Skip to main content
Top
Published in: Heart Failure Reviews 6/2010

01-11-2010

Stem cells in the diabetic infarcted heart

Authors: Carley E. Glass, Pawan K. Singal, Dinender K. Singla

Published in: Heart Failure Reviews | Issue 6/2010

Login to get access

Abstract

Diabetes mellitus is one of the leading causes of death, and the majority of these deaths are associated with cardiovascular diseases. Development and progression of myocardial infarction leading to heart failure is much more complex and multifactorial in diabetics compared with non-diabetics. Despite significant advances in pharmacological interventions and surgical techniques, the disease progression leading to diabetic end-stage heart failure remains very high. Recently, cell therapy has gained much attention as an alternative approach to treat various heart diseases. However, transplanted stem cell studies in diabetic animal models are very limited. In this review, we discuss the pathogenesis of the diabetic infarcted heart and the potential of stem cell therapy to repair and regenerate.
Literature
1.
go back to reference Aronson D, Rayfield EJ, Chesebro JH (1997) Mechanisms determining course and outcome of diabetic patients who have had acute myocardial infarction. Ann Intern Med 126:296–306PubMed Aronson D, Rayfield EJ, Chesebro JH (1997) Mechanisms determining course and outcome of diabetic patients who have had acute myocardial infarction. Ann Intern Med 126:296–306PubMed
2.
go back to reference Rahman S, Rahman T, Ismail AA, Rashid AR (2007) Diabetes-associated macrovasculopathy: pathophysiology and pathogenesis. Diabetes Obes Metab 9:767–780CrossRefPubMed Rahman S, Rahman T, Ismail AA, Rashid AR (2007) Diabetes-associated macrovasculopathy: pathophysiology and pathogenesis. Diabetes Obes Metab 9:767–780CrossRefPubMed
3.
go back to reference Woodfield SL, Lundergan CF, Reiner JS, Greenhouse SW, Thompson MA, Rohrbeck SC, Deychak Y, Simoons ML, Califf RM, Topol EJ, Ross AM (1996) Angiographic findings and outcome in diabetic patients treated with thrombolytic therapy for acute myocardial infarction: the GUSTO-I experience. J Am Coll Cardiol 28:1661–1669CrossRefPubMed Woodfield SL, Lundergan CF, Reiner JS, Greenhouse SW, Thompson MA, Rohrbeck SC, Deychak Y, Simoons ML, Califf RM, Topol EJ, Ross AM (1996) Angiographic findings and outcome in diabetic patients treated with thrombolytic therapy for acute myocardial infarction: the GUSTO-I experience. J Am Coll Cardiol 28:1661–1669CrossRefPubMed
4.
go back to reference Singla DK, Hacker TA, Ma L, Douglas PS, Sullivan R, Lyons GE, Kamp TJ (2006) Transplantation of embryonic stem cells into the infarcted mouse heart: formation of multiple cell types. J Mol Cell Cardiol 40:195–200CrossRefPubMed Singla DK, Hacker TA, Ma L, Douglas PS, Sullivan R, Lyons GE, Kamp TJ (2006) Transplantation of embryonic stem cells into the infarcted mouse heart: formation of multiple cell types. J Mol Cell Cardiol 40:195–200CrossRefPubMed
5.
go back to reference Singla DK, Lyons GE, Kamp TJ (2007) Transplanted embryonic stem cells following mouse myocardial infarction inhibit apoptosis and cardiac remodeling. Am J Physiol Heart Circ Physiol 293:H1308–H1314CrossRefPubMed Singla DK, Lyons GE, Kamp TJ (2007) Transplanted embryonic stem cells following mouse myocardial infarction inhibit apoptosis and cardiac remodeling. Am J Physiol Heart Circ Physiol 293:H1308–H1314CrossRefPubMed
6.
go back to reference Min JY, Yang Y, Converso KL, Liu L, Huang Q, Morgan JP, Xiao YF (2002) Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J Appl Physiol 92:288–296CrossRefPubMed Min JY, Yang Y, Converso KL, Liu L, Huang Q, Morgan JP, Xiao YF (2002) Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J Appl Physiol 92:288–296CrossRefPubMed
7.
go back to reference Jing D, Parikh A, Canty JM Jr, Tzanakakis ES (2008) Stem cells for heart cell therapies Tissue Eng Part B Rev 14:393–406 Jing D, Parikh A, Canty JM Jr, Tzanakakis ES (2008) Stem cells for heart cell therapies Tissue Eng Part B Rev 14:393–406
8.
go back to reference Tenerz A, Lonnberg I, Berne C, Nilsson G, Leppert J (2001) Myocardial infarction and prevalence of diabetes mellitus. Is increased casual blood glucose at admission a reliable criterion for the diagnosis of diabetes? Eur Heart J 22:1102–1110CrossRefPubMed Tenerz A, Lonnberg I, Berne C, Nilsson G, Leppert J (2001) Myocardial infarction and prevalence of diabetes mellitus. Is increased casual blood glucose at admission a reliable criterion for the diagnosis of diabetes? Eur Heart J 22:1102–1110CrossRefPubMed
9.
