Skip to main content
Top
Published in: Heart Failure Reviews 6/2019

01-11-2019 | Diabetic Cardiomyopathy

A review of fibroblast growth factor 21 in diabetic cardiomyopathy

Authors: Xiang Zhang, Luo Yang, Xiongfeng Xu, Fengjuan Tang, Peng Yi, Bo Qiu, Yarong Hao

Published in: Heart Failure Reviews | Issue 6/2019

Login to get access

Abstract

FGF21 (fibroblast growth factor 21) is a regulator of metabolism and performs an important role in glucose and lipid metabolism and the maintenance of energy balance. FGF21 is principally expressed in the liver, but it can also be found in the pancreas, skeletal muscle, and adipose tissue. It is known that levels of serum FGF21 are significantly elevated in obese, insulin-resistant patients, and those with metabolic syndrome. Elevated levels of FGF21 in serum during the early stages of various metabolic diseases are considered a compensatory response by the organism. Therefore, FGF21 is considered a hormone in response to stress and an early diagnostic marker of disease. Diabetic cardiomyopathy is a special type of cardiac complication, characterized as a chronic myocardial disorder caused by diabetes. The pathological process includes increased oxidative stress, energy metabolism in myocardial cells, an inflammatory response, and myocardial cell apoptosis. A growing body of evidence suggests that FGF21 has the potential to be an effective drug for the treatment of diabetic cardiomyopathy. Here, we review recent progress on the characteristics of FGF21 in its protective role, especially in pathological processes such as suppressing apoptosis in the myocardium, reducing inflammation in cardiomyocytes, reducing oxidative stress, and promoting fatty acid oxidation. In addition, we explore the possibility that diabetic cardiomyopathy can be delayed through the application of FGF21, providing possible therapeutic targets of the disease.
Literature
1.
go back to reference Staiger H, Keuper M, Berti L, Hrabe DAM, Haring HU (2017 2017-10-01) Fibroblast growth factor 21-metabolic role in mice and men. Endocr Rev 38(5):468–488PubMedCrossRef Staiger H, Keuper M, Berti L, Hrabe DAM, Haring HU (2017 2017-10-01) Fibroblast growth factor 21-metabolic role in mice and men. Endocr Rev 38(5):468–488PubMedCrossRef
2.
go back to reference Recinella L, Leone S, Ferrante C et al (2017 2017-07-01) Effects of central fibroblast growth factor 21 (FGF21) in energy balance. J Biol Regul Homeost Agents 31(3):603–613PubMed Recinella L, Leone S, Ferrante C et al (2017 2017-07-01) Effects of central fibroblast growth factor 21 (FGF21) in energy balance. J Biol Regul Homeost Agents 31(3):603–613PubMed
3.
go back to reference Sheehan SM, Allen RE (1999 1999-12-01) Skeletal muscle satellite cell proliferation in response to members of the fibroblast growth factor family and hepatocyte growth factor. J Cell Physiol 181(3):499–506PubMedCrossRef Sheehan SM, Allen RE (1999 1999-12-01) Skeletal muscle satellite cell proliferation in response to members of the fibroblast growth factor family and hepatocyte growth factor. J Cell Physiol 181(3):499–506PubMedCrossRef
4.
go back to reference Krejci P, Prochazkova J, Bryja V, Kozubik A, Wilcox WR (2009 2009-09-01) Molecular pathology of the fibroblast growth factor family. Hum Mutat 30(9):1245–1255PubMedPubMedCentralCrossRef Krejci P, Prochazkova J, Bryja V, Kozubik A, Wilcox WR (2009 2009-09-01) Molecular pathology of the fibroblast growth factor family. Hum Mutat 30(9):1245–1255PubMedPubMedCentralCrossRef
5.
go back to reference Itoh N, Ornitz DM (2008 2008-01-01) Functional evolutionary history of the mouse Fgf gene family. Dev Dyn 237(1):18PubMedCrossRef Itoh N, Ornitz DM (2008 2008-01-01) Functional evolutionary history of the mouse Fgf gene family. Dev Dyn 237(1):18PubMedCrossRef
6.
go back to reference Nishimura T, Nakatake Y, Konishi M, Itoh N (2000 2000-06-21) Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta 1492(1):203–206PubMedCrossRef Nishimura T, Nakatake Y, Konishi M, Itoh N (2000 2000-06-21) Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta 1492(1):203–206PubMedCrossRef
7.
go back to reference Hondares E, Iglesias R, Giralt A et al (2011 2011-04-15) Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem 286(15):12983–12990PubMedPubMedCentralCrossRef Hondares E, Iglesias R, Giralt A et al (2011 2011-04-15) Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem 286(15):12983–12990PubMedPubMedCentralCrossRef
9.
go back to reference Wente W, Efanov AM, Brenner M et al (2006 2006-09-01) Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes 55(9):2470–2478PubMedCrossRef Wente W, Efanov AM, Brenner M et al (2006 2006-09-01) Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes 55(9):2470–2478PubMedCrossRef
10.
go back to reference Yoon JH, Kim J, Song P, Lee TG, Suh PG, Ryu SH (2012 2012-05-01) Secretomics for skeletal muscle cells: a discovery of novel regulators? Adv Biol Regul 52(2):340–350PubMedCrossRef Yoon JH, Kim J, Song P, Lee TG, Suh PG, Ryu SH (2012 2012-05-01) Secretomics for skeletal muscle cells: a discovery of novel regulators? Adv Biol Regul 52(2):340–350PubMedCrossRef
11.
go back to reference Zhang C, Huang Z, Gu J et al (2015 2015-08-01) Fibroblast growth factor 21 protects the heart from apoptosis in a diabetic mouse model via extracellular signal-regulated kinase 1/2-dependent signalling pathway. Diabetologia 58(8):1937–1948PubMedCrossRef Zhang C, Huang Z, Gu J et al (2015 2015-08-01) Fibroblast growth factor 21 protects the heart from apoptosis in a diabetic mouse model via extracellular signal-regulated kinase 1/2-dependent signalling pathway. Diabetologia 58(8):1937–1948PubMedCrossRef
12.
go back to reference Bookout AL, de Groot MH, Owen BM et al (2013 2013-09-01) FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med 19(9):1147–1152PubMedPubMedCentralCrossRef Bookout AL, de Groot MH, Owen BM et al (2013 2013-09-01) FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med 19(9):1147–1152PubMedPubMedCentralCrossRef
13.
go back to reference Yamaguchi TP, Rossant J (1995 1995-08-01) Fibroblast growth factors in mammalian development. Curr Opin Genet Dev 5(4):485–491PubMedCrossRef Yamaguchi TP, Rossant J (1995 1995-08-01) Fibroblast growth factors in mammalian development. Curr Opin Genet Dev 5(4):485–491PubMedCrossRef
14.
go back to reference Eswarakumar VP, Lax I, Schlessinger J (2005 2005-04-01) Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16(2):139–149PubMedCrossRef Eswarakumar VP, Lax I, Schlessinger J (2005 2005-04-01) Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16(2):139–149PubMedCrossRef
15.
