Skip to main content
Top
Published in: Heart Failure Reviews 1/2016

01-01-2016

MELAS syndrome and cardiomyopathy: linking mitochondrial function to heart failure pathogenesis

Authors: Ying-Han R. Hsu, Haran Yogasundaram, Nirmal Parajuli, Lucas Valtuille, Consolato Sergi, Gavin Y. Oudit

Published in: Heart Failure Reviews | Issue 1/2016

Login to get access

Abstract

Heart failure remains an important clinical burden, and mitochondrial dysfunction plays a key role in its pathogenesis. The heart has a high metabolic demand, and mitochondrial function is a key determinant of myocardial performance. In mitochondrial disorders, hypertrophic remodeling is the early pattern of cardiomyopathy with progression to dilated cardiomyopathy, conduction defects and ventricular pre-excitation occurring in a significant proportion of patients. Cardiac dysfunction occurs in approximately a third of patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, a stereotypical example of a mitochondrial disorder leading to a cardiomyopathy. We performed unique comparative ultrastructural and gene expression in a MELAS heart compared with non-failing controls. Our results showed a remarkable increase in mitochondrial inclusions and increased abnormal mitochondria in MELAS cardiomyopathy coupled with variable sarcomere thickening, heterogeneous distribution of affected cardiomyocytes and a greater elevation in the expression of disease markers. Investigation and management of patients with mitochondrial cardiomyopathy should follow the well-described contemporary heart failure clinical practice guidelines and include an important role of medical and device therapies. Directed metabolic therapy is lacking, but current research strategies are dedicated toward improving mitochondrial function in patients with mitochondrial disorders.
Literature
1.
go back to reference Mori J, Zhang L, Oudit GY, Lopaschuk GD (2013) Impact of the renin-angiotensin system on cardiac energy metabolism in heart failure. J Mol Cell Cardiol 63:98–106PubMedCrossRef Mori J, Zhang L, Oudit GY, Lopaschuk GD (2013) Impact of the renin-angiotensin system on cardiac energy metabolism in heart failure. J Mol Cell Cardiol 63:98–106PubMedCrossRef
3.
go back to reference Bates MG, Bourke JP, Giordano C, d’Amati G, Turnbull DM, Taylor RW (2012) Cardiac involvement in mitochondrial DNA disease: clinical spectrum, diagnosis, and management. Eur Heart J 33:3023–3033PubMedPubMedCentralCrossRef Bates MG, Bourke JP, Giordano C, d’Amati G, Turnbull DM, Taylor RW (2012) Cardiac involvement in mitochondrial DNA disease: clinical spectrum, diagnosis, and management. Eur Heart J 33:3023–3033PubMedPubMedCentralCrossRef
4.
go back to reference Williams RS (1995) Cardiac involvement in mitochondrial diseases, and vice versa. Circulation 91:1266–1268PubMedCrossRef Williams RS (1995) Cardiac involvement in mitochondrial diseases, and vice versa. Circulation 91:1266–1268PubMedCrossRef
5.
go back to reference Finsterer J, Kothari S (2014) Cardiac manifestations of primary mitochondrial disorders. Int J Cardiol 177:754–763PubMedCrossRef Finsterer J, Kothari S (2014) Cardiac manifestations of primary mitochondrial disorders. Int J Cardiol 177:754–763PubMedCrossRef
6.
go back to reference Wahbi K, Bougouin W, Behin A, Stojkovic T, Becane HM, Jardel C et al (2015) Long-term cardiac prognosis and risk stratification in 260 adults presenting with mitochondrial diseases. Eur Heart J 36:2886–2893PubMedCrossRef Wahbi K, Bougouin W, Behin A, Stojkovic T, Becane HM, Jardel C et al (2015) Long-term cardiac prognosis and risk stratification in 260 adults presenting with mitochondrial diseases. Eur Heart J 36:2886–2893PubMedCrossRef
7.
go back to reference Koopman WJ, Willems PH, Smeitink JA (2012) Monogenic mitochondrial disorders. N Engl J Med 366:1132–1141PubMedCrossRef Koopman WJ, Willems PH, Smeitink JA (2012) Monogenic mitochondrial disorders. N Engl J Med 366:1132–1141PubMedCrossRef
8.
go back to reference Elliott HR, Samuels DC, Eden JA, Relton CL, Chinnery PF (2008) Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet 83:254–260PubMedPubMedCentralCrossRef Elliott HR, Samuels DC, Eden JA, Relton CL, Chinnery PF (2008) Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet 83:254–260PubMedPubMedCentralCrossRef
9.
go back to reference Gallagher D, Belmonte D, Deurenberg P, Wang Z, Krasnow N, Pi-Sunyer FX et al (1998) Organ-tissue mass measurement allows modeling of REE and metabolically active tissue mass. Am J Physiol 275:E249–E258PubMed Gallagher D, Belmonte D, Deurenberg P, Wang Z, Krasnow N, Pi-Sunyer FX et al (1998) Organ-tissue mass measurement allows modeling of REE and metabolically active tissue mass. Am J Physiol 275:E249–E258PubMed
10.
go back to reference Herrmann G, Decherd GM (1939) The chemical nature of heart failure. Ann Intern Med 12:1233–1244CrossRef Herrmann G, Decherd GM (1939) The chemical nature of heart failure. Ann Intern Med 12:1233–1244CrossRef
11.
go back to reference Marin-Garcia J, Goldenthal MJ (2008) Mitochondrial centrality in heart failure. Heart Fail Rev 13:137–150PubMedCrossRef Marin-Garcia J, Goldenthal MJ (2008) Mitochondrial centrality in heart failure. Heart Fail Rev 13:137–150PubMedCrossRef
12.
