Skip to main content
Top
Published in: Inflammation 4/2012

01-08-2012

Fructose-1,6-Bisphosphate Reduces the Mortality in Candida albicans Bloodstream Infection and Prevents the Septic-Induced Platelet Decrease

Authors: Roberto Christ Vianna Santos, Rafael Noal Moresco, Miguel Angel Peña Rico, Antonio R. García Susperregui, Jose Luis Rosa, Ramon Bartrons, Francesc Ventura, Débora Nunes Mário, Sydney Hartz Alves, Etiane Tatsch, Helena Kober, Ricardo Obalski de Mello, Patrícia Scherer, Henrique Bregolin Dias, Jarbas Rodrigues de Oliveira

Published in: Inflammation | Issue 4/2012

Login to get access

Abstract

Due to the fact that an increased number of patients have experienced bloodstream infections caused by Candida species and the high mortality of this infection, there is a need for a strategy to reduce this scenery. One possible strategy is the use of new drugs, such as fructose-1,6-bisphosphate (FBP), which is a high-energy glycolytic metabolite and has shown to have therapeutic effects in several pathological conditions such as ischemia, shock, toxic injuries, and bacterial sepsis. The aim of this manuscript was to determine the role of FBP in experimental Candida albicans bloodstream infection. We used mice that were divided into three experimental groups: sham (not induced), bloodstream infection (induced with intratracheal instillation of C. albicans) and FBP (bloodstream infection plus FBP 500 mg/kg i.p.). Blood was taken for assessment of complete hematological profile and cytokine assay (IL-6 and MCP-1). Results of the study demonstrated that mortality decreased significantly in groups that received FBP. All cytokine and hematological indexes of FBP group were similar to bloodstream infection group with exception of platelets count. FBP significantly prevented the decrease in platelets. Taken together, our results demonstrate that FBP prevented the mortality in C. albicans bloodstream infection.
Literature
1.
go back to reference Lamagni, T.L., B.G. Evans, M. Shigematsu, and E.M. Johnson. 2001. Emerging trends in the epidemiology of invasive mycoses in England and Wales (1990–9). Epidemiology and Infection 126: 397–414.PubMedCrossRef Lamagni, T.L., B.G. Evans, M. Shigematsu, and E.M. Johnson. 2001. Emerging trends in the epidemiology of invasive mycoses in England and Wales (1990–9). Epidemiology and Infection 126: 397–414.PubMedCrossRef
2.
go back to reference Eloy, O., V. Blanc, P. Pina, A. Gaudart, M.L. Bressole, C. Plainvert, et al. 2006. Epidemiology of candidemia: results of a one month French hospitals-based surveillance study in 2004. Pathologie Biologie 54: 523–530.PubMedCrossRef Eloy, O., V. Blanc, P. Pina, A. Gaudart, M.L. Bressole, C. Plainvert, et al. 2006. Epidemiology of candidemia: results of a one month French hospitals-based surveillance study in 2004. Pathologie Biologie 54: 523–530.PubMedCrossRef
3.
go back to reference Wisplinghoff, H., T. Bischoff, S.M. Tallent, H. Seifert, R.P. Wenzel, and M.B. Edmond. 2004. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clinical Infectious Diseases 39: 309–317.PubMedCrossRef Wisplinghoff, H., T. Bischoff, S.M. Tallent, H. Seifert, R.P. Wenzel, and M.B. Edmond. 2004. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clinical Infectious Diseases 39: 309–317.PubMedCrossRef
4.
go back to reference Gudlaugsson, O., S. Gillespie, K. Lee, J. Vande Berg, J. Hu, S. Messer, et al. 2003. Attributable mortality of nosocomial candidemia revisited. Clinical Infectious Diseases 37: 1172–1177.PubMedCrossRef Gudlaugsson, O., S. Gillespie, K. Lee, J. Vande Berg, J. Hu, S. Messer, et al. 2003. Attributable mortality of nosocomial candidemia revisited. Clinical Infectious Diseases 37: 1172–1177.PubMedCrossRef
5.