go back to reference Goetz R, Beenken A, Ibrahimi OA et al (2007 2007-05-01) Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol 27(9):3417–3428PubMedPubMedCentralCrossRef Goetz R, Beenken A, Ibrahimi OA et al (2007 2007-05-01) Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol 27(9):3417–3428PubMedPubMedCentralCrossRef
16.
go back to reference Urakawa I, Yamazaki Y, Shimada T et al (2006 2006-12-07) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444(7120):770–774PubMedCrossRef Urakawa I, Yamazaki Y, Shimada T et al (2006 2006-12-07) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444(7120):770–774PubMedCrossRef
17.
go back to reference Ogawa Y, Kurosu H, Yamamoto M, Nandi A, Rosenblatt KP. β Klotho is required for metabolic activity of fibroblast growth factor 21 Ogawa Y, Kurosu H, Yamamoto M, Nandi A, Rosenblatt KP. β Klotho is required for metabolic activity of fibroblast growth factor 21
18.
go back to reference Holt JA, Luo G, Billin AN et al (2003 2003-07-01) Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev 17(13):1581–1591PubMedPubMedCentralCrossRef Holt JA, Luo G, Billin AN et al (2003 2003-07-01) Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev 17(13):1581–1591PubMedPubMedCentralCrossRef
19.
go back to reference Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM (2006 2006-06-09) Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem 281(23):15694–15700PubMedCrossRef Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM (2006 2006-06-09) Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem 281(23):15694–15700PubMedCrossRef
20.
go back to reference Yie J, Hecht R, Patel J et al (2009 2009-01-05) FGF21 N- and C-termini play different roles in receptor interaction and activation. FEBS Lett 583(1):19–24PubMedCrossRef Yie J, Hecht R, Patel J et al (2009 2009-01-05) FGF21 N- and C-termini play different roles in receptor interaction and activation. FEBS Lett 583(1):19–24PubMedCrossRef
21.
go back to reference Ogawa Y, Kurosu H, Yamamoto M et al (2007 2007-05-01) BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl Acad Sci U S A 104(18):7432–7437PubMedPubMedCentralCrossRef Ogawa Y, Kurosu H, Yamamoto M et al (2007 2007-05-01) BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl Acad Sci U S A 104(18):7432–7437PubMedPubMedCentralCrossRef
22.
go back to reference Yie J, Wang W, Deng L et al (2012 2012-04-01) Understanding the physical interactions in the FGF21/FGFR/beta-Klotho complex: structural requirements and implications in FGF21 signaling. Chem Biol Drug Des 79(4):398–410PubMedCrossRef Yie J, Wang W, Deng L et al (2012 2012-04-01) Understanding the physical interactions in the FGF21/FGFR/beta-Klotho complex: structural requirements and implications in FGF21 signaling. Chem Biol Drug Des 79(4):398–410PubMedCrossRef
23.
go back to reference Yang W, Chen X, Liu Y et al (2017 2017-09-01) N-3 polyunsaturated fatty acids increase hepatic fibroblast growth factor 21 sensitivity via a PPAR-gamma-beta-klotho pathway. Mol Nutr Food Res 61(9) Yang W, Chen X, Liu Y et al (2017 2017-09-01) N-3 polyunsaturated fatty acids increase hepatic fibroblast growth factor 21 sensitivity via a PPAR-gamma-beta-klotho pathway. Mol Nutr Food Res 61(9)
24.
go back to reference Kobayashi K, Tanaka T, Okada S et al (2016 2016-02-01) Hepatocyte beta-Klotho regulates lipid homeostasis but not body weight in mice. FASEB J 30(2):849–862PubMedCrossRef Kobayashi K, Tanaka T, Okada S et al (2016 2016-02-01) Hepatocyte beta-Klotho regulates lipid homeostasis but not body weight in mice. FASEB J 30(2):849–862PubMedCrossRef
25.
go back to reference Markan KR, Naber MC, Small SM, Peltekian L, Kessler RL, Potthoff MJ (2017 2017-06-01) FGF21 resistance is not mediated by downregulation of beta-klotho expression in white adipose tissue. Mol Metab 6(6):602–610PubMedPubMedCentralCrossRef Markan KR, Naber MC, Small SM, Peltekian L, Kessler RL, Potthoff MJ (2017 2017-06-01) FGF21 resistance is not mediated by downregulation of beta-klotho expression in white adipose tissue. Mol Metab 6(6):602–610PubMedPubMedCentralCrossRef
26.
go back to reference Lin Z, Pan X, Wu F et al (2015 2015-05-26) Fibroblast growth factor 21 prevents atherosclerosis by suppression of hepatic sterol regulatory element-binding protein-2 and induction of adiponectin in mice. Circulation 131(21):1861–1871PubMedPubMedCentralCrossRef Lin Z, Pan X, Wu F et al (2015 2015-05-26) Fibroblast growth factor 21 prevents atherosclerosis by suppression of hepatic sterol regulatory element-binding protein-2 and induction of adiponectin in mice. Circulation 131(21):1861–1871PubMedPubMedCentralCrossRef
27.
go back to reference Lee Y, Lim S, Hong ES et al (2014 2014-01-01) Serum FGF21 concentration is associated with hypertriglyceridaemia, hyperinsulinaemia and pericardial fat accumulation, independently of obesity, but not with current coronary artery status. Clin Endocrinol (Oxf) 80(1):57–64CrossRef Lee Y, Lim S, Hong ES et al (2014 2014-01-01) Serum FGF21 concentration is associated with hypertriglyceridaemia, hyperinsulinaemia and pericardial fat accumulation, independently of obesity, but not with current coronary artery status. Clin Endocrinol (Oxf) 80(1):57–64CrossRef
28.
go back to reference Cuevas-Ramos D, Aguilar-Salinas CA (2016 2016-06-20) Modulation of energy balance by fibroblast growth factor 21. Horm Mol Biol Clin Investig 30(1) Cuevas-Ramos D, Aguilar-Salinas CA (2016 2016-06-20) Modulation of energy balance by fibroblast growth factor 21. Horm Mol Biol Clin Investig 30(1)
29.
go back to reference Kruse R, Vienberg SG, Vind BF, Andersen B, Hojlund K (2017 2017-10-01) Effects of insulin and exercise training on FGF21, its receptors and target genes in obesity and type 2 diabetes. Diabetologia 60(10):2042–2051PubMedCrossRef Kruse R, Vienberg SG, Vind BF, Andersen B, Hojlund K (2017 2017-10-01) Effects of insulin and exercise training on FGF21, its receptors and target genes in obesity and type 2 diabetes. Diabetologia 60(10):2042–2051PubMedCrossRef
30.
go back to reference Velasco I, Santos C, Limon J et al (2016 2016-01-20) Bioactive components in human milk along the first month of life: effects of iodine supplementation during pregnancy. Ann Nutr Metab 68(2):130–136PubMedCrossRef Velasco I, Santos C, Limon J et al (2016 2016-01-20) Bioactive components in human milk along the first month of life: effects of iodine supplementation during pregnancy. Ann Nutr Metab 68(2):130–136PubMedCrossRef
31.