go back to reference Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465PubMedCrossRef Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465PubMedCrossRef
13.
go back to reference Meyers DE, Basha HI, Koenig MK (2013) Mitochondrial cardiomyopathy: pathophysiology, diagnosis, and management. Tex Heart Inst J 40:385–394PubMedPubMedCentral Meyers DE, Basha HI, Koenig MK (2013) Mitochondrial cardiomyopathy: pathophysiology, diagnosis, and management. Tex Heart Inst J 40:385–394PubMedPubMedCentral
15.
go back to reference Ahuja P, Wanagat J, Wang Z, Wang Y, Liem DA, Ping P et al (2013) Divergent mitochondrial biogenesis responses in human cardiomyopathy. Circulation 127:1957–1967PubMedPubMedCentralCrossRef Ahuja P, Wanagat J, Wang Z, Wang Y, Liem DA, Ping P et al (2013) Divergent mitochondrial biogenesis responses in human cardiomyopathy. Circulation 127:1957–1967PubMedPubMedCentralCrossRef
17.
go back to reference Uldry M, Yang W, St-Pierre J, Lin J, Seale P, Spiegelman BM (2006) Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab 3:333–341PubMedCrossRef Uldry M, Yang W, St-Pierre J, Lin J, Seale P, Spiegelman BM (2006) Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab 3:333–341PubMedCrossRef
18.
go back to reference Ahuja P, Zhao P, Angelis E, Ruan H, Korge P, Olson A et al (2010) Myc controls transcriptional regulation of cardiac metabolism and mitochondrial biogenesis in response to pathological stress in mice. J Clin Investig 120:1494–1505PubMedPubMedCentralCrossRef Ahuja P, Zhao P, Angelis E, Ruan H, Korge P, Olson A et al (2010) Myc controls transcriptional regulation of cardiac metabolism and mitochondrial biogenesis in response to pathological stress in mice. J Clin Investig 120:1494–1505PubMedPubMedCentralCrossRef
19.
go back to reference Arany Z, Novikov M, Chin S, Ma Y, Rosenzweig A, Spiegelman BM (2006) Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-gamma coactivator 1alpha. Proc Natl Acad Sci USA 103:10086–10091PubMedPubMedCentralCrossRef Arany Z, Novikov M, Chin S, Ma Y, Rosenzweig A, Spiegelman BM (2006) Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-gamma coactivator 1alpha. Proc Natl Acad Sci USA 103:10086–10091PubMedPubMedCentralCrossRef
20.
go back to reference Schwer B, Verdin E (2008) Conserved metabolic regulatory functions of sirtuins. Cell Metab 7:104–112PubMedCrossRef Schwer B, Verdin E (2008) Conserved metabolic regulatory functions of sirtuins. Cell Metab 7:104–112PubMedCrossRef
22.
go back to reference Linzbach AJ (1960) Heart failure from the point of view of quantitative anatomy. Am J Cardiol 5:370–382PubMedCrossRef Linzbach AJ (1960) Heart failure from the point of view of quantitative anatomy. Am J Cardiol 5:370–382PubMedCrossRef
23.
go back to reference Fayssoil A (2009) Heart diseases in mitochondrial encephalomyopathy, lactic acidosis, and stroke syndrome. Congest Heart Fail 15:284–287PubMedCrossRef Fayssoil A (2009) Heart diseases in mitochondrial encephalomyopathy, lactic acidosis, and stroke syndrome. Congest Heart Fail 15:284–287PubMedCrossRef
24.
go back to reference Sproule DM, Kaufmann P (2008) Mitochondrial encephalopathy, lactic acidosis, and strokelike episodes: basic concepts, clinical phenotype, and therapeutic management of MELAS syndrome. Ann N Y Acad Sci 1142:133–158PubMedCrossRef Sproule DM, Kaufmann P (2008) Mitochondrial encephalopathy, lactic acidosis, and strokelike episodes: basic concepts, clinical phenotype, and therapeutic management of MELAS syndrome. Ann N Y Acad Sci 1142:133–158PubMedCrossRef
25.
go back to reference Mancuso M, Orsucci D, Angelini C, Bertini E, Carelli V, Comi GP et al (2014) The m.3243A>G mitochondrial DNA mutation and related phenotypes. A matter of gender? J Neurol 261:504–510PubMedCrossRef Mancuso M, Orsucci D, Angelini C, Bertini E, Carelli V, Comi GP et al (2014) The m.3243A>G mitochondrial DNA mutation and related phenotypes. A matter of gender? J Neurol 261:504–510PubMedCrossRef
26.
go back to reference Nesbitt V, Pitceathly RD, Turnbull DM, Taylor RW, Sweeney MG, Mudanohwo EE et al (2013) The UK MRC Mitochondrial Disease Patient Cohort Study: clinical phenotypes associated with the m.3243A>G mutation–implications for diagnosis and management. J Neurol Neurosurg Psychiatry 84:936–938PubMedCrossRef Nesbitt V, Pitceathly RD, Turnbull DM, Taylor RW, Sweeney MG, Mudanohwo EE et al (2013) The UK MRC Mitochondrial Disease Patient Cohort Study: clinical phenotypes associated with the m.3243A>G mutation–implications for diagnosis and management. J Neurol Neurosurg Psychiatry 84:936–938PubMedCrossRef
27.