go back to reference Roger VL, Weston SA, Gerber Y, Killian JM, Dunlay SM, Jaffe AS, Bell MR, Kors J, Yawn BP, Jacobsen SJ (2010) Trends in incidence, severity, and outcome of hospitalized myocardial infarction. Circulation 121:863–869CrossRefPubMed Roger VL, Weston SA, Gerber Y, Killian JM, Dunlay SM, Jaffe AS, Bell MR, Kors J, Yawn BP, Jacobsen SJ (2010) Trends in incidence, severity, and outcome of hospitalized myocardial infarction. Circulation 121:863–869CrossRefPubMed
10.
go back to reference Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339:229–234CrossRefPubMed Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339:229–234CrossRefPubMed
11.
go back to reference Hu G, Jousilahti P, Qiao Q, Peltonen M, Katoh S, Tuomilehto J (2005) The gender-specific impact of diabetes and myocardial infarction at baseline and during follow-up on mortality from all causes and coronary heart disease. J Am Coll Cardiol 45:1413–1418CrossRefPubMed Hu G, Jousilahti P, Qiao Q, Peltonen M, Katoh S, Tuomilehto J (2005) The gender-specific impact of diabetes and myocardial infarction at baseline and during follow-up on mortality from all causes and coronary heart disease. J Am Coll Cardiol 45:1413–1418CrossRefPubMed
12.
go back to reference Lundberg V, Stegmayr B, Asplund K, Eliasson M, Huhtasaari F (1997) Diabetes as a risk factor for myocardial infarction: population and gender perspectives. J Intern Med 241:485–492CrossRefPubMed Lundberg V, Stegmayr B, Asplund K, Eliasson M, Huhtasaari F (1997) Diabetes as a risk factor for myocardial infarction: population and gender perspectives. J Intern Med 241:485–492CrossRefPubMed
13.
go back to reference Lee CD, Folsom AR, Pankow JS, Brancati FL (2004) Cardiovascular events in diabetic and nondiabetic adults with or without history of myocardial infarction. Circulation 109:855–860CrossRefPubMed Lee CD, Folsom AR, Pankow JS, Brancati FL (2004) Cardiovascular events in diabetic and nondiabetic adults with or without history of myocardial infarction. Circulation 109:855–860CrossRefPubMed
14.
go back to reference Mak KH, Topol EJ (2000) Emerging concepts in the management of acute myocardial infarction in patients with diabetes mellitus. J Am Coll Cardiol 35:563–568CrossRefPubMed Mak KH, Topol EJ (2000) Emerging concepts in the management of acute myocardial infarction in patients with diabetes mellitus. J Am Coll Cardiol 35:563–568CrossRefPubMed
15.
go back to reference Lomuscio A, Castagnone M, Vergani D, Verzoni A, Beltrami A, Ravaglia R, Pozzoni L (1991) Clinical correlation between diabetic and non diabetic patients with myocardial infarction. Acta Cardiol 46:543–554PubMed Lomuscio A, Castagnone M, Vergani D, Verzoni A, Beltrami A, Ravaglia R, Pozzoni L (1991) Clinical correlation between diabetic and non diabetic patients with myocardial infarction. Acta Cardiol 46:543–554PubMed
16.
17.
go back to reference Nishina PM, Lowe S, Wang J, Paigen B (1994) Characterization of plasma lipids in genetically obese mice: the mutants obese, diabetes, fat, tubby, and lethal yellow. Metabolism 43:549–553CrossRefPubMed Nishina PM, Lowe S, Wang J, Paigen B (1994) Characterization of plasma lipids in genetically obese mice: the mutants obese, diabetes, fat, tubby, and lethal yellow. Metabolism 43:549–553CrossRefPubMed
18.
go back to reference McGaffin KR, Zou B, McTiernan CF, O’Donnell CP (2009) Leptin attenuates cardiac apoptosis after chronic ischaemic injury. Cardiovasc Res 83:313–324CrossRefPubMed McGaffin KR, Zou B, McTiernan CF, O’Donnell CP (2009) Leptin attenuates cardiac apoptosis after chronic ischaemic injury. Cardiovasc Res 83:313–324CrossRefPubMed
19.
go back to reference Gundewar S, Calvert JW, Elrod JW, Lefer DJ (2007) Cytoprotective effects of N, N, N-trimethylsphingosine during ischemia- reperfusion injury are lost in the setting of obesity and diabetes. Am J Physiol Heart Circ Physiol 293:H2462–H2471CrossRefPubMed Gundewar S, Calvert JW, Elrod JW, Lefer DJ (2007) Cytoprotective effects of N, N, N-trimethylsphingosine during ischemia- reperfusion injury are lost in the setting of obesity and diabetes. Am J Physiol Heart Circ Physiol 293:H2462–H2471CrossRefPubMed
20.