go back to reference Esteghamati A, Khandan A, Momeni A et al (2017 2017-08-01) Circulating levels of fibroblast growth factor 21 in early-stage diabetic kidney disease. Ir J Med Sci 186(3):785–794PubMedCrossRef Esteghamati A, Khandan A, Momeni A et al (2017 2017-08-01) Circulating levels of fibroblast growth factor 21 in early-stage diabetic kidney disease. Ir J Med Sci 186(3):785–794PubMedCrossRef
32.
go back to reference Cheng P, Zhang F, Yu L et al (2016 2016-01-20) Physiological and pharmacological roles of FGF21 in cardiovascular diseases. J Diabetes Res 2016:1540267PubMedPubMedCentral Cheng P, Zhang F, Yu L et al (2016 2016-01-20) Physiological and pharmacological roles of FGF21 in cardiovascular diseases. J Diabetes Res 2016:1540267PubMedPubMedCentral
33.
go back to reference Presta M, Chiodelli P, Giacomini A, Rusnati M, Ronca R (2017 2017-11-01) Fibroblast growth factors (FGFs) in cancer: FGF traps as a new therapeutic approach. Pharmacol Ther 179:171–187PubMedCrossRef Presta M, Chiodelli P, Giacomini A, Rusnati M, Ronca R (2017 2017-11-01) Fibroblast growth factors (FGFs) in cancer: FGF traps as a new therapeutic approach. Pharmacol Ther 179:171–187PubMedCrossRef
34.
go back to reference Itoh N, Ohta H, Nakayama Y, Konishi M (2016 2016-01-20) Roles of FGF signals in heart development, health, and disease. Front Cell Dev Biol 4:110PubMedPubMedCentral Itoh N, Ohta H, Nakayama Y, Konishi M (2016 2016-01-20) Roles of FGF signals in heart development, health, and disease. Front Cell Dev Biol 4:110PubMedPubMedCentral
35.
go back to reference Olszanecka-Glinianowicz M, Madej P, Wdowczyk M, Owczarek A, Chudek J (2015 2015-02-01) Circulating FGF21 levels are related to nutritional status and metabolic but not hormonal disturbances in polycystic ovary syndrome. Eur J Endocrinol 172(2):173–179PubMedCrossRef Olszanecka-Glinianowicz M, Madej P, Wdowczyk M, Owczarek A, Chudek J (2015 2015-02-01) Circulating FGF21 levels are related to nutritional status and metabolic but not hormonal disturbances in polycystic ovary syndrome. Eur J Endocrinol 172(2):173–179PubMedCrossRef
36.
go back to reference Su SL, Wang WF, Wu SL et al (2012 2012-12-24) FGF21 in ataxia patients with spinocerebellar atrophy and mitochondrial disease. Clin Chim Acta 414:225–227PubMedCrossRef Su SL, Wang WF, Wu SL et al (2012 2012-12-24) FGF21 in ataxia patients with spinocerebellar atrophy and mitochondrial disease. Clin Chim Acta 414:225–227PubMedCrossRef
37.
go back to reference Restelli LM, Oettinghaus B, Halliday M et al (2018 2018-08-07) Neuronal mitochondrial dysfunction activates the integrated stress response to induce fibroblast growth factor 21. Cell Rep 24(6):1407–1414PubMedPubMedCentralCrossRef Restelli LM, Oettinghaus B, Halliday M et al (2018 2018-08-07) Neuronal mitochondrial dysfunction activates the integrated stress response to induce fibroblast growth factor 21. Cell Rep 24(6):1407–1414PubMedPubMedCentralCrossRef
38.
go back to reference Cai G, Liu J, Wang M et al (2019 2019-03-01) Mutual promotion of FGF21 and PPARgamma attenuates hypoxia-induced pulmonary hypertension. Exp Biol Med (Maywood) 244(3):252–261PubMedCentralCrossRef Cai G, Liu J, Wang M et al (2019 2019-03-01) Mutual promotion of FGF21 and PPARgamma attenuates hypoxia-induced pulmonary hypertension. Exp Biol Med (Maywood) 244(3):252–261PubMedCentralCrossRef
39.
go back to reference Cieszynski L, Berendt-Obolonczyk M, Szulc M, Sworczak K (2016 2016-01-20) Cushing's syndrome due to ectopic ACTH secretion. Endokrynol Pol 67(4):458–471PubMed Cieszynski L, Berendt-Obolonczyk M, Szulc M, Sworczak K (2016 2016-01-20) Cushing's syndrome due to ectopic ACTH secretion. Endokrynol Pol 67(4):458–471PubMed
40.
go back to reference Li Z, Zhang T, Dai H et al (2008 2008-03-01) Endoplasmic reticulum stress is involved in myocardial apoptosis of streptozocin-induced diabetic rats. J Endocrinol 196(3):565–572PubMedCrossRef Li Z, Zhang T, Dai H et al (2008 2008-03-01) Endoplasmic reticulum stress is involved in myocardial apoptosis of streptozocin-induced diabetic rats. J Endocrinol 196(3):565–572PubMedCrossRef
41.
go back to reference Yang H, Feng A, Lin S et al (2018 2018-02-14) Fibroblast growth factor-21 prevents diabetic cardiomyopathy via AMPK-mediated antioxidation and lipid-lowering effects in the heart. Cell Death Dis 9(2):227PubMedPubMedCentralCrossRef Yang H, Feng A, Lin S et al (2018 2018-02-14) Fibroblast growth factor-21 prevents diabetic cardiomyopathy via AMPK-mediated antioxidation and lipid-lowering effects in the heart. Cell Death Dis 9(2):227PubMedPubMedCentralCrossRef
42.
go back to reference Cong WT, Ling J, Tian HS et al (2013 2013-11-01) Proteomic study on the protective mechanism of fibroblast growth factor 21 to ischemia-reperfusion injury. Can J Physiol Pharmacol 91(11):973–984PubMedCrossRef Cong WT, Ling J, Tian HS et al (2013 2013-11-01) Proteomic study on the protective mechanism of fibroblast growth factor 21 to ischemia-reperfusion injury. Can J Physiol Pharmacol 91(11):973–984PubMedCrossRef
43.
go back to reference Liang P, Zhong L, Gong L et al (2017 2017-01-01) Fibroblast growth factor 21 protects rat cardiomyocytes from endoplasmic reticulum stress by promoting the fibroblast growth factor receptor 1-extracellular signal-regulated kinase 1/2 signaling pathway. Int J Mol Med 40(5):1477–1485PubMedPubMedCentralCrossRef Liang P, Zhong L, Gong L et al (2017 2017-01-01) Fibroblast growth factor 21 protects rat cardiomyocytes from endoplasmic reticulum stress by promoting the fibroblast growth factor receptor 1-extracellular signal-regulated kinase 1/2 signaling pathway. Int J Mol Med 40(5):1477–1485PubMedPubMedCentralCrossRef
44.