go back to reference Silvestri G, Bertini E, Servidei S, Rana M, Zachara E, Ricci E et al (1997) Maternally inherited cardiomyopathy: a new phenotype associated with the A to G AT nt.3243 of mitochondrial DNA (MELAS mutation). Muscle Nerve 20:221–225PubMedCrossRef Silvestri G, Bertini E, Servidei S, Rana M, Zachara E, Ricci E et al (1997) Maternally inherited cardiomyopathy: a new phenotype associated with the A to G AT nt.3243 of mitochondrial DNA (MELAS mutation). Muscle Nerve 20:221–225PubMedCrossRef
28.
go back to reference Stalder N, Yarol N, Tozzi P, Rotman S, Morris M, Fellmann F et al (2012) Mitochondrial A3243G mutation with manifestation of acute dilated cardiomyopathy. Circu Heart Fail 5:e1–e3CrossRef Stalder N, Yarol N, Tozzi P, Rotman S, Morris M, Fellmann F et al (2012) Mitochondrial A3243G mutation with manifestation of acute dilated cardiomyopathy. Circu Heart Fail 5:e1–e3CrossRef
29.
go back to reference Roberts NK, Perloff JK, Kark RA (1979) Cardiac conduction in the Kearns–Sayre syndrome (a neuromuscular disorder associated with progressive external ophthalmoplegia and pigmentary retinopathy). Report of 2 cases and review of 17 published cases. Am J Cardiol 44:1396–1400PubMedCrossRef Roberts NK, Perloff JK, Kark RA (1979) Cardiac conduction in the Kearns–Sayre syndrome (a neuromuscular disorder associated with progressive external ophthalmoplegia and pigmentary retinopathy). Report of 2 cases and review of 17 published cases. Am J Cardiol 44:1396–1400PubMedCrossRef
30.
go back to reference Malfatti E, Laforet P, Jardel C, Stojkovic T, Behin A, Eymard B et al (2013) High risk of severe cardiac adverse events in patients with mitochondrial m.3243A>G mutation. Neurology 80:100–105PubMedCrossRef Malfatti E, Laforet P, Jardel C, Stojkovic T, Behin A, Eymard B et al (2013) High risk of severe cardiac adverse events in patients with mitochondrial m.3243A>G mutation. Neurology 80:100–105PubMedCrossRef
31.
go back to reference Okajima Y, Tanabe Y, Takayanagi M, Aotsuka H (1998) A follow up study of myocardial involvement in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). Heart 80:292–295PubMedPubMedCentralCrossRef Okajima Y, Tanabe Y, Takayanagi M, Aotsuka H (1998) A follow up study of myocardial involvement in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). Heart 80:292–295PubMedPubMedCentralCrossRef
32.
go back to reference Sproule DM, Kaufmann P, Engelstad K, Starc TJ, Hordof AJ, De Vivo DC (2007) Wolff–Parkinson–White syndrome in patients with MELAS. Arch Neurol 64:1625–1627PubMedCrossRef Sproule DM, Kaufmann P, Engelstad K, Starc TJ, Hordof AJ, De Vivo DC (2007) Wolff–Parkinson–White syndrome in patients with MELAS. Arch Neurol 64:1625–1627PubMedCrossRef
33.
go back to reference Bogousslavsky J, Perentes E, Deruaz JP, Regli F (1982) Mitochondrial myopathy and cardiomyopathy with neurodegenerative features and multiple brain infarcts. J Neurol Sci 55:351–357PubMedCrossRef Bogousslavsky J, Perentes E, Deruaz JP, Regli F (1982) Mitochondrial myopathy and cardiomyopathy with neurodegenerative features and multiple brain infarcts. J Neurol Sci 55:351–357PubMedCrossRef
34.
go back to reference Nishizawa M, Tanaka K, Shinozawa K, Kuwabara T, Atsumi T, Miyatake T et al (1987) A mitochondrial encephalomyopathy with cardiomyopathy. A case revealing a defect of complex I in the respiratory chain. J Neurol Sci 78:189–201PubMedCrossRef Nishizawa M, Tanaka K, Shinozawa K, Kuwabara T, Atsumi T, Miyatake T et al (1987) A mitochondrial encephalomyopathy with cardiomyopathy. A case revealing a defect of complex I in the respiratory chain. J Neurol Sci 78:189–201PubMedCrossRef
35.
go back to reference Oldfors A, Tulinius M, Holme E, Kalimo H, Kristiansson B, Eriksson BO (1987) Mitochondrial encephalomyopathy. A variant with heart failure and liver steatosis. Acta Neuropathol 74:287–293PubMedCrossRef Oldfors A, Tulinius M, Holme E, Kalimo H, Kristiansson B, Eriksson BO (1987) Mitochondrial encephalomyopathy. A variant with heart failure and liver steatosis. Acta Neuropathol 74:287–293PubMedCrossRef
36.
go back to reference Hamazaki S, Okada S, Kusaka H, Fujii T, Okuno T, Kashu I et al (1989) Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. Report of an autopsy. Acta Pathol Jpn 39:599–606PubMed Hamazaki S, Okada S, Kusaka H, Fujii T, Okuno T, Kashu I et al (1989) Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. Report of an autopsy. Acta Pathol Jpn 39:599–606PubMed
37.
go back to reference Fujii T, Okuno T, Ito M, Mutoh K, Horiguchi Y, Tashiro H et al (1991) MELAS of infantile onset: mitochondrial angiopathy or cytopathy? J Neurol Sci 103:37–41PubMedCrossRef Fujii T, Okuno T, Ito M, Mutoh K, Horiguchi Y, Tashiro H et al (1991) MELAS of infantile onset: mitochondrial angiopathy or cytopathy? J Neurol Sci 103:37–41PubMedCrossRef
38.