go back to reference Srinivasan K, Ramarao P (2007) Animal models in type 2 diabetes research: an overview. Indian J Med Res 125:451–472PubMed Srinivasan K, Ramarao P (2007) Animal models in type 2 diabetes research: an overview. Indian J Med Res 125:451–472PubMed
21.
go back to reference Greer JJ, Ware DP, Lefer DJ (2006) Myocardial infarction and heart failure in the db/db diabetic mouse. Am J Physiol Heart Circ Physiol 290:146–153CrossRef Greer JJ, Ware DP, Lefer DJ (2006) Myocardial infarction and heart failure in the db/db diabetic mouse. Am J Physiol Heart Circ Physiol 290:146–153CrossRef
22.
go back to reference Iwatsuka H, Shino A, Suzuoki Z (1970) General survey of diabetic features of yellow KK mice. Endocrinol Jpn 17:23–35PubMed Iwatsuka H, Shino A, Suzuoki Z (1970) General survey of diabetic features of yellow KK mice. Endocrinol Jpn 17:23–35PubMed
23.
go back to reference Chandler MP, Morgan EE, McElfresh TA, Kung TA, Rennison JH, Hoit BD, Young ME (2007) Heart failure progression is accelerated following myocardial infarction in type 2 diabetic rats. Am J Physiol Heart Circ Physiol 293:H1609–H1616CrossRefPubMed Chandler MP, Morgan EE, McElfresh TA, Kung TA, Rennison JH, Hoit BD, Young ME (2007) Heart failure progression is accelerated following myocardial infarction in type 2 diabetic rats. Am J Physiol Heart Circ Physiol 293:H1609–H1616CrossRefPubMed
24.
go back to reference Cohen AM, Rosenmann E, Rosenthal T (1993) The Cohen diabetic (non-insulin-dependent) hypertensive rat model. Description of the model and pathologic findings. Am J Hypertens 6:989–995PubMed Cohen AM, Rosenmann E, Rosenthal T (1993) The Cohen diabetic (non-insulin-dependent) hypertensive rat model. Description of the model and pathologic findings. Am J Hypertens 6:989–995PubMed
25.
go back to reference Weksler-Zangen S, Yagil C, Zangen DH, Ornoy A, Jacob HJ, Yagil Y (2001) The newly inbred cohen diabetic rat: a nonobese normolipidemic genetic model of diet-induced type 2 diabetes expressing sex differences. Diabetes 50:2521–2529CrossRefPubMed Weksler-Zangen S, Yagil C, Zangen DH, Ornoy A, Jacob HJ, Yagil Y (2001) The newly inbred cohen diabetic rat: a nonobese normolipidemic genetic model of diet-induced type 2 diabetes expressing sex differences. Diabetes 50:2521–2529CrossRefPubMed
26.
go back to reference Matsushima S, Kinugawa S, Yokota T, Inoue N, Ohta Y, Hamaguchi S, Tsutsui H (2009) Increased myocardial NAD(P)H oxidase-derived superoxide causes the exacerbation of postinfarct heart failure in type 2 diabetes. Am J Physiol Heart Circ Physiol 297:H409–H416CrossRefPubMed Matsushima S, Kinugawa S, Yokota T, Inoue N, Ohta Y, Hamaguchi S, Tsutsui H (2009) Increased myocardial NAD(P)H oxidase-derived superoxide causes the exacerbation of postinfarct heart failure in type 2 diabetes. Am J Physiol Heart Circ Physiol 297:H409–H416CrossRefPubMed
27.
go back to reference Thakker GD, Frangogiannis NG, Bujak M, Zymek P, Gaubatz JW, Reddy AK, Taffet G, Michael LH, Entman ML, Ballantyne CM (2006) Effects of diet-induced obesity on inflammation and remodeling after myocardial infarction. Am J Physiol Heart Circ Physiol 291:H2504–H2514CrossRefPubMed Thakker GD, Frangogiannis NG, Bujak M, Zymek P, Gaubatz JW, Reddy AK, Taffet G, Michael LH, Entman ML, Ballantyne CM (2006) Effects of diet-induced obesity on inflammation and remodeling after myocardial infarction. Am J Physiol Heart Circ Physiol 291:H2504–H2514CrossRefPubMed
28.
go back to reference Huang JP, Huang SS, Deng JY, Hung LM (2009) Impairment of insulin-stimulated Akt/GLUT4 signaling is associated with cardiac contractile dysfunction and aggravates I/R injury in STZ-diabetic rats. J Biomed Sci 16:77CrossRefPubMed Huang JP, Huang SS, Deng JY, Hung LM (2009) Impairment of insulin-stimulated Akt/GLUT4 signaling is associated with cardiac contractile dysfunction and aggravates I/R injury in STZ-diabetic rats. J Biomed Sci 16:77CrossRefPubMed
29.