45.
go back to reference Xu P, Zhang Y, Liu Y et al (2016 2016-01-01) Fibroblast growth factor 21 attenuates hepatic fibrogenesis through TGF-beta/smad2/3 and NF-kappaB signaling pathways. Toxicol Appl Pharmacol 290:43–53PubMedCrossRef Xu P, Zhang Y, Liu Y et al (2016 2016-01-01) Fibroblast growth factor 21 attenuates hepatic fibrogenesis through TGF-beta/smad2/3 and NF-kappaB signaling pathways. Toxicol Appl Pharmacol 290:43–53PubMedCrossRef
46.
go back to reference Wu JH, Batist G (2013 2013-05-01) Glutathione and glutathione analogues; therapeutic potentials. Biochim Biophys Acta 1830(5):3350–3353PubMedCrossRef Wu JH, Batist G (2013 2013-05-01) Glutathione and glutathione analogues; therapeutic potentials. Biochim Biophys Acta 1830(5):3350–3353PubMedCrossRef
47.
go back to reference Gomez-Samano MA, Grajales-Gomez M, Zuarth-Vazquez JM et al (2017 2017-04-01) Fibroblast growth factor 21 and its novel association with oxidative stress. Redox Biol 11:335–341PubMedCrossRef Gomez-Samano MA, Grajales-Gomez M, Zuarth-Vazquez JM et al (2017 2017-04-01) Fibroblast growth factor 21 and its novel association with oxidative stress. Redox Biol 11:335–341PubMedCrossRef
48.
go back to reference Matuszek B, Lenart-Lipinska M, Duma D, Solski J, Nowakowski A (2010 2010-01-01) Evaluation of concentrations of FGF-21—a new adipocytokine in type 2 diabetes. Endokrynol Pol 61(1):50–54PubMed Matuszek B, Lenart-Lipinska M, Duma D, Solski J, Nowakowski A (2010 2010-01-01) Evaluation of concentrations of FGF-21—a new adipocytokine in type 2 diabetes. Endokrynol Pol 61(1):50–54PubMed
49.
go back to reference Li X, Yu H, Yin J et al (2017 2017-02-22) Decreased levels of fibroblast growth factor 21 are correlated with improved hypoglycemia in patients with insulinoma. Sci Rep 7:43123PubMedPubMedCentralCrossRef Li X, Yu H, Yin J et al (2017 2017-02-22) Decreased levels of fibroblast growth factor 21 are correlated with improved hypoglycemia in patients with insulinoma. Sci Rep 7:43123PubMedPubMedCentralCrossRef
50.
go back to reference Bauters C, Lamblin N, Mc FE, Van Belle E, Millaire A, de Groote P (2003 2003-01-08) Influence of diabetes mellitus on heart failure risk and outcome. Cardiovasc Diabetol 2:1PubMedPubMedCentralCrossRef Bauters C, Lamblin N, Mc FE, Van Belle E, Millaire A, de Groote P (2003 2003-01-08) Influence of diabetes mellitus on heart failure risk and outcome. Cardiovasc Diabetol 2:1PubMedPubMedCentralCrossRef
51.
go back to reference Vrtovec B, Sever M, Jensterle M et al (2016 2016-05-01) Efficacy of CD34+ stem cell therapy in nonischemic dilated cardiomyopathy is absent in patients with diabetes but preserved in patients with insulin resistance. Stem Cells Transl Med 5(5):632–638PubMedPubMedCentralCrossRef Vrtovec B, Sever M, Jensterle M et al (2016 2016-05-01) Efficacy of CD34+ stem cell therapy in nonischemic dilated cardiomyopathy is absent in patients with diabetes but preserved in patients with insulin resistance. Stem Cells Transl Med 5(5):632–638PubMedPubMedCentralCrossRef
52.
go back to reference Luo JW, Zheng X, Cheng GC, Ye QH, Deng YZ, Wu L (2016 2016-10-01) Resistin-induced cardiomyocyte hypertrophy is inhibited by apelin through the inactivation of extracellular signal-regulated kinase signaling pathway in H9c2 embryonic rat cardiomyocytes. Biomed Rep 5(4):473–478PubMedPubMedCentralCrossRef Luo JW, Zheng X, Cheng GC, Ye QH, Deng YZ, Wu L (2016 2016-10-01) Resistin-induced cardiomyocyte hypertrophy is inhibited by apelin through the inactivation of extracellular signal-regulated kinase signaling pathway in H9c2 embryonic rat cardiomyocytes. Biomed Rep 5(4):473–478PubMedPubMedCentralCrossRef
53.
go back to reference Xu T, Liu Y, Deng Y et al (2016 2016-07-01) [Insulin combined with selenium inhibit p38MAPK/CBP pathway and suppresses cardiomyocyte apoptosis in rats with diabetic cardiomyopathy]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 32(7):926–930PubMed Xu T, Liu Y, Deng Y et al (2016 2016-07-01) [Insulin combined with selenium inhibit p38MAPK/CBP pathway and suppresses cardiomyocyte apoptosis in rats with diabetic cardiomyopathy]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 32(7):926–930PubMed
54.
go back to reference Yue Y, Meng K, Pu Y, Zhang X (2017 2017-09-01) Transforming growth factor beta (TGF-beta) mediates cardiac fibrosis and induces diabetic cardiomyopathy. Diabetes Res Clin Pract 133:124–130PubMedCrossRef Yue Y, Meng K, Pu Y, Zhang X (2017 2017-09-01) Transforming growth factor beta (TGF-beta) mediates cardiac fibrosis and induces diabetic cardiomyopathy. Diabetes Res Clin Pract 133:124–130PubMedCrossRef
55.
go back to reference Alonso N, Moliner P, Mauricio D (2017) Pathogenesis, clinical features and treatment of diabetic cardiomyopathy. Adv Exp Med Biol. 2017-10-05 Alonso N, Moliner P, Mauricio D (2017) Pathogenesis, clinical features and treatment of diabetic cardiomyopathy. Adv Exp Med Biol. 2017-10-05
56.
go back to reference Jia G, Whaley-Connell A, Sowers JR (2017) Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia. 2017-08-03 Jia G, Whaley-Connell A, Sowers JR (2017) Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia. 2017-08-03
57.
go back to reference Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A (1972 1972-11-08) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30(6):595–602PubMedCrossRef Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A (1972 1972-11-08) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30(6):595–602PubMedCrossRef
58.
go back to reference Galderisi M (2006 2006-10-17) Diastolic dysfunction and diabetic cardiomyopathy: evaluation by Doppler echocardiography. J Am Coll Cardiol 48(8):1548–1551PubMedCrossRef Galderisi M (2006 2006-10-17) Diastolic dysfunction and diabetic cardiomyopathy: evaluation by Doppler echocardiography. J Am Coll Cardiol 48(8):1548–1551PubMedCrossRef
59.
go back to reference Gu Y, Warren J, Walker N, Kennelly J (2013 2013-01-20) Gender differences in cardiovascular disease risk management for Pacific Islanders in primary care. Qual Prim Care 21(5):275–285PubMed Gu Y, Warren J, Walker N, Kennelly J (2013 2013-01-20) Gender differences in cardiovascular disease risk management for Pacific Islanders in primary care. Qual Prim Care 21(5):275–285PubMed
60.
