossRef Bochi, G.V., V.D. Torbitz, L.P. Cargnin, M.B. Sangoi, R.C. Santos, P. Gomes, and R.N. Moresco. 2012. Fructose-1,6-bisphosphate and N-acetylcysteine attenuate the formation of advanced oxidation protein products, a new class of inflammatory mediators, in vitro. Inflammation 35: 1786–1792.PubMedCrossRef
18.
go back to reference Holmes, R.S., and C.J. Masters. 1970. Epigenetic interconversion of the multiple forms of mouse liver catalase. FEBS Letters 11: 45–48.PubMedCrossRef Holmes, R.S., and C.J. Masters. 1970. Epigenetic interconversion of the multiple forms of mouse liver catalase. FEBS Letters 11: 45–48.PubMedCrossRef
19.
go back to reference Witko-Sarsat, V., T. Nguyen Khoa, P. Jungers, T. Drüeke, and B. Descamps-Latscha. 1998. Advanced oxidation protein products: oxidative stress markers and mediators of inflammation in uremia. Advances in nephrology from the Necker Hospital 28: 321–341.PubMed Witko-Sarsat, V., T. Nguyen Khoa, P. Jungers, T. Drüeke, and B. Descamps-Latscha. 1998. Advanced oxidation protein products: oxidative stress markers and mediators of inflammation in uremia. Advances in nephrology from the Necker Hospital 28: 321–341.PubMed
20.
go back to reference Kalousová, M., J. Skrha, and T. Zima. 2002. Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus. Physiological Research 51: 597–604.PubMed Kalousová, M., J. Skrha, and T. Zima. 2002. Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus. Physiological Research 51: 597–604.PubMed
21.
go back to reference Martín-Gallán, P., A. Carrascosa, M. Gussinyé, and C. Domínguez. 2003. Biomarkers of diabetes-associated oxidative stress and antioxidant status in young diabetic patients with or without subclinical complications. Free Radical Biology and Medicine 34: 1563–1574.PubMedCrossRef Martín-Gallán, P., A. Carrascosa, M. Gussinyé, and C. Domínguez. 2003. Biomarkers of diabetes-associated oxidative stress and antioxidant status in young diabetic patients with or without subclinical complications. Free Radical Biology and Medicine 34: 1563–1574.PubMedCrossRef
22.
go back to reference Tabak, O., R. Gelisgen, H. Erman, F. Erdenen, C. Muderrisoglu, H. Aral, and H. Uzun. 2011. Oxidative lipid, protein, and DNA damage as oxidative stress markers in vascular complications of diabetes mellitus. Clinical and Investigative Medicine 34: 163–171. Tabak, O., R. Gelisgen, H. Erman, F. Erdenen, C. Muderrisoglu, H. Aral, and H. Uzun. 2011. Oxidative lipid, protein, and DNA damage as oxidative stress markers in vascular complications of diabetes mellitus. Clinical and Investigative Medicine 34: 163–171.
23.
go back to reference Chen, S., L. Liu, X. Sun, Y. Liu, and T. Son. 2005. Captopril restores endothelium-dependent relaxation induced by advanced oxidation protein products in rat aorta. Journal of Cardiovascular Pharmacology 46: 803–809.PubMedCrossRef Chen, S., L. Liu, X. Sun, Y. Liu, and T. Son. 2005. Captopril restores endothelium-dependent relaxation induced by advanced oxidation protein products in rat aorta. Journal of Cardiovascular Pharmacology 46: 803–809.PubMedCrossRef
24.
go back to reference Drüeke, T., V. Witko-Sarsat, Z. Massy, B. Descamps-Latscha, A.P. Guerin, S.J. Marchais, V. Gausson, and G.M. London. 2002. Iron therapy, advanced oxidation protein products, and carotid artery intima-media thickness in end-stage renal disease. Circulation 106: 2212–2217.PubMedCrossRef Drüeke, T., V. Witko-Sarsat, Z. Massy, B. Descamps-Latscha, A.P. Guerin, S.J. Marchais, V. Gausson, and G.M. London. 2002. Iron therapy, advanced oxidation protein products, and carotid artery intima-media thickness in end-stage renal disease. Circulation 106: 2212–2217.PubMedCrossRef
25.