go back to reference Song GY, Wu YJ, Yang YJ, Li JJ, Zhang HL, Pei HJ, Zhao ZY, Zeng ZH, Hui RT (2009) The accelerated post-infarction progression of cardiac remodelling is associated with genetic changes in an untreated streptozotocin-induced diabetic rat model. Eur J Heart Fail 11:911–921CrossRefPubMed Song GY, Wu YJ, Yang YJ, Li JJ, Zhang HL, Pei HJ, Zhao ZY, Zeng ZH, Hui RT (2009) The accelerated post-infarction progression of cardiac remodelling is associated with genetic changes in an untreated streptozotocin-induced diabetic rat model. Eur J Heart Fail 11:911–921CrossRefPubMed
30.
go back to reference Miki T, Miura T, Hotta H, Tanno M, Yano T, Sato T, Terashima Y, Takada A, Ishikawa S, Shimamoto K (2009) Endoplasmic reticulum stress in diabetic hearts abolishes erythropoietin-induced myocardial protection by impairment of phospho-glycogen synthase kinase-3beta-mediated suppression of mitochondrial permeability transition. Diabetes 58:2863–2872CrossRefPubMed Miki T, Miura T, Hotta H, Tanno M, Yano T, Sato T, Terashima Y, Takada A, Ishikawa S, Shimamoto K (2009) Endoplasmic reticulum stress in diabetic hearts abolishes erythropoietin-induced myocardial protection by impairment of phospho-glycogen synthase kinase-3beta-mediated suppression of mitochondrial permeability transition. Diabetes 58:2863–2872CrossRefPubMed
31.
go back to reference Dixon RA, Davidson SM, Wynne AM, Yellon DM, Smith CC (2009) The cardioprotective actions of leptin are lost in the Zucker obese (fa/fa) rat. J Cardiovasc Pharmacol 53:311–317CrossRefPubMed Dixon RA, Davidson SM, Wynne AM, Yellon DM, Smith CC (2009) The cardioprotective actions of leptin are lost in the Zucker obese (fa/fa) rat. J Cardiovasc Pharmacol 53:311–317CrossRefPubMed
32.
go back to reference Kristiansen SB, Lofgren B, Stottrup NB, Khatir D, Nielsen-Kudsk JE, Nielsen TT, Botker HE, Flyvbjerg A (2004) Ischaemic preconditioning does not protect the heart in obese and lean animal models of type 2 diabetes. Diabetologia 47:1716–1721CrossRefPubMed Kristiansen SB, Lofgren B, Stottrup NB, Khatir D, Nielsen-Kudsk JE, Nielsen TT, Botker HE, Flyvbjerg A (2004) Ischaemic preconditioning does not protect the heart in obese and lean animal models of type 2 diabetes. Diabetologia 47:1716–1721CrossRefPubMed
33.
go back to reference Vahtola E, Louhelainen M, Forsten H, Merasto S, Raivio J, Kaheinen P, Kyto V, Tikkanen I, Levijoki J, Mervaala E (2010) Sirtuin1–p53, forkhead box O3a, p38 and post-infarct cardiac remodeling in the spontaneously diabetic Goto-Kakizaki rat. Cardiovasc Diabetol 9:5CrossRefPubMed Vahtola E, Louhelainen M, Forsten H, Merasto S, Raivio J, Kaheinen P, Kyto V, Tikkanen I, Levijoki J, Mervaala E (2010) Sirtuin1–p53, forkhead box O3a, p38 and post-infarct cardiac remodeling in the spontaneously diabetic Goto-Kakizaki rat. Cardiovasc Diabetol 9:5CrossRefPubMed
34.
go back to reference Li TS, Takahashi M, Suzuki R, Kobayashi T, Ito H, Mikamo A, Hamano K (2006) Pravastatin improves remodeling and cardiac function after myocardial infarction by an antiinflammatory mechanism rather than by the induction of angiogenesis. Ann Thorac Surg 81:2217–2225CrossRefPubMed Li TS, Takahashi M, Suzuki R, Kobayashi T, Ito H, Mikamo A, Hamano K (2006) Pravastatin improves remodeling and cardiac function after myocardial infarction by an antiinflammatory mechanism rather than by the induction of angiogenesis. Ann Thorac Surg 81:2217–2225CrossRefPubMed
36.
go back to reference Durina J, Remkova A (2007) Prothrombotic state in metabolic syndrome. Bratisl Lek Listy 108:279–280PubMed Durina J, Remkova A (2007) Prothrombotic state in metabolic syndrome. Bratisl Lek Listy 108:279–280PubMed
37.
go back to reference Tschoepe D, Roesen P (1998) Heart disease in diabetes mellitus: a challenge for early diagnosis and intervention. Exp Clin Endocrinol Diabetes 106:16–24CrossRefPubMed Tschoepe D, Roesen P (1998) Heart disease in diabetes mellitus: a challenge for early diagnosis and intervention. Exp Clin Endocrinol Diabetes 106:16–24CrossRefPubMed
38.
go back to reference Rizzo M, Berneis K (2007) Small dense low-density-lipoproteins and the metabolic syndrome. Diabetes Metab Res Rev 23:14–20CrossRefPubMed Rizzo M, Berneis K (2007) Small dense low-density-lipoproteins and the metabolic syndrome. Diabetes Metab Res Rev 23:14–20CrossRefPubMed
39.