go back to reference Muller-Hocker J, Hubner G, Bise K, Forster C, Hauck S, Paetzke I et al (1993) Generalized mitochondrial microangiopathy and vascular cytochrome c oxidase deficiency. Occurrence in a case of MELAS syndrome with mitochondrial cardiomyopathy-myopathy and combined complex I/IV deficiency. Arch Pathol Lab Med 117:202–210PubMed Muller-Hocker J, Hubner G, Bise K, Forster C, Hauck S, Paetzke I et al (1993) Generalized mitochondrial microangiopathy and vascular cytochrome c oxidase deficiency. Occurrence in a case of MELAS syndrome with mitochondrial cardiomyopathy-myopathy and combined complex I/IV deficiency. Arch Pathol Lab Med 117:202–210PubMed
39.
go back to reference Sato W, Tanaka M, Sugiyama S, Nemoto T, Harada K, Miura Y et al (1994) Cardiomyopathy and angiopathy in patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes. Am Heart J 128:733–741PubMedCrossRef Sato W, Tanaka M, Sugiyama S, Nemoto T, Harada K, Miura Y et al (1994) Cardiomyopathy and angiopathy in patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes. Am Heart J 128:733–741PubMedCrossRef
40.
go back to reference Ishikawa Y, Asuwa N, Ishii T, Masuda S, Kiguchi H, Hirai S et al (1995) Severe mitochondrial cardiomyopathy and extra-neuromuscular abnormalities in mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episode (MELAS). Pathol Res Pract 191:64–69 discussion 70–75 PubMedCrossRef Ishikawa Y, Asuwa N, Ishii T, Masuda S, Kiguchi H, Hirai S et al (1995) Severe mitochondrial cardiomyopathy and extra-neuromuscular abnormalities in mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episode (MELAS). Pathol Res Pract 191:64–69 discussion 70–75 PubMedCrossRef
41.
go back to reference Terauchi A, Tamagawa K, Morimatsu Y, Kobayashi M, Sano T, Yoda S (1996) An autopsy case of mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) with a point mutation of mitochondrial DNA. Brain Dev 18:224–229PubMedCrossRef Terauchi A, Tamagawa K, Morimatsu Y, Kobayashi M, Sano T, Yoda S (1996) An autopsy case of mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) with a point mutation of mitochondrial DNA. Brain Dev 18:224–229PubMedCrossRef
42.
go back to reference Chin J, Marotta R, Chiotis M, Allan EH, Collins SJ (2014) Detection rates and phenotypic spectrum of m.3243A>G in the MT-TL1 gene: a molecular diagnostic laboratory perspective. Mitochondrion 17:34–41PubMedCrossRef Chin J, Marotta R, Chiotis M, Allan EH, Collins SJ (2014) Detection rates and phenotypic spectrum of m.3243A>G in the MT-TL1 gene: a molecular diagnostic laboratory perspective. Mitochondrion 17:34–41PubMedCrossRef
43.
go back to reference Pang CY, Lee HC, Wei YH (2001) Enhanced oxidative damage in human cells harboring A3243G mutation of mitochondrial DNA: implication of oxidative stress in the pathogenesis of mitochondrial diabetes. Diabetes Res Clin Pract 54(Suppl 2):S45–S56PubMedCrossRef Pang CY, Lee HC, Wei YH (2001) Enhanced oxidative damage in human cells harboring A3243G mutation of mitochondrial DNA: implication of oxidative stress in the pathogenesis of mitochondrial diabetes. Diabetes Res Clin Pract 54(Suppl 2):S45–S56PubMedCrossRef
44.
go back to reference Katayama Y, Maeda K, Iizuka T, Hayashi M, Hashizume Y, Sanada M et al (2009) Accumulation of oxidative stress around the stroke-like lesions of MELAS patients. Mitochondrion 9:306–313PubMedCrossRef Katayama Y, Maeda K, Iizuka T, Hayashi M, Hashizume Y, Sanada M et al (2009) Accumulation of oxidative stress around the stroke-like lesions of MELAS patients. Mitochondrion 9:306–313PubMedCrossRef
45.
go back to reference Teodorescu C, Reinier K, Dervan C, Uy-Evanado A, Samara M, Mariani R et al (2010) Factors associated with pulseless electric activity versus ventricular fibrillation: the Oregon sudden unexpected death study. Circulation 122:2116–2122PubMedCrossRef Teodorescu C, Reinier K, Dervan C, Uy-Evanado A, Samara M, Mariani R et al (2010) Factors associated with pulseless electric activity versus ventricular fibrillation: the Oregon sudden unexpected death study. Circulation 122:2116–2122PubMedCrossRef
46.
go back to reference Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE et al (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123PubMedPubMedCentralCrossRef Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE et al (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123PubMedPubMedCentralCrossRef
47.
go back to reference Ichikawa Y, Ghanefar M, Bayeva M, Wu R, Khechaduri A, Naga Prasad SV et al (2014) Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Investig 124:617–630PubMedPubMedCentralCrossRef Ichikawa Y, Ghanefar M, Bayeva M, Wu R, Khechaduri A, Naga Prasad SV et al (2014) Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Investig 124:617–630PubMedPubMedCentralCrossRef
48.