go back to reference Anraku, M., K. Kitamura, R. Shintomo, K. Takeuchi, H. Ikeda, J. Nagano, T. Ko, K. Mera, K. Tomita, and M. Otagiri. 2008. Effect of intravenous iron administration frequency on AOPP and inflammatory biomarkers in chronic hemodialysis patients: a pilot study. Clinical Biochemistry 41: 1168–1174.PubMedCrossRef Anraku, M., K. Kitamura, R. Shintomo, K. Takeuchi, H. Ikeda, J. Nagano, T. Ko, K. Mera, K. Tomita, and M. Otagiri. 2008. Effect of intravenous iron administration frequency on AOPP and inflammatory biomarkers in chronic hemodialysis patients: a pilot study. Clinical Biochemistry 41: 1168–1174.PubMedCrossRef
26.
go back to reference Halliwell, B. 1978. Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. Its role in degradation of hyaluronic acid by a superoxide-generating system. FEBS Letters 96: 238–242.PubMedCrossRef Halliwell, B. 1978. Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. Its role in degradation of hyaluronic acid by a superoxide-generating system. FEBS Letters 96: 238–242.PubMedCrossRef
27.
go back to reference Rooyakkers, T.M., E.S. Stroes, M.P. Kooistra, E.E. Van Faassen, R.C. Hider, T.J. Rabelink, and J.J. Marx. 2002. Ferric saccharate induces oxygen radical stress and endothelial dysfunction in vivo. European Journal of Clinical Investigation 32: 9–16.PubMedCrossRef Rooyakkers, T.M., E.S. Stroes, M.P. Kooistra, E.E. Van Faassen, R.C. Hider, T.J. Rabelink, and J.J. Marx. 2002. Ferric saccharate induces oxygen radical stress and endothelial dysfunction in vivo. European Journal of Clinical Investigation 32: 9–16.PubMedCrossRef
28.
go back to reference Tovbin, D., D. Mazor, M. Vorobiov, C. Chaimovitz, and N. Meyerstein. 2002. Induction of protein oxidation by intravenous iron in hemodialysis patients: Role of inflammation. American Journal of Kidney Diseases 40: 1005–1012.PubMedCrossRef Tovbin, D., D. Mazor, M. Vorobiov, C. Chaimovitz, and N. Meyerstein. 2002. Induction of protein oxidation by intravenous iron in hemodialysis patients: Role of inflammation. American Journal of Kidney Diseases 40: 1005–1012.PubMedCrossRef
29.
go back to reference Stępniak, J., A. Lewiński, and M. Karbownik-Lewińska. 2013. Membrane lipids and nuclear DNA are differently susceptive to Fenton reaction substrates in porcine thyroid. Toxicology In Vitro 27: 71–78.PubMedCrossRef Stępniak, J., A. Lewiński, and M. Karbownik-Lewińska. 2013. Membrane lipids and nuclear DNA are differently susceptive to Fenton reaction substrates in porcine thyroid. Toxicology In Vitro 27: 71–78.PubMedCrossRef
30.
go back to reference Valko, M., C.J. Rhodes, J. Moncol, M. Izakovic, and M. Mazur. 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions 160: 1–40.PubMedCrossRef Valko, M., C.J. Rhodes, J. Moncol, M. Izakovic, and M. Mazur. 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions 160: 1–40.PubMedCrossRef
31.
go back to reference Repka, T., and R.P. Hebbel. 1991. Hydroxyl radical formation by sickle erythrocyte membranes: Role of pathologic iron deposits and cytoplasmic reducing agents. Blood 78: 2753–2758.PubMed Repka, T., and R.P. Hebbel. 1991. Hydroxyl radical formation by sickle erythrocyte membranes: Role of pathologic iron deposits and cytoplasmic reducing agents. Blood 78: 2753–2758.PubMed
32.