go back to reference Shao M, Yu L, Zhang F et al (2015 2015-07-01) Additive protection by LDR and FGF21 treatment against diabetic nephropathy in type 2 diabetes model. Am J Physiol Endocrinol Metab 309(1):E45–E54PubMedPubMedCentralCrossRef Shao M, Yu L, Zhang F et al (2015 2015-07-01) Additive protection by LDR and FGF21 treatment against diabetic nephropathy in type 2 diabetes model. Am J Physiol Endocrinol Metab 309(1):E45–E54PubMedPubMedCentralCrossRef
61.
go back to reference Sung MM, Hamza SM, Dyck JR (2015 2015-06-10) Myocardial metabolism in diabetic cardiomyopathy: potential therapeutic targets. Antioxid Redox Signal 22(17):1606–1630PubMedCrossRef Sung MM, Hamza SM, Dyck JR (2015 2015-06-10) Myocardial metabolism in diabetic cardiomyopathy: potential therapeutic targets. Antioxid Redox Signal 22(17):1606–1630PubMedCrossRef
62.
go back to reference Bell D, Goncalves E (2019) Heart failure in the patient with diabetes: epidemiology, aetiology, prognosis, therapy and the effect of glucose-lowering medications. Diabetes Obes Metab. 2019-02-05 Bell D, Goncalves E (2019) Heart failure in the patient with diabetes: epidemiology, aetiology, prognosis, therapy and the effect of glucose-lowering medications. Diabetes Obes Metab. 2019-02-05
63.
go back to reference Schutt K, Marx N (2019) Heart failure and diabetes: management and open issues. Herz. 2019-03-07 Schutt K, Marx N (2019) Heart failure and diabetes: management and open issues. Herz. 2019-03-07
64.
go back to reference Lei S, Li H, Xu J et al (2013 2013-07-01) Hyperglycemia-induced protein kinase C beta2 activation induces diastolic cardiac dysfunction in diabetic rats by impairing caveolin-3 expression and Akt/eNOS signaling. Diabetes 62(7):2318–2328PubMedPubMedCentralCrossRef Lei S, Li H, Xu J et al (2013 2013-07-01) Hyperglycemia-induced protein kinase C beta2 activation induces diastolic cardiac dysfunction in diabetic rats by impairing caveolin-3 expression and Akt/eNOS signaling. Diabetes 62(7):2318–2328PubMedPubMedCentralCrossRef
65.
go back to reference Lee Y, Gustafsson AB (2009 2009-04-01) Role of apoptosis in cardiovascular disease. Apoptosis 14(4):536–548PubMedCrossRef Lee Y, Gustafsson AB (2009 2009-04-01) Role of apoptosis in cardiovascular disease. Apoptosis 14(4):536–548PubMedCrossRef
66.
go back to reference Austin RC (2009 2009-09-01) The unfolded protein response in health and disease. Antioxid Redox Signal 11(9):2279–2287PubMedCrossRef Austin RC (2009 2009-09-01) The unfolded protein response in health and disease. Antioxid Redox Signal 11(9):2279–2287PubMedCrossRef
67.
go back to reference Makela J, Tselykh TV, Maiorana F et al (2014 2014-01-20) Fibroblast growth factor-21 enhances mitochondrial functions and increases the activity of PGC-1alpha in human dopaminergic neurons via Sirtuin-1. SpringerPlus 3:2PubMedPubMedCentralCrossRef Makela J, Tselykh TV, Maiorana F et al (2014 2014-01-20) Fibroblast growth factor-21 enhances mitochondrial functions and increases the activity of PGC-1alpha in human dopaminergic neurons via Sirtuin-1. SpringerPlus 3:2PubMedPubMedCentralCrossRef
68.
go back to reference Kim I, Xu W, Reed JC (2008 2008-12-01) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7(12):1013–1030PubMedCrossRef Kim I, Xu W, Reed JC (2008 2008-12-01) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7(12):1013–1030PubMedCrossRef
69.
go back to reference Minamino T, Komuro I, Kitakaze M (2010 2010-10-29) Endoplasmic reticulum stress as a therapeutic target in cardiovascular disease. Circ Res 107(9):1071–1082PubMedCrossRef Minamino T, Komuro I, Kitakaze M (2010 2010-10-29) Endoplasmic reticulum stress as a therapeutic target in cardiovascular disease. Circ Res 107(9):1071–1082PubMedCrossRef
70.
go back to reference Minamino T, Kitakaze M (2010 2010-06-01) ER stress in cardiovascular disease. J Mol Cell Cardiol 48(6):1105–1110PubMedCrossRef Minamino T, Kitakaze M (2010 2010-06-01) ER stress in cardiovascular disease. J Mol Cell Cardiol 48(6):1105–1110PubMedCrossRef
71.
go back to reference Wan XS, Lu XH, Xiao YC et al (2014 2014-01-20) ATF4- and CHOP-dependent induction of FGF21 through endoplasmic reticulum stress. Biomed Res Int 2014:807874PubMedPubMedCentral Wan XS, Lu XH, Xiao YC et al (2014 2014-01-20) ATF4- and CHOP-dependent induction of FGF21 through endoplasmic reticulum stress. Biomed Res Int 2014:807874PubMedPubMedCentral
72.
go back to reference Rao RV, Peel A, Logvinova A et al (2002 2002-03-13) Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett 514(2–3):122–128PubMedPubMedCentralCrossRef Rao RV, Peel A, Logvinova A et al (2002 2002-03-13) Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett 514(2–3):122–128PubMedPubMedCentralCrossRef
73.
go back to reference Urano F, Wang X, Bertolotti A et al (2000 2000-01-28) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287(5453):664–666PubMedCrossRef Urano F, Wang X, Bertolotti A et al (2000 2000-01-28) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287(5453):664–666PubMedCrossRef
74.
go back to reference Ye M, Lu W, Wang X et al (2016 2016-12-01) FGF21-FGFR1 coordinates phospholipid homeostasis, lipid droplet function, and ER stress in obesity. Endocrinology 157(12):4754–4769PubMedCrossRef Ye M, Lu W, Wang X et al (2016 2016-12-01) FGF21-FGFR1 coordinates phospholipid homeostasis, lipid droplet function, and ER stress in obesity. Endocrinology 157(12):4754–4769PubMedCrossRef
75.
go back to reference Winder WW, Thomson DM (2007 2007-01-20) Cellular energy sensing and signaling by AMP-activated protein kinase. Cell Biochem Biophys 47(3):332–347PubMedCrossRef Winder WW, Thomson DM (2007 2007-01-20) Cellular energy sensing and signaling by AMP-activated protein kinase. Cell Biochem Biophys 47(3):332–347PubMedCrossRef
76.
go back to reference Ojuka EO (2004 2004-05-01) Role of calcium and AMP kinase in the regulation of mitochondrial biogenesis and GLUT4 levels in muscle. Proc Nutr Soc 63(2):275–278PubMedCrossRef Ojuka EO (2004 2004-05-01) Role of calcium and AMP kinase in the regulation of mitochondrial biogenesis and GLUT4 levels in muscle. Proc Nutr Soc 63(2):275–278PubMedCrossRef
77.