go back to reference Anfossi G, Russo I, Doronzo G, Trovati M (2007) Relevance of the vascular effects of insulin in the rationale of its therapeutical use. Cardiovasc Hematol Disord Drug Targets 7:228–249CrossRefPubMed Anfossi G, Russo I, Doronzo G, Trovati M (2007) Relevance of the vascular effects of insulin in the rationale of its therapeutical use. Cardiovasc Hematol Disord Drug Targets 7:228–249CrossRefPubMed
40.
go back to reference Cersosimo E, Defronzo RA (2006) Insulin resistance and endothelial dysfunction: the road map to cardiovascular diseases. Diabetes Metab Res Rev 22:423–436CrossRefPubMed Cersosimo E, Defronzo RA (2006) Insulin resistance and endothelial dysfunction: the road map to cardiovascular diseases. Diabetes Metab Res Rev 22:423–436CrossRefPubMed
41.
go back to reference Steinberg HO, Baron AD (2002) Vascular function insulin resistance and fatty acids. Diabetologia 45:623–634CrossRefPubMed Steinberg HO, Baron AD (2002) Vascular function insulin resistance and fatty acids. Diabetologia 45:623–634CrossRefPubMed
42.
go back to reference Zinn A, Felson S, Fisher E, Schwartzbard A (2008) Reassessing the cardiovascular risks and benefits of thiazolidinediones. Clin Cardiol 31:397–403CrossRefPubMed Zinn A, Felson S, Fisher E, Schwartzbard A (2008) Reassessing the cardiovascular risks and benefits of thiazolidinediones. Clin Cardiol 31:397–403CrossRefPubMed
43.
go back to reference Palumbo F, Bianchi C, Miccoli R, Del PS (2003) Hyperglycaemia and cardiovascular risk. Acta Diabetol 40(Suppl 2):S362–S369CrossRefPubMed Palumbo F, Bianchi C, Miccoli R, Del PS (2003) Hyperglycaemia and cardiovascular risk. Acta Diabetol 40(Suppl 2):S362–S369CrossRefPubMed
44.
go back to reference Chyun DA, Young LH (2006) Diabetes mellitus and cardiovascular disease. Nurs Clin North Am 41:681–685CrossRefPubMed Chyun DA, Young LH (2006) Diabetes mellitus and cardiovascular disease. Nurs Clin North Am 41:681–685CrossRefPubMed
45.
go back to reference Bartnik M, Norhammar A, Ryden L (2007) Hyperglycaemia and cardiovascular disease. J Intern Med 262:145–156CrossRefPubMed Bartnik M, Norhammar A, Ryden L (2007) Hyperglycaemia and cardiovascular disease. J Intern Med 262:145–156CrossRefPubMed
46.
go back to reference Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820CrossRefPubMed Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820CrossRefPubMed
47.
go back to reference Basta G, Schmidt AM, De CR (2004) Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res 63:582–592CrossRefPubMed Basta G, Schmidt AM, De CR (2004) Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res 63:582–592CrossRefPubMed
48.
go back to reference Ramana KV, Chandra D, Srivastava S, Bhatnagar A, Srivastava SK (2003) Nitric oxide regulates the polyol pathway of glucose metabolism in vascular smooth muscle cells. FASEB J 17:417–425CrossRefPubMed Ramana KV, Chandra D, Srivastava S, Bhatnagar A, Srivastava SK (2003) Nitric oxide regulates the polyol pathway of glucose metabolism in vascular smooth muscle cells. FASEB J 17:417–425CrossRefPubMed
49.
go back to reference Bonnefont-Rousselot D (2002) Glucose and reactive oxygen species. Curr Opin Clin Nutr Metab Care 5:561–568CrossRefPubMed Bonnefont-Rousselot D (2002) Glucose and reactive oxygen species. Curr Opin Clin Nutr Metab Care 5:561–568CrossRefPubMed
50.
go back to reference Jay D, Hitomi H, Griendling KK (2006) Oxidative stress and diabetic cardiovascular complications. Free Radic Biol Med 40:183–192CrossRefPubMed Jay D, Hitomi H, Griendling KK (2006) Oxidative stress and diabetic cardiovascular complications. Free Radic Biol Med 40:183–192CrossRefPubMed
51.
go back to reference Clark RJ, McDonough PM, Swanson E, Trost SU, Suzuki M, Fukuda M, Dillmann WH (2003) Diabetes and the accompanying hyperglycemia impairs cardiomyocyte calcium cycling through increased nuclear O-GlcNAcylation. J Biol Chem 278:44230–44237CrossRefPubMed Clark RJ, McDonough PM, Swanson E, Trost SU, Suzuki M, Fukuda M, Dillmann WH (2003) Diabetes and the accompanying hyperglycemia impairs cardiomyocyte calcium cycling through increased nuclear O-GlcNAcylation. J Biol Chem 278:44230–44237CrossRefPubMed
52.