49.
go back to reference Weidemann F, Rummey C, Bijnens B, Stork S, Jasaityte R, Dhooge J et al (2012) The heart in Friedreich ataxia: definition of cardiomyopathy, disease severity, and correlation with neurological symptoms. Circulation 125:1626–1634PubMedCrossRef Weidemann F, Rummey C, Bijnens B, Stork S, Jasaityte R, Dhooge J et al (2012) The heart in Friedreich ataxia: definition of cardiomyopathy, disease severity, and correlation with neurological symptoms. Circulation 125:1626–1634PubMedCrossRef
50.
go back to reference Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427PubMedCrossRef Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427PubMedCrossRef
51.
go back to reference Lodi R, Rajagopalan B, Blamire AM, Cooper JM, Davies CH, Bradley JL et al (2001) Cardiac energetics are abnormal in Friedreich ataxia patients in the absence of cardiac dysfunction and hypertrophy: an in vivo 31P magnetic resonance spectroscopy study. Cardiovasc Res 52:111–119PubMedCrossRef Lodi R, Rajagopalan B, Blamire AM, Cooper JM, Davies CH, Bradley JL et al (2001) Cardiac energetics are abnormal in Friedreich ataxia patients in the absence of cardiac dysfunction and hypertrophy: an in vivo 31P magnetic resonance spectroscopy study. Cardiovasc Res 52:111–119PubMedCrossRef
52.
go back to reference Ricci JE, Gottlieb RA, Green DR (2003) Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis. J Cell Biol 160:65–75PubMedPubMedCentralCrossRef Ricci JE, Gottlieb RA, Green DR (2003) Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis. J Cell Biol 160:65–75PubMedPubMedCentralCrossRef
53.
go back to reference Gunter TE, Buntinas L, Sparagna G, Eliseev R, Gunter K (2000) Mitochondrial calcium transport: mechanisms and functions. Cell Calcium 28:285–296PubMedCrossRef Gunter TE, Buntinas L, Sparagna G, Eliseev R, Gunter K (2000) Mitochondrial calcium transport: mechanisms and functions. Cell Calcium 28:285–296PubMedCrossRef
54.
go back to reference Brown DT, Herbert M, Lamb VK, Chinnery PF, Taylor RW, Lightowlers RN et al (2006) Transmission of mitochondrial DNA disorders: possibilities for the future. Lancet 368:87–89PubMedCrossRef Brown DT, Herbert M, Lamb VK, Chinnery PF, Taylor RW, Lightowlers RN et al (2006) Transmission of mitochondrial DNA disorders: possibilities for the future. Lancet 368:87–89PubMedCrossRef
55.
go back to reference Pfeffer G, Majamaa K, Turnbull DM, Thorburn D, Chinnery PF (2012) Treatment for mitochondrial disorders. Cochrane Database Syst Rev 4:CD004426PubMed Pfeffer G, Majamaa K, Turnbull DM, Thorburn D, Chinnery PF (2012) Treatment for mitochondrial disorders. Cochrane Database Syst Rev 4:CD004426PubMed
56.
go back to reference Lagedrost SJ, Sutton MSJ, Cohen MS, Satou GM, Kaufman BD, Perlman SL et al (2011) Idebenone in Friedreich ataxia cardiomyopathy—results from a 6-month phase III study (IONIA). Am Heart J 161(639–45):e1PubMed Lagedrost SJ, Sutton MSJ, Cohen MS, Satou GM, Kaufman BD, Perlman SL et al (2011) Idebenone in Friedreich ataxia cardiomyopathy—results from a 6-month phase III study (IONIA). Am Heart J 161(639–45):e1PubMed
58.
go back to reference Murphy JL, Blakely EL, Schaefer AM, He L, Wyrick P, Haller RG et al (2008) Resistance training in patients with single, large-scale deletions of mitochondrial DNA. Brain J Neurol 131:2832–2840CrossRef Murphy JL, Blakely EL, Schaefer AM, He L, Wyrick P, Haller RG et al (2008) Resistance training in patients with single, large-scale deletions of mitochondrial DNA. Brain J Neurol 131:2832–2840CrossRef
59.
go back to reference Taivassalo T, Gardner JL, Taylor RW, Schaefer AM, Newman J, Barron MJ et al (2006) Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions. Brain J Neurol 129:3391–3401CrossRef Taivassalo T, Gardner JL, Taylor RW, Schaefer AM, Newman J, Barron MJ et al (2006) Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions. Brain J Neurol 129:3391–3401CrossRef
60.
go back to reference Bonnet D, Rustin P, Rotig A, Le Bidois J, Munnich A, Vouhe P et al (2001) Heart transplantation in children with mitochondrial cardiomyopathy. Heart 86:570–573PubMedPubMedCentralCrossRef Bonnet D, Rustin P, Rotig A, Le Bidois J, Munnich A, Vouhe P et al (2001) Heart transplantation in children with mitochondrial cardiomyopathy. Heart 86:570–573PubMedPubMedCentralCrossRef
61.
go back to reference Tranchant C, Mousson B, Mohr M, Dumoulin R, Welsch M, Weess C et al (1993) Cardiac transplantation in an incomplete Kearns–Sayre syndrome with mitochondrial DNA deletion. Neuromuscul Disord 3:561–566PubMedCrossRef Tranchant C, Mousson B, Mohr M, Dumoulin R, Welsch M, Weess C et al (1993) Cardiac transplantation in an incomplete Kearns–Sayre syndrome with mitochondrial DNA deletion. Neuromuscul Disord 3:561–566PubMedCrossRef
62.
go back to reference Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH et al (2013) 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128:1810–1852PubMedCrossRef Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH et al (2013) 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128:1810–1852PubMedCrossRef
63.
go back to reference Nakanishi M, Harada M, Tadamura E, Kotani H, Kawakami R, Kuwahara K et al (2007) Images in cardiovascular medicine. Mitochondrial cardiomyopathy evaluated with cardiac magnetic resonance. Circulation 116:e25–e26PubMedCrossRef Nakanishi M, Harada M, Tadamura E, Kotani H, Kawakami R, Kuwahara K et al (2007) Images in cardiovascular medicine. Mitochondrial cardiomyopathy evaluated with cardiac magnetic resonance. Circulation 116:e25–e26PubMedCrossRef
64.