go back to reference Beauloye C, Bertrand L, Horman S, Hue L (2011 2011-05-01) AMPK activation, a preventive therapeutic target in the transition from cardiac injury to heart failure. Cardiovasc Res 90(2):224–233PubMedCrossRef Beauloye C, Bertrand L, Horman S, Hue L (2011 2011-05-01) AMPK activation, a preventive therapeutic target in the transition from cardiac injury to heart failure. Cardiovasc Res 90(2):224–233PubMedCrossRef
78.
go back to reference Morrison A, Li J (2011 2011-08-01) PPAR-gamma and AMPK—advantageous targets for myocardial ischemia/reperfusion therapy. Biochem Pharmacol 82(3):195–200PubMedCrossRef Morrison A, Li J (2011 2011-08-01) PPAR-gamma and AMPK—advantageous targets for myocardial ischemia/reperfusion therapy. Biochem Pharmacol 82(3):195–200PubMedCrossRef
79.
go back to reference Asare Y, Shagdarsuren E, Schmid JA et al (2013 2013-07-01) Endothelial CSN5 impairs NF-kappaB activation and monocyte adhesion to endothelial cells and is highly expressed in human atherosclerotic lesions. Thromb Haemost 110(1):141–152PubMedCrossRef Asare Y, Shagdarsuren E, Schmid JA et al (2013 2013-07-01) Endothelial CSN5 impairs NF-kappaB activation and monocyte adhesion to endothelial cells and is highly expressed in human atherosclerotic lesions. Thromb Haemost 110(1):141–152PubMedCrossRef
80.
81.
go back to reference Frati G, Schirone L, Chimenti I et al (2017 2017-03-15) An overview of the inflammatory signalling mechanisms in the myocardium underlying the development of diabetic cardiomyopathy. Cardiovasc Res 113(4):378–388PubMedCrossRef Frati G, Schirone L, Chimenti I et al (2017 2017-03-15) An overview of the inflammatory signalling mechanisms in the myocardium underlying the development of diabetic cardiomyopathy. Cardiovasc Res 113(4):378–388PubMedCrossRef
82.
go back to reference Datta SR, Brunet A, Greenberg ME (1999 1999-11-15) Cellular survival: a play in three Akts. Genes Dev 13(22):2905–2927PubMedCrossRef Datta SR, Brunet A, Greenberg ME (1999 1999-11-15) Cellular survival: a play in three Akts. Genes Dev 13(22):2905–2927PubMedCrossRef
83.
go back to reference Shiojima I, Walsh K (2006 2006-12-15) Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev 20(24):3347–3365PubMedCrossRef Shiojima I, Walsh K (2006 2006-12-15) Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev 20(24):3347–3365PubMedCrossRef
85.
go back to reference Yu Y, Zheng G (2017 2017-06-01) Troxerutin protects against diabetic cardiomyopathy through NFkappaB/AKT/IRS1 in a rat model of type 2 diabetes. Mol Med Rep 15(6):3473–3478PubMedPubMedCentralCrossRef Yu Y, Zheng G (2017 2017-06-01) Troxerutin protects against diabetic cardiomyopathy through NFkappaB/AKT/IRS1 in a rat model of type 2 diabetes. Mol Med Rep 15(6):3473–3478PubMedPubMedCentralCrossRef
86.
go back to reference Kotulak T, Drapalova J, Kopecky P et al (2011 2011-01-20) Increased circulating and epicardial adipose tissue mRNA expression of fibroblast growth factor-21 after cardiac surgery: possible role in postoperative inflammatory response and insulin resistance. Physiol Res 60(5):757–767PubMedCrossRef Kotulak T, Drapalova J, Kopecky P et al (2011 2011-01-20) Increased circulating and epicardial adipose tissue mRNA expression of fibroblast growth factor-21 after cardiac surgery: possible role in postoperative inflammatory response and insulin resistance. Physiol Res 60(5):757–767PubMedCrossRef
87.
go back to reference Planavila A, Redondo I, Hondares E et al (2013 2013-01-20) Fibroblast growth factor 21 protects against cardiac hypertrophy in mice. Nat Commun 4:2019PubMedCrossRef Planavila A, Redondo I, Hondares E et al (2013 2013-01-20) Fibroblast growth factor 21 protects against cardiac hypertrophy in mice. Nat Commun 4:2019PubMedCrossRef
89.
go back to reference Sasaki S, Inoguchi T (2012 2012-08-01) The role of oxidative stress in the pathogenesis of diabetic vascular complications. Diabetes Metab J 36(4):255–261PubMedPubMedCentralCrossRef Sasaki S, Inoguchi T (2012 2012-08-01) The role of oxidative stress in the pathogenesis of diabetic vascular complications. Diabetes Metab J 36(4):255–261PubMedPubMedCentralCrossRef
90.
go back to reference Ahmad W, Ijaz B, Shabbiri K, Ahmed F, Rehman S (2017 2017-09-19) Oxidative toxicity in diabetes and Alzheimer's disease: mechanisms behind ROS/ RNS generation. J Biomed Sci 24(1):76PubMedPubMedCentralCrossRef Ahmad W, Ijaz B, Shabbiri K, Ahmed F, Rehman S (2017 2017-09-19) Oxidative toxicity in diabetes and Alzheimer's disease: mechanisms behind ROS/ RNS generation. J Biomed Sci 24(1):76PubMedPubMedCentralCrossRef
91.
go back to reference Barouch LA, Berkowitz DE, Harrison RW, O'Donnell CP, Hare JM (2003 2003-08-12) Disruption of leptin signaling contributes to cardiac hypertrophy independently of body weight in mice. Circulation 108(6):754–759PubMedCrossRef Barouch LA, Berkowitz DE, Harrison RW, O'Donnell CP, Hare JM (2003 2003-08-12) Disruption of leptin signaling contributes to cardiac hypertrophy independently of body weight in mice. Circulation 108(6):754–759PubMedCrossRef
92.
go back to reference Schleicher E, Friess U (2007 2007-08-01) Oxidative stress, AGE, and atherosclerosis. Kidney Int Suppl 106:S17–S26CrossRef Schleicher E, Friess U (2007 2007-08-01) Oxidative stress, AGE, and atherosclerosis. Kidney Int Suppl 106:S17–S26CrossRef
93.
go back to reference Zhu K, Kakehi T, Matsumoto M et al (2015 2015-06-01) NADPH oxidase NOX1 is involved in activation of protein kinase C and premature senescence in early stage diabetic kidney. Free Radic Biol Med 83:21–30PubMedCrossRef Zhu K, Kakehi T, Matsumoto M et al (2015 2015-06-01) NADPH oxidase NOX1 is involved in activation of protein kinase C and premature senescence in early stage diabetic kidney. Free Radic Biol Med 83:21–30PubMedCrossRef
94.