go back to reference Federici M, Menghini R, Mauriello A, Hribal ML, Ferrelli F, Lauro D, Sbraccia P, Spagnoli LG, Sesti G, Lauro R (2002) Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells. Circulation 106:466–472CrossRefPubMed Federici M, Menghini R, Mauriello A, Hribal ML, Ferrelli F, Lauro D, Sbraccia P, Spagnoli LG, Sesti G, Lauro R (2002) Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells. Circulation 106:466–472CrossRefPubMed
53.
go back to reference Watanabe K, Thandavarayan RA, Gurusamy N, Zhang S, Muslin AJ, Suzuki K, Tachikawa H, Kodama M, Aizawa Y (2009) Role of 14–3-3 protein and oxidative stress in diabetic cardiomyopathy. Acta Physiol Hung 96:277–287CrossRefPubMed Watanabe K, Thandavarayan RA, Gurusamy N, Zhang S, Muslin AJ, Suzuki K, Tachikawa H, Kodama M, Aizawa Y (2009) Role of 14–3-3 protein and oxidative stress in diabetic cardiomyopathy. Acta Physiol Hung 96:277–287CrossRefPubMed
54.
go back to reference Peppa M, Stavroulakis P, Raptis SA (2009) Advanced glycoxidation products and impaired diabetic wound healing. Wound Repair Regen 17:461–472CrossRefPubMed Peppa M, Stavroulakis P, Raptis SA (2009) Advanced glycoxidation products and impaired diabetic wound healing. Wound Repair Regen 17:461–472CrossRefPubMed
55.
go back to reference Zheng L, Kern TS (2009) Role of nitric oxide, superoxide, peroxynitrite and PARP in diabetic retinopathy. Front Biosci 14:3974–3987CrossRefPubMed Zheng L, Kern TS (2009) Role of nitric oxide, superoxide, peroxynitrite and PARP in diabetic retinopathy. Front Biosci 14:3974–3987CrossRefPubMed
56.
go back to reference Madsen-Bouterse SA, Kowluru RA (2008) Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Rev Endocr Metab Disord 9:315–327CrossRefPubMed Madsen-Bouterse SA, Kowluru RA (2008) Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Rev Endocr Metab Disord 9:315–327CrossRefPubMed
57.
go back to reference Hamada Y, Fujii H, Fukagawa M (2009) Role of oxidative stress in diabetic bone disorder Bone 45(Suppl 1):S35–S38 Hamada Y, Fujii H, Fukagawa M (2009) Role of oxidative stress in diabetic bone disorder Bone 45(Suppl 1):S35–S38
58.
go back to reference Potenza MA, Gagliardi S, Nacci C, Carratu’ MR, Montagnani M (2009) Endothelial dysfunction in diabetes: from mechanisms to therapeutic targets. Curr Med Chem 16:94–112CrossRefPubMed Potenza MA, Gagliardi S, Nacci C, Carratu’ MR, Montagnani M (2009) Endothelial dysfunction in diabetes: from mechanisms to therapeutic targets. Curr Med Chem 16:94–112CrossRefPubMed
59.
go back to reference Ha H, Hwang IA, Park JH, Lee HB (2008) Role of reactive oxygen species in the pathogenesis of diabetic nephropathy. Diabetes Res Clin Pract 82(Suppl 1):S42–S45CrossRefPubMed Ha H, Hwang IA, Park JH, Lee HB (2008) Role of reactive oxygen species in the pathogenesis of diabetic nephropathy. Diabetes Res Clin Pract 82(Suppl 1):S42–S45CrossRefPubMed
60.
go back to reference Figueroa-Romero C, Sadidi M, Feldman EL (2008) Mechanisms of disease: the oxidative stress theory of diabetic neuropathy. Rev Endocr Metab Disord 9:301–314CrossRefPubMed Figueroa-Romero C, Sadidi M, Feldman EL (2008) Mechanisms of disease: the oxidative stress theory of diabetic neuropathy. Rev Endocr Metab Disord 9:301–314CrossRefPubMed
61.
go back to reference Di FC, Cuzzocrea S, Rossi F, Marfella R, D’Amico M (2006) Oxidative stress as the leading cause of acute myocardial infarction in diabetics. Cardiovasc Drug Rev 24:77–87CrossRef Di FC, Cuzzocrea S, Rossi F, Marfella R, D’Amico M (2006) Oxidative stress as the leading cause of acute myocardial infarction in diabetics. Cardiovasc Drug Rev 24:77–87CrossRef
62.
go back to reference Misra MK, Sarwat M, Bhakuni P, Tuteja R, Tuteja N (2009) Oxidative stress and ischemic myocardial syndromes. Med Sci Monit 15:RA209–RA219PubMed Misra MK, Sarwat M, Bhakuni P, Tuteja R, Tuteja N (2009) Oxidative stress and ischemic myocardial syndromes. Med Sci Monit 15:RA209–RA219PubMed
63.
go back to reference Hori M, Nishida K (2009) Oxidative stress and left ventricular remodelling after myocardial infarction. Cardiovasc Res 81:457–464CrossRefPubMed Hori M, Nishida K (2009) Oxidative stress and left ventricular remodelling after myocardial infarction. Cardiovasc Res 81:457–464CrossRefPubMed
64.
go back to reference Lopez FA, Casado S (2001) Heart failure, redox alterations and endothelial dysfunction. Hypertension 38:1400–1405CrossRef Lopez FA, Casado S (2001) Heart failure, redox alterations and endothelial dysfunction. Hypertension 38:1400–1405CrossRef
65.