go back to reference Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A et al (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 341:709–717PubMedCrossRef Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A et al (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 341:709–717PubMedCrossRef
65.
go back to reference Zannad F, McMurray JJ, Krum H, van Veldhuisen DJ, Swedberg K, Shi H et al (2011) Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med 364:11–21PubMedCrossRef Zannad F, McMurray JJ, Krum H, van Veldhuisen DJ, Swedberg K, Shi H et al (2011) Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med 364:11–21PubMedCrossRef
66.
go back to reference Schmauss D, Sodian R, Klopstock T, Deutsch MA, Kaczmarek I, Roemer U et al (2007) Cardiac transplantation in a 14-yr-old patient with mitochondrial encephalomyopathy. Pediatr Transplant 11:560–562PubMedCrossRef Schmauss D, Sodian R, Klopstock T, Deutsch MA, Kaczmarek I, Roemer U et al (2007) Cardiac transplantation in a 14-yr-old patient with mitochondrial encephalomyopathy. Pediatr Transplant 11:560–562PubMedCrossRef
67.
go back to reference Vardas PE, Auricchio A, Blanc JJ, Daubert JC, Drexler H, Ector H et al (2007) Guidelines for cardiac pacing and cardiac resynchronization therapy: The Task Force for Cardiac Pacing and Cardiac Resynchronization Therapy of the European Society of Cardiology. Developed in collaboration with the European Heart Rhythm Association. Eur Heart J 28:2256–2295PubMedCrossRef Vardas PE, Auricchio A, Blanc JJ, Daubert JC, Drexler H, Ector H et al (2007) Guidelines for cardiac pacing and cardiac resynchronization therapy: The Task Force for Cardiac Pacing and Cardiac Resynchronization Therapy of the European Society of Cardiology. Developed in collaboration with the European Heart Rhythm Association. Eur Heart J 28:2256–2295PubMedCrossRef
68.
go back to reference Epstein AE, DiMarco JP, Ellenbogen KA, Estes NA 3rd, Freedman RA, Gettes LS et al (2008) ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (writing committee to revise the ACC/AHA/NASPE 2002 guideline update for implantation of cardiac pacemakers and antiarrhythmia devices) developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. J Am Coll Cardiol 51:e1–e62PubMedCrossRef Epstein AE, DiMarco JP, Ellenbogen KA, Estes NA 3rd, Freedman RA, Gettes LS et al (2008) ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (writing committee to revise the ACC/AHA/NASPE 2002 guideline update for implantation of cardiac pacemakers and antiarrhythmia devices) developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. J Am Coll Cardiol 51:e1–e62PubMedCrossRef
69.
go back to reference Wahbi K, Larue S, Jardel C, Meune C, Stojkovic T, Ziegler F et al (2010) Cardiac involvement is frequent in patients with the m.8344A>G mutation of mitochondrial DNA. Neurology 74:674–677PubMedCrossRef Wahbi K, Larue S, Jardel C, Meune C, Stojkovic T, Ziegler F et al (2010) Cardiac involvement is frequent in patients with the m.8344A>G mutation of mitochondrial DNA. Neurology 74:674–677PubMedCrossRef
70.
go back to reference Majamaa-Voltti K, Peuhkurinen K, Kortelainen ML, Hassinen IE, Majamaa K (2002) Cardiac abnormalities in patients with mitochondrial DNA mutation 3243A>G. BMC Cardiovasc Disord 2:12PubMedPubMedCentralCrossRef Majamaa-Voltti K, Peuhkurinen K, Kortelainen ML, Hassinen IE, Majamaa K (2002) Cardiac abnormalities in patients with mitochondrial DNA mutation 3243A>G. BMC Cardiovasc Disord 2:12PubMedPubMedCentralCrossRef
71.
go back to reference Reddy P, Ocampo A, Suzuki K, Luo J, Bacman SR, Williams SL et al (2015) Selective elimination of mitochondrial mutations in the germline by genome editing. Cell 161:459–469PubMedPubMedCentralCrossRef Reddy P, Ocampo A, Suzuki K, Luo J, Bacman SR, Williams SL et al (2015) Selective elimination of mitochondrial mutations in the germline by genome editing. Cell 161:459–469PubMedPubMedCentralCrossRef
72.
go back to reference Durr A, Cossee M, Agid Y, Campuzano V, Mignard C, Penet C et al (1996) Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med 335:1169–1175PubMedCrossRef Durr A, Cossee M, Agid Y, Campuzano V, Mignard C, Penet C et al (1996) Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med 335:1169–1175PubMedCrossRef
73.
go back to reference Parkinson MH, Boesch S, Nachbauer W, Mariotti C, Giunti P (2013) Clinical features of Friedreich’s ataxia: classical and atypical phenotypes. J Neurochem 126(Suppl 1):103–117PubMedCrossRef Parkinson MH, Boesch S, Nachbauer W, Mariotti C, Giunti P (2013) Clinical features of Friedreich’s ataxia: classical and atypical phenotypes. J Neurochem 126(Suppl 1):103–117PubMedCrossRef
75.
go back to reference Khambatta S, Nguyen DL, Beckman TJ, Wittich CM (2014) Kearns–Sayre syndrome: a case series of 35 adults and children. Int J Gen Med 7:325–332PubMedPubMedCentral Khambatta S, Nguyen DL, Beckman TJ, Wittich CM (2014) Kearns–Sayre syndrome: a case series of 35 adults and children. Int J Gen Med 7:325–332PubMedPubMedCentral
76.