go back to reference Martin, G.S., D.M. Mannino, S. Eaton, and M. Moss. 2003. The epidemiology of sepsis in the United States from 1979 through 2000. The New England Journal of Medicine 348: 1546–1554.PubMedCrossRef Martin, G.S., D.M. Mannino, S. Eaton, and M. Moss. 2003. The epidemiology of sepsis in the United States from 1979 through 2000. The New England Journal of Medicine 348: 1546–1554.PubMedCrossRef
6.
go back to reference Xu, K., and J.L. Stringer. 2008. Pharmacokinetics of fructose-1,6-diphosphate after intraperitoneal and oral administration to adult rats. Pharmacological Research 57: 234–238.PubMedCrossRef Xu, K., and J.L. Stringer. 2008. Pharmacokinetics of fructose-1,6-diphosphate after intraperitoneal and oral administration to adult rats. Pharmacological Research 57: 234–238.PubMedCrossRef
7.
go back to reference Yin, H., X.B. Jin, Q. Gong, H. Yang, H. Li, F.L. Gong, et al. 2008. Fructose-1,6-diphosphate attenuates acute lung injury induced by lipopolysaccharide in mice. International Immunopharmacology 20: 1842–1847.CrossRef Yin, H., X.B. Jin, Q. Gong, H. Yang, H. Li, F.L. Gong, et al. 2008. Fructose-1,6-diphosphate attenuates acute lung injury induced by lipopolysaccharide in mice. International Immunopharmacology 20: 1842–1847.CrossRef
8.
go back to reference Lopes, R.P., A. Lunardelli, T. Preissler, C.E. Leite, J.C.F. Alves-Filho, F.B. Nunes, et al. 2006. The effects of fructose-1,6-bisphosphate and dexamethasone on acute inflammation and T-cell proliferation. Inflammation Research 55: 354–358.PubMedCrossRef Lopes, R.P., A. Lunardelli, T. Preissler, C.E. Leite, J.C.F. Alves-Filho, F.B. Nunes, et al. 2006. The effects of fructose-1,6-bisphosphate and dexamethasone on acute inflammation and T-cell proliferation. Inflammation Research 55: 354–358.PubMedCrossRef
9.
go back to reference Nunes, F.B., J.C.F. Alves-Filho, C.M. Alves Bastos, P.M. Tessele, E. Caberlon, K.B. Moreira, et al. 2004. Effect of the chlorpropamide and fructose-1,6-bisphosphate of soluble TNF receptor II levels. Pharmacological Research 49: 449–453.PubMedCrossRef Nunes, F.B., J.C.F. Alves-Filho, C.M. Alves Bastos, P.M. Tessele, E. Caberlon, K.B. Moreira, et al. 2004. Effect of the chlorpropamide and fructose-1,6-bisphosphate of soluble TNF receptor II levels. Pharmacological Research 49: 449–453.PubMedCrossRef
10.
go back to reference Alves-Filho, J.C., R.C. Santos, T.A. Castaman, and J.R. Oliveira. 2004. Anti-inflammatory effects of fructose-1,6-bisphosphate on carrageenan-induced pleurisy in rat. Pharmacological Research 49: 245–248.PubMedCrossRef Alves-Filho, J.C., R.C. Santos, T.A. Castaman, and J.R. Oliveira. 2004. Anti-inflammatory effects of fructose-1,6-bisphosphate on carrageenan-induced pleurisy in rat. Pharmacological Research 49: 245–248.PubMedCrossRef
11.
go back to reference Nunes, F.B., M.G. Simões Pires, J.C.F. Alves-Filho, P.H. Wachter, and J.R. Oliveira. 2002. Physiopathological studies in septic rats and the use of fructose 1,6-bisphosphate as cellular protection. Critical Care Medicine 30: 2069–2074.PubMedCrossRef Nunes, F.B., M.G. Simões Pires, J.C.F. Alves-Filho, P.H. Wachter, and J.R. Oliveira. 2002. Physiopathological studies in septic rats and the use of fructose 1,6-bisphosphate as cellular protection. Critical Care Medicine 30: 2069–2074.PubMedCrossRef
12.
go back to reference Nunes, F.B., C.M. Graziottin, J.C.F. Alves-Filho, P.H. Wachter, and J.R. Oliveira. 2003. An assessment of fructose-1,6-bisphosphate as an antimicrobial and anti-inflammatory agent in sepsis. Pharmacological Research 47: 35–44.PubMedCrossRef Nunes, F.B., C.M. Graziottin, J.C.F. Alves-Filho, P.H. Wachter, and J.R. Oliveira. 2003. An assessment of fructose-1,6-bisphosphate as an antimicrobial and anti-inflammatory agent in sepsis. Pharmacological Research 47: 35–44.PubMedCrossRef