go back to reference Lacraz G, Figeac F, Movassat J et al (2009 2009-08-05) Diabetic beta-cells can achieve self-protection against oxidative stress through an adaptive up-regulation of their antioxidant defenses. Plos One 4(8):e6500PubMedPubMedCentralCrossRef Lacraz G, Figeac F, Movassat J et al (2009 2009-08-05) Diabetic beta-cells can achieve self-protection against oxidative stress through an adaptive up-regulation of their antioxidant defenses. Plos One 4(8):e6500PubMedPubMedCentralCrossRef
95.
go back to reference Koh G, Yang EJ, Kim MK, Lee SA, Lee DH (2013 2013-01-20) Alpha-lipoic acid treatment reverses 2-deoxy-D-ribose-induced oxidative damage and suppression of insulin expression in pancreatic beta-cells. Biol Pharm Bull 36(10):1570–1576PubMedCrossRef Koh G, Yang EJ, Kim MK, Lee SA, Lee DH (2013 2013-01-20) Alpha-lipoic acid treatment reverses 2-deoxy-D-ribose-induced oxidative damage and suppression of insulin expression in pancreatic beta-cells. Biol Pharm Bull 36(10):1570–1576PubMedCrossRef
96.
go back to reference Liu P, Su J, Song X, Wang S (2017 2017-12-02) Activation of nuclear beta-catenin/c-Myc axis promotes oxidative stress injury in streptozotocin-induced diabetic cardiomyopathy. Biochem Biophys Res Commun 493(4):1573–1580PubMedCrossRef Liu P, Su J, Song X, Wang S (2017 2017-12-02) Activation of nuclear beta-catenin/c-Myc axis promotes oxidative stress injury in streptozotocin-induced diabetic cardiomyopathy. Biochem Biophys Res Commun 493(4):1573–1580PubMedCrossRef
97.
go back to reference Guldiken B, Demir M, Guldiken S, Turgut N, Turgut B, Tugrul A (2009 2009-12-01) Oxidative stress and total antioxidant capacity in diabetic and nondiabetic acute ischemic stroke patients. Clin Appl Thromb Hemost 15(6):695–700PubMedCrossRef Guldiken B, Demir M, Guldiken S, Turgut N, Turgut B, Tugrul A (2009 2009-12-01) Oxidative stress and total antioxidant capacity in diabetic and nondiabetic acute ischemic stroke patients. Clin Appl Thromb Hemost 15(6):695–700PubMedCrossRef
98.
go back to reference Kang KW, Lee SJ, Park JW, Kim SG (2002 2002-11-01) Phosphatidylinositol 3-kinase regulates nuclear translocation of NF-E2-related factor 2 through actin rearrangement in response to oxidative stress. Mol Pharmacol 62(5):1001–1010PubMedCrossRef Kang KW, Lee SJ, Park JW, Kim SG (2002 2002-11-01) Phosphatidylinositol 3-kinase regulates nuclear translocation of NF-E2-related factor 2 through actin rearrangement in response to oxidative stress. Mol Pharmacol 62(5):1001–1010PubMedCrossRef
99.
go back to reference Zhang Q, Huang WD, Lv XY, Yang YM (2012 2012-05-01) Puerarin protects differentiated PC12 cells from H(2)O(2)-induced apoptosis through the PI3K/Akt signalling pathway. Cell Biol Int 36(5):419–426PubMedCrossRef Zhang Q, Huang WD, Lv XY, Yang YM (2012 2012-05-01) Puerarin protects differentiated PC12 cells from H(2)O(2)-induced apoptosis through the PI3K/Akt signalling pathway. Cell Biol Int 36(5):419–426PubMedCrossRef
100.
go back to reference Fu J, Huang H, Liu J, Pi R, Chen J, Liu P (2007 2007-07-30) Tanshinone IIA protects cardiac myocytes against oxidative stress-triggered damage and apoptosis. Eur J Pharmacol 568(1–3):213–221PubMedCrossRef Fu J, Huang H, Liu J, Pi R, Chen J, Liu P (2007 2007-07-30) Tanshinone IIA protects cardiac myocytes against oxidative stress-triggered damage and apoptosis. Eur J Pharmacol 568(1–3):213–221PubMedCrossRef
101.
go back to reference Gustafsson AB, Gottlieb RA (2003 2003-11-01) Mechanisms of apoptosis in the heart. J Clin Immunol 23(6):447–459PubMedCrossRef Gustafsson AB, Gottlieb RA (2003 2003-11-01) Mechanisms of apoptosis in the heart. J Clin Immunol 23(6):447–459PubMedCrossRef
102.
go back to reference Tabassum H, Parvez S, Pasha ST, Banerjee BD, Raisuddin S (2010 2010-07-01) Protective effect of lipoic acid against methotrexate-induced oxidative stress in liver mitochondria. Food Chem Toxicol 48(7):1973–1979PubMedCrossRef Tabassum H, Parvez S, Pasha ST, Banerjee BD, Raisuddin S (2010 2010-07-01) Protective effect of lipoic acid against methotrexate-induced oxidative stress in liver mitochondria. Food Chem Toxicol 48(7):1973–1979PubMedCrossRef
103.
go back to reference Adams JM, Cory S (1998 1998-08-28) The Bcl-2 protein family: arbiters of cell survival. Science 281(5381):1322–1326PubMedCrossRef Adams JM, Cory S (1998 1998-08-28) The Bcl-2 protein family: arbiters of cell survival. Science 281(5381):1322–1326PubMedCrossRef
104.
go back to reference Sun Y, Su Q, Li L, Wang X, Lu Y, Liang J (2017 2017-05-10) MiR-486 regulates cardiomyocyte apoptosis by p53-mediated BCL-2 associated mitochondrial apoptotic pathway. BMC Cardiovasc Disord 17(1):119PubMedPubMedCentralCrossRef Sun Y, Su Q, Li L, Wang X, Lu Y, Liang J (2017 2017-05-10) MiR-486 regulates cardiomyocyte apoptosis by p53-mediated BCL-2 associated mitochondrial apoptotic pathway. BMC Cardiovasc Disord 17(1):119PubMedPubMedCentralCrossRef
105.
go back to reference Han MM, Wang WF, Liu MY et al (2014 2014-04-01) FGF-21 protects H9c2 cardiomyoblasts against hydrogen peroxide-induced oxidative stress injury. Yao Xue Xue Bao 49(4):470–475PubMed Han MM, Wang WF, Liu MY et al (2014 2014-04-01) FGF-21 protects H9c2 cardiomyoblasts against hydrogen peroxide-induced oxidative stress injury. Yao Xue Xue Bao 49(4):470–475PubMed
106.
go back to reference Yu Y, Li S, Liu Y et al (2015 2015-03-01) Fibroblast growth factor 21 (FGF21) ameliorates collagen-induced arthritis through modulating oxidative stress and suppressing nuclear factor-kappa B pathway. Int Immunopharmacol 25(1):74–82PubMedCrossRef Yu Y, Li S, Liu Y et al (2015 2015-03-01) Fibroblast growth factor 21 (FGF21) ameliorates collagen-induced arthritis through modulating oxidative stress and suppressing nuclear factor-kappa B pathway. Int Immunopharmacol 25(1):74–82PubMedCrossRef
107.