go back to reference Young TJ, Shah AK, Lee MH, Hayes DL (2005) Kearns–Sayre syndrome: a case report and review of cardiovascular complications. Pacing Clin Electrophysiol 28:454–457PubMedCrossRef Young TJ, Shah AK, Lee MH, Hayes DL (2005) Kearns–Sayre syndrome: a case report and review of cardiovascular complications. Pacing Clin Electrophysiol 28:454–457PubMedCrossRef
77.
go back to reference Sanaker PS, Husebye ES, Fondenes O, Bindoff LA (2007) Clinical evolution of Kearns–Sayre syndrome with polyendocrinopathy and respiratory failure. Acta Neurol Scand Suppl 187:64–67PubMedCrossRef Sanaker PS, Husebye ES, Fondenes O, Bindoff LA (2007) Clinical evolution of Kearns–Sayre syndrome with polyendocrinopathy and respiratory failure. Acta Neurol Scand Suppl 187:64–67PubMedCrossRef
78.
go back to reference Laloi-Michelin M, Virally M, Jardel C, Meas T, Ingster-Moati I, Lombes A et al (2006) Kearns–Sayre syndrome: an unusual form of mitochondrial diabetes. Diabetes Metab 32:182–186PubMedCrossRef Laloi-Michelin M, Virally M, Jardel C, Meas T, Ingster-Moati I, Lombes A et al (2006) Kearns–Sayre syndrome: an unusual form of mitochondrial diabetes. Diabetes Metab 32:182–186PubMedCrossRef
79.
go back to reference Finsterer J (2008) Leigh and Leigh-like syndrome in children and adults. Pediatr Neurol 39:223–235PubMedCrossRef Finsterer J (2008) Leigh and Leigh-like syndrome in children and adults. Pediatr Neurol 39:223–235PubMedCrossRef
80.
go back to reference Rahman S, Blok RB, Dahl HH, Danks DM, Kirby DM, Chow CW et al (1996) Leigh syndrome: clinical features and biochemical and DNA abnormalities. Ann Neurol 39:343–351PubMedCrossRef Rahman S, Blok RB, Dahl HH, Danks DM, Kirby DM, Chow CW et al (1996) Leigh syndrome: clinical features and biochemical and DNA abnormalities. Ann Neurol 39:343–351PubMedCrossRef
81.
go back to reference Riordan-Eva P, Sanders MD, Govan GG, Sweeney MG, Da Costa J, Harding AE (1995) The clinical features of Leber’s hereditary optic neuropathy defined by the presence of a pathogenic mitochondrial DNA mutation. Brain J Neurol 118(Pt 2):319–337CrossRef Riordan-Eva P, Sanders MD, Govan GG, Sweeney MG, Da Costa J, Harding AE (1995) The clinical features of Leber’s hereditary optic neuropathy defined by the presence of a pathogenic mitochondrial DNA mutation. Brain J Neurol 118(Pt 2):319–337CrossRef
82.
go back to reference Tonska K, Kodron A, Bartnik E (2010) Genotype-phenotype correlations in Leber hereditary optic neuropathy. Biochim Biophys Acta 1797:1119–1123PubMedCrossRef Tonska K, Kodron A, Bartnik E (2010) Genotype-phenotype correlations in Leber hereditary optic neuropathy. Biochim Biophys Acta 1797:1119–1123PubMedCrossRef
83.
go back to reference Andreu AL, Hanna MG, Reichmann H, Bruno C, Penn AS, Tanji K et al (1999) Exercise intolerance due to mutations in the cytochrome b gene of mitochondrial DNA. N Engl J Med 341:1037–1044PubMedCrossRef Andreu AL, Hanna MG, Reichmann H, Bruno C, Penn AS, Tanji K et al (1999) Exercise intolerance due to mutations in the cytochrome b gene of mitochondrial DNA. N Engl J Med 341:1037–1044PubMedCrossRef
84.
go back to reference de Lonlay P, Valnot I, Barrientos A, Gorbatyuk M, Tzagoloff A, Taanman JW et al (2001) A mutant mitochondrial respiratory chain assembly protein causes complex III deficiency in patients with tubulopathy, encephalopathy and liver failure. Nat Genet 29:57–60PubMedCrossRef de Lonlay P, Valnot I, Barrientos A, Gorbatyuk M, Tzagoloff A, Taanman JW et al (2001) A mutant mitochondrial respiratory chain assembly protein causes complex III deficiency in patients with tubulopathy, encephalopathy and liver failure. Nat Genet 29:57–60PubMedCrossRef
85.
go back to reference Ciafaloni E, Ricci E, Shanske S, Moraes CT, Silvestri G, Hirano M et al (1992) MELAS: clinical features, biochemistry, and molecular genetics. Ann Neurol 31:391–398PubMedCrossRef Ciafaloni E, Ricci E, Shanske S, Moraes CT, Silvestri G, Hirano M et al (1992) MELAS: clinical features, biochemistry, and molecular genetics. Ann Neurol 31:391–398PubMedCrossRef
86.
go back to reference Lorenzoni PJ, Scola RH, Kay CS, Arndt RC, Silvado CE, Werneck LC (2011) MERRF: clinical features, muscle biopsy and molecular genetics in Brazilian patients. Mitochondrion 11:528–532PubMedCrossRef Lorenzoni PJ, Scola RH, Kay CS, Arndt RC, Silvado CE, Werneck LC (2011) MERRF: clinical features, muscle biopsy and molecular genetics in Brazilian patients. Mitochondrion 11:528–532PubMedCrossRef
87.
go back to reference DiMauro S, Hirano M, Kaufmann P, Tanji K, Sano M, Shungu DC et al (2002) Clinical features and genetics of myoclonic epilepsy with ragged red fibers. Adv Neurol 89:217–229PubMed DiMauro S, Hirano M, Kaufmann P, Tanji K, Sano M, Shungu DC et al (2002) Clinical features and genetics of myoclonic epilepsy with ragged red fibers. Adv Neurol 89:217–229PubMed
88.