66.
go back to reference Kumar D, Lou H, Singal PK (2002) Oxidative stress and apoptosis in heart dysfunction. Herz 27:662–668CrossRefPubMed Kumar D, Lou H, Singal PK (2002) Oxidative stress and apoptosis in heart dysfunction. Herz 27:662–668CrossRefPubMed
67.
go back to reference Backlund T, Palojoki E, Saraste A, Eriksson A, Finckenberg P, Kyto V, Lakkisto P, Mervaala E, Voipio-Pulkki LM, Laine M, Tikkanen I (2004) Sustained cardiomyocyte apoptosis and left ventricular remodelling after myocardial infarction in experimental diabetes. Diabetologia 47:325–330CrossRefPubMed Backlund T, Palojoki E, Saraste A, Eriksson A, Finckenberg P, Kyto V, Lakkisto P, Mervaala E, Voipio-Pulkki LM, Laine M, Tikkanen I (2004) Sustained cardiomyocyte apoptosis and left ventricular remodelling after myocardial infarction in experimental diabetes. Diabetologia 47:325–330CrossRefPubMed
68.
go back to reference Melo LG, Pachori AS, Kong D, Gnecchi M, Wang K, Pratt RE, Dzau VJ (2004) Molecular and cell-based therapies for protection, rescue and repair of ischemic myocardium: reasons for cautious optimism. Circulation 109:2386–2393CrossRefPubMed Melo LG, Pachori AS, Kong D, Gnecchi M, Wang K, Pratt RE, Dzau VJ (2004) Molecular and cell-based therapies for protection, rescue and repair of ischemic myocardium: reasons for cautious optimism. Circulation 109:2386–2393CrossRefPubMed
69.
go back to reference Cai L, Li W, Wang G, Guo L, Jiang Y, Kang YJ (2002) Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes 51:1938–1948CrossRefPubMed Cai L, Li W, Wang G, Guo L, Jiang Y, Kang YJ (2002) Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes 51:1938–1948CrossRefPubMed
70.
go back to reference Kumar D, Robertson S, Burns KD (2004) Evidence of apoptosis in human diabetic kidney. Mol Cell Biochem 259:67–70CrossRefPubMed Kumar D, Robertson S, Burns KD (2004) Evidence of apoptosis in human diabetic kidney. Mol Cell Biochem 259:67–70CrossRefPubMed
71.
go back to reference Ejaz S, Chekarova I, Ejaz A, Sohail A, Lim CW (2008) Importance of pericytes and mechanisms of pericyte loss during diabetes retinopathy. Diabetes Obes Metab 10:53–63PubMed Ejaz S, Chekarova I, Ejaz A, Sohail A, Lim CW (2008) Importance of pericytes and mechanisms of pericyte loss during diabetes retinopathy. Diabetes Obes Metab 10:53–63PubMed
72.
go back to reference Kamboj SS, Vasishta RK, Sandhir R (2010) N-acetylcysteine inhibits hyperglycemia-induced oxidative stress and apoptosis markers in diabetic neuropathy. J Neurochem 112:77–91CrossRefPubMed Kamboj SS, Vasishta RK, Sandhir R (2010) N-acetylcysteine inhibits hyperglycemia-induced oxidative stress and apoptosis markers in diabetic neuropathy. J Neurochem 112:77–91CrossRefPubMed
73.
go back to reference Tuo QH, Zeng H, Stinnett A, Yu H, Aschner JL, Liao DF, Chen JX (2008) Critical role of angiopoietins/Tie-2 in hyperglycemic exacerbation of myocardial infarction and impaired angiogenesis. Am J Physiol Heart Circ Physiol 294:H2547–H2557CrossRefPubMed Tuo QH, Zeng H, Stinnett A, Yu H, Aschner JL, Liao DF, Chen JX (2008) Critical role of angiopoietins/Tie-2 in hyperglycemic exacerbation of myocardial infarction and impaired angiogenesis. Am J Physiol Heart Circ Physiol 294:H2547–H2557CrossRefPubMed
74.
go back to reference Backlund T, Lakkisto P, Palojoki E, Gronholm T, Saraste A, Finckenberg P, Mervaala E, Tikkanen I, Laine M (2007) Activation of protective and damaging components of the cardiac renin-angiotensin system after myocardial infarction in experimental diabetes. J Renin Angiotensin Aldosterone Syst 8:66–73CrossRefPubMed Backlund T, Lakkisto P, Palojoki E, Gronholm T, Saraste A, Finckenberg P, Mervaala E, Tikkanen I, Laine M (2007) Activation of protective and damaging components of the cardiac renin-angiotensin system after myocardial infarction in experimental diabetes. J Renin Angiotensin Aldosterone Syst 8:66–73CrossRefPubMed
75.
go back to reference Swynghedauw B (1999) Molecular mechanisms of myocardial remodeling. Physiol Rev 79:215–262PubMed Swynghedauw B (1999) Molecular mechanisms of myocardial remodeling. Physiol Rev 79:215–262PubMed
76.