go back to reference Ge X, Chen C, Hui X, Wang Y, Lam KS, Xu A (2011 2011-10-07) Fibroblast growth factor 21 induces glucose transporter-1 expression through activation of the serum response factor/Ets-like protein-1 in adipocytes. J Biol Chem 286(40):34533–34541PubMedPubMedCentralCrossRef Ge X, Chen C, Hui X, Wang Y, Lam KS, Xu A (2011 2011-10-07) Fibroblast growth factor 21 induces glucose transporter-1 expression through activation of the serum response factor/Ets-like protein-1 in adipocytes. J Biol Chem 286(40):34533–34541PubMedPubMedCentralCrossRef
108.
go back to reference Yan X, Chen J, Zhang C et al (2015 2015-07-01) FGF21 deletion exacerbates diabetic cardiomyopathy by aggravating cardiac lipid accumulation. J Cell Mol Med 19(7):1557–1568PubMedPubMedCentralCrossRef Yan X, Chen J, Zhang C et al (2015 2015-07-01) FGF21 deletion exacerbates diabetic cardiomyopathy by aggravating cardiac lipid accumulation. J Cell Mol Med 19(7):1557–1568PubMedPubMedCentralCrossRef
109.
go back to reference Potthoff MJ, Inagaki T, Satapati S et al (2009 2009-06-30) FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci U S A 106(26):10853–10858PubMedPubMedCentralCrossRef Potthoff MJ, Inagaki T, Satapati S et al (2009 2009-06-30) FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci U S A 106(26):10853–10858PubMedPubMedCentralCrossRef
110.
go back to reference Bugger H, Abel ED (2009 2009-09-01) Rodent models of diabetic cardiomyopathy. Dis Model Mech 2(9–10):454–466PubMedCrossRef Bugger H, Abel ED (2009 2009-09-01) Rodent models of diabetic cardiomyopathy. Dis Model Mech 2(9–10):454–466PubMedCrossRef
111.
go back to reference Xiao Y, Xu A, Law LS et al (2012 2012-01-01) Distinct changes in serum fibroblast growth factor 21 levels in different subtypes of diabetes. J Clin Endocrinol Metab 97(1):E54–E58PubMedCrossRef Xiao Y, Xu A, Law LS et al (2012 2012-01-01) Distinct changes in serum fibroblast growth factor 21 levels in different subtypes of diabetes. J Clin Endocrinol Metab 97(1):E54–E58PubMedCrossRef
112.
go back to reference Yang J, Sambandam N, Han X et al (2007 2007-04-27) CD36 deficiency rescues lipotoxic cardiomyopathy. Circ Res 100(8):1208–1217PubMedCrossRef Yang J, Sambandam N, Han X et al (2007 2007-04-27) CD36 deficiency rescues lipotoxic cardiomyopathy. Circ Res 100(8):1208–1217PubMedCrossRef
113.
go back to reference Geloen A, Helin L, Geeraert B, Malaud E, Holvoet P, Marguerie G (2012 2012-01-20) CD36 inhibitors reduce postprandial hypertriglyceridemia and protect against diabetic dyslipidemia and atherosclerosis. Plos One 7(5):e37633PubMedPubMedCentralCrossRef Geloen A, Helin L, Geeraert B, Malaud E, Holvoet P, Marguerie G (2012 2012-01-20) CD36 inhibitors reduce postprandial hypertriglyceridemia and protect against diabetic dyslipidemia and atherosclerosis. Plos One 7(5):e37633PubMedPubMedCentralCrossRef
114.
go back to reference Luiken JJ, Coort SL, Koonen DP et al (2004 2004-04-01) Regulation of cardiac long-chain fatty acid and glucose uptake by translocation of substrate transporters. Pflugers Arch 448(1):1–15PubMedCrossRef Luiken JJ, Coort SL, Koonen DP et al (2004 2004-04-01) Regulation of cardiac long-chain fatty acid and glucose uptake by translocation of substrate transporters. Pflugers Arch 448(1):1–15PubMedCrossRef
115.
go back to reference Greenwalt DE, Scheck SH, Rhinehart-Jones T (1995 1995-09-01) Heart CD36 expression is increased in murine models of diabetes and in mice fed a high fat diet. J Clin Invest 96(3):1382–1388PubMedPubMedCentralCrossRef Greenwalt DE, Scheck SH, Rhinehart-Jones T (1995 1995-09-01) Heart CD36 expression is increased in murine models of diabetes and in mice fed a high fat diet. J Clin Invest 96(3):1382–1388PubMedPubMedCentralCrossRef
116.
go back to reference Fukuda T, Fukui M, Tanaka M et al (2015 2015-05-01) Effect of Brazilian green propolis in patients with type 2 diabetes: a double-blind randomized placebo-controlled study. Biomed Rep 3(3):355–360PubMedPubMedCentralCrossRef Fukuda T, Fukui M, Tanaka M et al (2015 2015-05-01) Effect of Brazilian green propolis in patients with type 2 diabetes: a double-blind randomized placebo-controlled study. Biomed Rep 3(3):355–360PubMedPubMedCentralCrossRef
117.
go back to reference Pham T, Loiselle D, Power A, Hickey AJ (2014 2014-09-15) Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart. Am J Physiol Cell Physiol 307(6):C499–C507PubMedCrossRef Pham T, Loiselle D, Power A, Hickey AJ (2014 2014-09-15) Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart. Am J Physiol Cell Physiol 307(6):C499–C507PubMedCrossRef
118.
go back to reference Mori J, Patel VB, Abo AO et al (2014 2014-03-01) Angiotensin 1–7 ameliorates diabetic cardiomyopathy and diastolic dysfunction in db/db mice by reducing lipotoxicity and inflammation. Circ Heart Fail 7(2):327–339PubMedCrossRef Mori J, Patel VB, Abo AO et al (2014 2014-03-01) Angiotensin 1–7 ameliorates diabetic cardiomyopathy and diastolic dysfunction in db/db mice by reducing lipotoxicity and inflammation. Circ Heart Fail 7(2):327–339PubMedCrossRef
119.
go back to reference Ilkun O, Boudina S (2013 2013-01-20) Cardiac dysfunction and oxidative stress in the metabolic syndrome: an update on antioxidant therapies. Curr Pharm Des 19(27):4806–4817PubMedPubMedCentralCrossRef Ilkun O, Boudina S (2013 2013-01-20) Cardiac dysfunction and oxidative stress in the metabolic syndrome: an update on antioxidant therapies. Curr Pharm Des 19(27):4806–4817PubMedPubMedCentralCrossRef
Metadata
Title
A review of fibroblast growth factor 21 in diabetic cardiomyopathy
Authors
Xiang Zhang
Luo Yang
Xiongfeng Xu
Fengjuan Tang
Peng Yi
Bo Qiu
Yarong Hao
Publication date
01-11-2019
Publisher
Springer US
Published in
Heart Failure Reviews / Issue 6/2019
Print ISSN: 1382-4147
Electronic ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-019-09809-x

Other articles of this Issue 6/2019

Heart Failure Reviews 6/2019 Go to the issue