go back to reference Trachootham, D., W. Lu, M.A. Ogasawara, R.D. Nilsa, and P. Huang. 2008. Redox regulation of cell survival. Antioxidants and Redox Signaling 10: 1343–1374.PubMedCentralPubMedCrossRef Trachootham, D., W. Lu, M.A. Ogasawara, R.D. Nilsa, and P. Huang. 2008. Redox regulation of cell survival. Antioxidants and Redox Signaling 10: 1343–1374.PubMedCentralPubMedCrossRef
33.
go back to reference Pellegrino, P., B. Mallet, S. Delliaux, Y. Jammes, R. Gieu, and O. Schaf. 2011. Zeolites are effective ROS-scavengers in vitro. Biochemical and Biophysical Research Communications 410: 478–483.PubMedCrossRef Pellegrino, P., B. Mallet, S. Delliaux, Y. Jammes, R. Gieu, and O. Schaf. 2011. Zeolites are effective ROS-scavengers in vitro. Biochemical and Biophysical Research Communications 410: 478–483.PubMedCrossRef
34.
go back to reference Witko-Sarsat, V., V. Gausson, A.T. Nguyen, M. Touam, T. Drüeke, F. Santangelo, and B. Descamps-Latscha. 2003. AOPP-induced activation of human neutrophil and monocyte oxidative metabolism: A potential target for N-acetylcysteine treatment in dialysis patients. Kidney International 64: 82–91.PubMedCrossRef Witko-Sarsat, V., V. Gausson, A.T. Nguyen, M. Touam, T. Drüeke, F. Santangelo, and B. Descamps-Latscha. 2003. AOPP-induced activation of human neutrophil and monocyte oxidative metabolism: A potential target for N-acetylcysteine treatment in dialysis patients. Kidney International 64: 82–91.PubMedCrossRef
35.
go back to reference Aruoma, O.I., B. Halliwell, B.M. Hoey, and J. Butler. 1989. The antioxidant action of N-acetylcysteine: Its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radical Biology and Medicine 6: 593–597.PubMedCrossRef Aruoma, O.I., B. Halliwell, B.M. Hoey, and J. Butler. 1989. The antioxidant action of N-acetylcysteine: Its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radical Biology and Medicine 6: 593–597.PubMedCrossRef
36.
go back to reference Fishbane, S. 2008. N-Acetylcysteine in the prevention of contrast-induced nephropathy. Clinical Journal of the American Society of Nephrology 3: 281–287.PubMedCrossRef Fishbane, S. 2008. N-Acetylcysteine in the prevention of contrast-induced nephropathy. Clinical Journal of the American Society of Nephrology 3: 281–287.PubMedCrossRef
37.
go back to reference Holt, S., R. Marley, B. Fernando, D. Harry, R. Anand, D. Goodier, and K. Moore. 1999. Acute cholestasis-induced renal failure: Effects of antioxidants and ligands for the thromboxane A2 receptor. Kidney International 55: 271–277.PubMedCrossRef Holt, S., R. Marley, B. Fernando, D. Harry, R. Anand, D. Goodier, and K. Moore. 1999. Acute cholestasis-induced renal failure: Effects of antioxidants and ligands for the thromboxane A2 receptor. Kidney International 55: 271–277.PubMedCrossRef
38.
go back to reference Santos, R.C., R.N. Moresco, M.A. Peña Rico, A.R. Susperregui, J.L. Rosa, R. Bartrons, F. Ventura, D.N. Mário, S.H. Alves, E. Tatsch, H. Kober, R.O. de Mello, P. Scherer, H.B. Dias, and J.R. de Oliveira. 2012. Fructose-1,6-bisphosphate reduces the mortality in Candida albicans bloodstream infection and prevents the septic-induced platelet decrease. Inflammation 35: 1256–1261.PubMedCrossRef Santos, R.C., R.N. Moresco, M.A. Peña Rico, A.R. Susperregui, J.L. Rosa, R. Bartrons, F. Ventura, D.N. Mário, S.H. Alves, E. Tatsch, H. Kober, R.O. de Mello, P. Scherer, H.B. Dias, and J.R. de Oliveira. 2012. Fructose-1,6-bisphosphate reduces the mortality in Candida albicans bloodstream infection and prevents the septic-induced platelet decrease. Inflammation 35: 1256–1261.PubMedCrossRef
39.