77.
go back to reference Kim H, Kim SW, Nam D, Kim S, Yoon YS (2009) Cell therapy with bone marrow cells for myocardial regeneration. Antioxid Redox Signal 11:1897–1911CrossRefPubMed Kim H, Kim SW, Nam D, Kim S, Yoon YS (2009) Cell therapy with bone marrow cells for myocardial regeneration. Antioxid Redox Signal 11:1897–1911CrossRefPubMed
78.
go back to reference Nelson TJ, Martinez-Fernandez A, Yamada S, Perez-Terzic C, Ikeda Y, Terzic A (2009) Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation 120:408–416CrossRefPubMed Nelson TJ, Martinez-Fernandez A, Yamada S, Perez-Terzic C, Ikeda Y, Terzic A (2009) Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation 120:408–416CrossRefPubMed
79.
go back to reference Cleland JG, Freemantle N, Coletta AP, Clark AL (2006) Clinical trials update from the American Heart Association: REPAIR-AMI, ASTAMI, JELIS, MEGA, REVIVE-II, SURVIVE and PROACTIVE. Eur J Heart Fail 8:105–110CrossRefPubMed Cleland JG, Freemantle N, Coletta AP, Clark AL (2006) Clinical trials update from the American Heart Association: REPAIR-AMI, ASTAMI, JELIS, MEGA, REVIVE-II, SURVIVE and PROACTIVE. Eur J Heart Fail 8:105–110CrossRefPubMed
80.
go back to reference Govaert JA, Swijnenburg RJ, Schrepfer S, Xie X, van der Bogt KE, Hoyt G, Stein W, Ransohoff KJ, Robbins RC, Wu JC (2009) Poor functional recovery after transplantation of diabetic bone marrow stem cells in ischemic myocardium. J Heart Lung Transplant 28:1158–1165CrossRefPubMed Govaert JA, Swijnenburg RJ, Schrepfer S, Xie X, van der Bogt KE, Hoyt G, Stein W, Ransohoff KJ, Robbins RC, Wu JC (2009) Poor functional recovery after transplantation of diabetic bone marrow stem cells in ischemic myocardium. J Heart Lung Transplant 28:1158–1165CrossRefPubMed
81.
go back to reference Bdel Aziz MT, El-Asmar MF, Haidara M, Atta HM, Roshdy NK, Rashed LA, Sabry D, Youssef MA, Bdel Aziz AT, Moustafa M (2008) Effect of bone marrow-derived mesenchymal stem cells on cardiovascular complications in diabetic rats. Med Sci Monit 14:BR249–BR255 Bdel Aziz MT, El-Asmar MF, Haidara M, Atta HM, Roshdy NK, Rashed LA, Sabry D, Youssef MA, Bdel Aziz AT, Moustafa M (2008) Effect of bone marrow-derived mesenchymal stem cells on cardiovascular complications in diabetic rats. Med Sci Monit 14:BR249–BR255
82.
go back to reference Li JH, Zhang N, Wang JA (2008) Improved anti-apoptotic and anti-remodeling potency of bone marrow mesenchymal stem cells by anoxic pre-conditioning in diabetic cardiomyopathy. J Endocrinol Invest 31:103–110PubMed Li JH, Zhang N, Wang JA (2008) Improved anti-apoptotic and anti-remodeling potency of bone marrow mesenchymal stem cells by anoxic pre-conditioning in diabetic cardiomyopathy. J Endocrinol Invest 31:103–110PubMed
83.
go back to reference Zhang N, Li J, Luo R, Jiang J, Wang JA (2008) Bone marrow mesenchymal stem cells induce angiogenesis and attenuate the remodeling of diabetic cardiomyopathy. Exp Clin Endocrinol Diabetes 116:104–111CrossRefPubMed Zhang N, Li J, Luo R, Jiang J, Wang JA (2008) Bone marrow mesenchymal stem cells induce angiogenesis and attenuate the remodeling of diabetic cardiomyopathy. Exp Clin Endocrinol Diabetes 116:104–111CrossRefPubMed
Metadata
Title
Stem cells in the diabetic infarcted heart
Authors
Carley E. Glass
Pawan K. Singal
Dinender K. Singla
Publication date
01-11-2010
Publisher
Springer US
Published in
Heart Failure Reviews / Issue 6/2010
Print ISSN: 1382-4147
Electronic ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-010-9172-8

Other articles of this Issue 6/2010

Heart Failure Reviews 6/2010 Go to the issue