13.
14.
go back to reference Remick, D.G., G. Bolgos, S. Copeland, and J. Siddiqui. 2005. Role of interleukin-6 in mortality from and physiologic response to sepsis. Infection and Immunity 5: 2751–2757.CrossRef Remick, D.G., G. Bolgos, S. Copeland, and J. Siddiqui. 2005. Role of interleukin-6 in mortality from and physiologic response to sepsis. Infection and Immunity 5: 2751–2757.CrossRef
15.
go back to reference Nunes, F.B., P.B. Gaspareto, R.C.V. Santos, M. de Assis, C.M. Graziottin, V. Biolchi, et al. 2003. Intravenous toxicity of fructose-1,6-bisphosphate in rats. Toxicology Letters 143(1): 73–81.PubMedCrossRef Nunes, F.B., P.B. Gaspareto, R.C.V. Santos, M. de Assis, C.M. Graziottin, V. Biolchi, et al. 2003. Intravenous toxicity of fructose-1,6-bisphosphate in rats. Toxicology Letters 143(1): 73–81.PubMedCrossRef
16.
go back to reference Papadimitriou, J.M., and R.B. Ashman. 1986. The pathogenesis of acute systemic candidiasis in a susceptible inbred mouse strain. The Journal of Pathology 150: 257–265.PubMedCrossRef Papadimitriou, J.M., and R.B. Ashman. 1986. The pathogenesis of acute systemic candidiasis in a susceptible inbred mouse strain. The Journal of Pathology 150: 257–265.PubMedCrossRef
17.
go back to reference Romani, L., A. Mencacci, E. Cenci, R. Spaccapelo, P. Mosci, P. Puccetti, and F. Bistoni. 1993. CD4+ subset expression in murine candidiasis. Th responses correlate directly with genetically determined susceptibility or vaccine-induced resistance. Journal of Immunology 150: 925–931. Romani, L., A. Mencacci, E. Cenci, R. Spaccapelo, P. Mosci, P. Puccetti, and F. Bistoni. 1993. CD4+ subset expression in murine candidiasis. Th responses correlate directly with genetically determined susceptibility or vaccine-induced resistance. Journal of Immunology 150: 925–931.
18.
go back to reference Hurley, R. 1996. Effect of route of entry of Candida albicans on the histogenis of the lesions in experimental candidosis in the mouse. Journal of Pathology and Bacteriology 92: 578–583.CrossRef Hurley, R. 1996. Effect of route of entry of Candida albicans on the histogenis of the lesions in experimental candidosis in the mouse. Journal of Pathology and Bacteriology 92: 578–583.CrossRef
19.
go back to reference Nuget, K.M., and J.M. Onofrio. 1983. Pulmonary tissue resistance to Candida albicans in normal and immunosuppressed mice. American Review of Respiratory Disease 128: 909–914. Nuget, K.M., and J.M. Onofrio. 1983. Pulmonary tissue resistance to Candida albicans in normal and immunosuppressed mice. American Review of Respiratory Disease 128: 909–914.
21.
go back to reference Fallon, K., K. Bausch, J. Noonan, E. Huguenel, and P. Tamburini. 1997. Role of aspartic proteases in disseminated Candida albicans infection in mice. Infection and Immunity 65: 551–556.PubMed Fallon, K., K. Bausch, J. Noonan, E. Huguenel, and P. Tamburini. 1997. Role of aspartic proteases in disseminated Candida albicans infection in mice. Infection and Immunity 65: 551–556.PubMed
22.
go back to reference de Mello, R.O., A. Lunardelli, E. Caberlon, C.M. de Moraes, R. Christ Vianna Santos, V.L. da Costa, et al. 2010. Effect of N-acetylcysteine and fructose-1,6-bisphosphate in the treatment of experimental sepsis. Inflamm. doi:10.1007/s10753-010-9261-9. de Mello, R.O., A. Lunardelli, E. Caberlon, C.M. de Moraes, R. Christ Vianna Santos, V.L. da Costa, et al. 2010. Effect of N-acetylcysteine and fructose-1,6-bisphosphate in the treatment of experimental sepsis. Inflamm. doi:10.​1007/​s10753-010-9261-9.
23.