go back to reference de Mello, R.O., A. Lunardelli, E. Caberlon, C.M. de Moraes, R. Christ Vianna Santos, V.L. da Costa, G.V. da Silva, P. da Silva Scherer, L.E. Buaes, D.A. da Silva Melo, M.V. Donadio, F.B. Nunes, and J.R. de Oliveira. 2011. Effect of N-acetylcysteine and fructose-1,6-bisphosphate in the treatment of experimental sepsis. Inflammation 34: 539–550.PubMedCrossRef de Mello, R.O., A. Lunardelli, E. Caberlon, C.M. de Moraes, R. Christ Vianna Santos, V.L. da Costa, G.V. da Silva, P. da Silva Scherer, L.E. Buaes, D.A. da Silva Melo, M.V. Donadio, F.B. Nunes, and J.R. de Oliveira. 2011. Effect of N-acetylcysteine and fructose-1,6-bisphosphate in the treatment of experimental sepsis. Inflammation 34: 539–550.PubMedCrossRef
40.
go back to reference Alva, N., T. Carbonell, T. Roig, J. Bermúdez, and J. Palomeque. 2011. Fructose 1,6 biphosphate administration to rats prevents metabolic acidosis and oxidative stress induced by deep hypothermia and rewarming. European Journal of Pharmacology 659: 259–264.PubMedCrossRef Alva, N., T. Carbonell, T. Roig, J. Bermúdez, and J. Palomeque. 2011. Fructose 1,6 biphosphate administration to rats prevents metabolic acidosis and oxidative stress induced by deep hypothermia and rewarming. European Journal of Pharmacology 659: 259–264.PubMedCrossRef
41.
go back to reference Bajić, A., J. Zakrzewska, D. Godjevac, P. Andjus, D.R. Jones, M. Spasić, and I. Spasojević. 2011. Relevance of the ability of fructose 1,6-bis(phosphate) to sequester ferrous but not ferric ions. Carbohydrate Research 346: 416–420.PubMedCrossRef Bajić, A., J. Zakrzewska, D. Godjevac, P. Andjus, D.R. Jones, M. Spasić, and I. Spasojević. 2011. Relevance of the ability of fructose 1,6-bis(phosphate) to sequester ferrous but not ferric ions. Carbohydrate Research 346: 416–420.PubMedCrossRef
42.
go back to reference Wei, X.F., Q.G. Zhou, F.F. Hou, B.Y. Liu, and M. Liang. 2009. Advanced oxidation protein products induce mesangial cell perturbation through PKC-dependent activation of NADPH oxidase. American Journal of Physiology. Renal Physiology 296: 427–437.CrossRef Wei, X.F., Q.G. Zhou, F.F. Hou, B.Y. Liu, and M. Liang. 2009. Advanced oxidation protein products induce mesangial cell perturbation through PKC-dependent activation of NADPH oxidase. American Journal of Physiology. Renal Physiology 296: 427–437.CrossRef
43.
go back to reference Zhou, Q.G., M. Zhou, A.J. Lou, D. Xie, and F.F. Hou. 2010. Advanced oxidation protein products induce inflammatory response and insulin resistance in cultured adipocytes via induction of endoplasmic reticulum stress. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology 26: 775–786.CrossRef Zhou, Q.G., M. Zhou, A.J. Lou, D. Xie, and F.F. Hou. 2010. Advanced oxidation protein products induce inflammatory response and insulin resistance in cultured adipocytes via induction of endoplasmic reticulum stress. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology 26: 775–786.CrossRef
44.