go back to reference Guillausseau PJ, Massin P, Dubois-LaForgue D, Timsit J, Virally M, Gin H et al (2001) Maternally inherited diabetes and deafness: a multicenter study. Ann Intern Med 134:721–728PubMedCrossRef Guillausseau PJ, Massin P, Dubois-LaForgue D, Timsit J, Virally M, Gin H et al (2001) Maternally inherited diabetes and deafness: a multicenter study. Ann Intern Med 134:721–728PubMedCrossRef
89.
go back to reference Maassen JA, Jahangir Tafrechi RS, Janssen GM, Raap AK, Lemkes HH, t Hart LM (2006) New insights in the molecular pathogenesis of the maternally inherited diabetes and deafness syndrome. Endocrinol Metab Clin N Am 35:385–396 x–xi CrossRef Maassen JA, Jahangir Tafrechi RS, Janssen GM, Raap AK, Lemkes HH, t Hart LM (2006) New insights in the molecular pathogenesis of the maternally inherited diabetes and deafness syndrome. Endocrinol Metab Clin N Am 35:385–396 x–xi CrossRef
90.
go back to reference Murphy R, Turnbull DM, Walker M, Hattersley AT (2008) Clinical features, diagnosis and management of maternally inherited diabetes and deafness (MIDD) associated with the 3243A>G mitochondrial point mutation. Diabetic Med J Br Diabetic Assoc 25:383–399CrossRef Murphy R, Turnbull DM, Walker M, Hattersley AT (2008) Clinical features, diagnosis and management of maternally inherited diabetes and deafness (MIDD) associated with the 3243A>G mitochondrial point mutation. Diabetic Med J Br Diabetic Assoc 25:383–399CrossRef
91.
go back to reference Rojo A, Campos Y, Sanchez JM, Bonaventura I, Aguilar M, Garcia A et al (2006) NARP-MILS syndrome caused by 8993 T>G mitochondrial DNA mutation: a clinical, genetic and neuropathological study. Acta Neuropathol 111:610–616PubMedCrossRef Rojo A, Campos Y, Sanchez JM, Bonaventura I, Aguilar M, Garcia A et al (2006) NARP-MILS syndrome caused by 8993 T>G mitochondrial DNA mutation: a clinical, genetic and neuropathological study. Acta Neuropathol 111:610–616PubMedCrossRef
92.
go back to reference Santorelli FM, Tanji K, Shanske S, DiMauro S (1997) Heterogeneous clinical presentation of the mtDNA NARP/T8993G mutation. Neurology 49:270–273PubMedCrossRef Santorelli FM, Tanji K, Shanske S, DiMauro S (1997) Heterogeneous clinical presentation of the mtDNA NARP/T8993G mutation. Neurology 49:270–273PubMedCrossRef
93.
go back to reference Bohlega S, Tanji K, Santorelli FM, Hirano M, Al-Jishi A, DiMauro S (1996) Multiple mitochondrial DNA deletions associated with autosomal recessive ophthalmoplegia and severe cardiomyopathy. Neurology 46:1329–1334PubMedCrossRef Bohlega S, Tanji K, Santorelli FM, Hirano M, Al-Jishi A, DiMauro S (1996) Multiple mitochondrial DNA deletions associated with autosomal recessive ophthalmoplegia and severe cardiomyopathy. Neurology 46:1329–1334PubMedCrossRef
94.
go back to reference Filosto M, Mancuso M, Nishigaki Y, Pancrudo J, Harati Y, Gooch C et al (2003) Clinical and genetic heterogeneity in progressive external ophthalmoplegia due to mutations in polymerase gamma. Arch Neurol 60:1279–1284PubMedCrossRef Filosto M, Mancuso M, Nishigaki Y, Pancrudo J, Harati Y, Gooch C et al (2003) Clinical and genetic heterogeneity in progressive external ophthalmoplegia due to mutations in polymerase gamma. Arch Neurol 60:1279–1284PubMedCrossRef
95.
go back to reference Milone M, Massie R (2010) Polymerase gamma 1 mutations: clinical correlations. The Neurologist 16:84–91PubMedCrossRef Milone M, Massie R (2010) Polymerase gamma 1 mutations: clinical correlations. The Neurologist 16:84–91PubMedCrossRef
96.
go back to reference Hirano M, Marti R, Ferreiro-Barros C, Vila MR, Tadesse S, Nishigaki Y et al (2001) Defects of intergenomic communication: autosomal disorders that cause multiple deletions and depletion of mitochondrial DNA. Semin Cell Dev Biol 12:417–427PubMedCrossRef Hirano M, Marti R, Ferreiro-Barros C, Vila MR, Tadesse S, Nishigaki Y et al (2001) Defects of intergenomic communication: autosomal disorders that cause multiple deletions and depletion of mitochondrial DNA. Semin Cell Dev Biol 12:417–427PubMedCrossRef
Metadata
Title
MELAS syndrome and cardiomyopathy: linking mitochondrial function to heart failure pathogenesis
Authors
Ying-Han R. Hsu
Haran Yogasundaram
Nirmal Parajuli
Lucas Valtuille
Consolato Sergi
Gavin Y. Oudit
Publication date
01-01-2016
Publisher
Springer US
Published in
Heart Failure Reviews / Issue 1/2016
Print ISSN: 1382-4147
Electronic ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-015-9524-5

Other articles of this Issue 1/2016

Heart Failure Reviews 1/2016 Go to the issue