go back to reference Oliveira, L.M., M.G.S. Pires, A.B. Magrisso, T.P. Munhoz, R. Roesler, and J.R. Oliveira. 2010. Fructose-1, 6-bisphosphate inhibits in vitro and ex vivo platelet aggregation induced by ADP and ameliorates coagulation alterations in experimental sepsis in rats. Journal of Thrombosis and Thrombolysis 29: 387–394.PubMedCrossRef Oliveira, L.M., M.G.S. Pires, A.B. Magrisso, T.P. Munhoz, R. Roesler, and J.R. Oliveira. 2010. Fructose-1, 6-bisphosphate inhibits in vitro and ex vivo platelet aggregation induced by ADP and ameliorates coagulation alterations in experimental sepsis in rats. Journal of Thrombosis and Thrombolysis 29: 387–394.PubMedCrossRef
24.
go back to reference Hechler, B., C. Léon, C. Vial, P. Vigne, C. Frelin, J.P. Cazenave, et al. 1998. The P2Y1 receptor is necessary for adenosine 5′-diphosphate-induced platelet aggregation. Blood 92(1): 152–159.PubMed Hechler, B., C. Léon, C. Vial, P. Vigne, C. Frelin, J.P. Cazenave, et al. 1998. The P2Y1 receptor is necessary for adenosine 5′-diphosphate-induced platelet aggregation. Blood 92(1): 152–159.PubMed
25.
go back to reference Cavallini, L., R. Deana, M.A. Francesconi, and A. Alexandre. 1992. Fructose-1,6-diphosphate inhibits platelet activation. Biochemical Pharmacology 43(7): 1539–1544.PubMedCrossRef Cavallini, L., R. Deana, M.A. Francesconi, and A. Alexandre. 1992. Fructose-1,6-diphosphate inhibits platelet activation. Biochemical Pharmacology 43(7): 1539–1544.PubMedCrossRef
26.
go back to reference Levi, M., E. Jonge, and T. Van Der Poll. 2003. Sepsis and disseminated intravascular coagulation. Journal of Thrombosis and Thrombolysis 16(1–2): 43–47.PubMedCrossRef Levi, M., E. Jonge, and T. Van Der Poll. 2003. Sepsis and disseminated intravascular coagulation. Journal of Thrombosis and Thrombolysis 16(1–2): 43–47.PubMedCrossRef
27.
go back to reference Biswas, P., F. Delfanti, S. Bernasconi, M. Mengozzi, M. Cota, N. Polentarutti, et al. 1998. Interleukin-6 induces monocyte chemotactic protein-1 in peripheral blood mononuclear cells and in the U937 cell line. Blood 91(1): 258–265.PubMed Biswas, P., F. Delfanti, S. Bernasconi, M. Mengozzi, M. Cota, N. Polentarutti, et al. 1998. Interleukin-6 induces monocyte chemotactic protein-1 in peripheral blood mononuclear cells and in the U937 cell line. Blood 91(1): 258–265.PubMed
28.
go back to reference Sola, A., J. Panes, C. Xaus, and G. Hotter. 2003. Fructose-1,6-biphosphate and nucleoside pool modifications prevent neutrophil accumulation in the reperfused intestine. Journal of Leukocyte Biology 73: 74–81.PubMedCrossRef Sola, A., J. Panes, C. Xaus, and G. Hotter. 2003. Fructose-1,6-biphosphate and nucleoside pool modifications prevent neutrophil accumulation in the reperfused intestine. Journal of Leukocyte Biology 73: 74–81.PubMedCrossRef
29.
go back to reference Yin, H., X.B. Jin, Q. Gong, H. Yang, L.Y. Hu, F.L. Gong, et al. 2008. Fructose-1,6-diphosphate attenuates acute lung injury induced by lipopolysaccharide in mice. International Immunopharmacology 8(13–14): 1842–1847.PubMedCrossRef Yin, H., X.B. Jin, Q. Gong, H. Yang, L.Y. Hu, F.L. Gong, et al. 2008. Fructose-1,6-diphosphate attenuates acute lung injury induced by lipopolysaccharide in mice. International Immunopharmacology 8(13–14): 1842–1847.PubMedCrossRef
Metadata
Title
Fructose-1,6-Bisphosphate Reduces the Mortality in Candida albicans Bloodstream Infection and Prevents the Septic-Induced Platelet Decrease
Authors
Roberto Christ Vianna Santos
Rafael Noal Moresco
Miguel Angel Peña Rico
Antonio R. García Susperregui
Jose Luis Rosa
Ramon Bartrons
Francesc Ventura
Débora Nunes Mário
Sydney Hartz Alves
Etiane Tatsch
Helena Kober
Ricardo Obalski de Mello
Patrícia Scherer
Henrique Bregolin Dias
Jarbas Rodrigues de Oliveira
Publication date
01-08-2012
Publisher
Springer US
Published in
Inflammation / Issue 4/2012
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-012-9436-7

Other articles of this Issue 4/2012

Inflammation 4/2012 Go to the issue