go back to reference Cao, W., J. Xu, Z.M. Zhou, G.B. Wang, F.F. Hou, and J. Nie. 2013. Advanced oxidation protein products activate intrarenal renin–angiotensin system via a CD36-mediated, redox-dependent pathway. Antioxidants and Redox Signaling 18: 19–35.PubMedCentralPubMedCrossRef Cao, W., J. Xu, Z.M. Zhou, G.B. Wang, F.F. Hou, and J. Nie. 2013. Advanced oxidation protein products activate intrarenal renin–angiotensin system via a CD36-mediated, redox-dependent pathway. Antioxidants and Redox Signaling 18: 19–35.PubMedCentralPubMedCrossRef
45.
go back to reference Valente, A.J., T. Yoshida, R.A. Clark, P. Delafontaine, U. Siebenlist, and B. Chandrasekar. 2013. Advanced oxidation protein products induce cardiomyocyte death via Nox2/Rac1/superoxide-dependent TRAF3IP2/JNK signaling. Free Radical Biology and Medicine 60: 125–135.PubMedCrossRef Valente, A.J., T. Yoshida, R.A. Clark, P. Delafontaine, U. Siebenlist, and B. Chandrasekar. 2013. Advanced oxidation protein products induce cardiomyocyte death via Nox2/Rac1/superoxide-dependent TRAF3IP2/JNK signaling. Free Radical Biology and Medicine 60: 125–135.PubMedCrossRef
46.
go back to reference Prousek, J. 2007. Fenton chemistry in biology and medicine. Pure and applied chemistry 79: 2325–2338.CrossRef Prousek, J. 2007. Fenton chemistry in biology and medicine. Pure and applied chemistry 79: 2325–2338.CrossRef
47.
go back to reference Repetto, M.G., N.F. Ferrarotti, and A. Boveris. 2010. The involvement of transition metal ions on iron-dependent lipid peroxidation. Archives of Toxicology 84: 255–262.PubMedCrossRef Repetto, M.G., N.F. Ferrarotti, and A. Boveris. 2010. The involvement of transition metal ions on iron-dependent lipid peroxidation. Archives of Toxicology 84: 255–262.PubMedCrossRef
48.
go back to reference González, F.B., S. Llesuy, and A. Boveris. 1991. Hydroperoxide-initiated chemiluminescence: Assay for oxidative stress in biopsies of heart, liver and muscle. Free Radical Biology and Medicine 10: 93–100.CrossRef González, F.B., S. Llesuy, and A. Boveris. 1991. Hydroperoxide-initiated chemiluminescence: Assay for oxidative stress in biopsies of heart, liver and muscle. Free Radical Biology and Medicine 10: 93–100.CrossRef
49.
go back to reference Chance, B., H. Sies, and A. Boveris. 1979. Hydroperoxide metabolism in mammalian organs. Physiological Reviews 59: 527–605.PubMed Chance, B., H. Sies, and A. Boveris. 1979. Hydroperoxide metabolism in mammalian organs. Physiological Reviews 59: 527–605.PubMed
50.
go back to reference Marsche, G., S. Frank, A. Hrzenjak, M. Holzer, S. Dirnberger, C. Wadsack, H. Scharnagl, T. Stojakovic, A. Heinemann, and K. Oettl. 2009. Plasma-advanced oxidation products are potent high-density lipoprotein receptor antagonists in vivo. Circulation Research 104: 750–757. Marsche, G., S. Frank, A. Hrzenjak, M. Holzer, S. Dirnberger, C. Wadsack, H. Scharnagl, T. Stojakovic, A. Heinemann, and K. Oettl. 2009. Plasma-advanced oxidation products are potent high-density lipoprotein receptor antagonists in vivo. Circulation Research 104: 750–757.
Metadata
Title
An Alternative Pathway Through the Fenton Reaction for the Formation of Advanced Oxidation Protein Products, a New Class of Inflammatory Mediators
Authors
Guilherme Vargas Bochi
Vanessa Dorneles Torbitz
Lara Peruzzolo Cargnin
José Antonio Mainardi de Carvalho
Patrícia Gomes
Rafael Noal Moresco
Publication date
01-04-2014
Publisher
Springer US
Published in
Inflammation / Issue 2/2014
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-013-9765-1

Other articles of this Issue 2/2014

Inflammation 2/2014 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.