Skip to main content
Top
Published in: Documenta Ophthalmologica 2/2015

Open Access 01-10-2015 | Original Research Article

Bioelectrical function and structural assessment of the retina in patients with early stages of Parkinson’s disease (PD)

Authors: Barbara Nowacka, Wojciech Lubiński, Krystyna Honczarenko, Andrzej Potemkowski, Krzysztof Safranow

Published in: Documenta Ophthalmologica | Issue 2/2015

Login to get access

Abstract

Purpose

To determine bioelectrical function and structural changes of the retina in patients with early stages of Parkinson’s disease (PD).

Materials and methods

Thirty-eight eyes of 20 patients with early idiopathic PD and 38 eyes of 20 healthy age- and sex-matched controls were ophthalmologically examined, including assessment of distance best-corrected visual acuity (DBCVA), slit lamp examination of the anterior and posterior segment of the eye, evaluation of the eye structures: paramacular retinal thickness (RT) and retinal nerve fiber layer (RNFL) thickness with the aid of OCT, and the bioelectrical function by full-field electroretinogram (ERG). Additionally, PD patients were interviewed as to the presence of dopamine-dependent visual functions abnormalities.

Results

In patients with early PD, statistically significant changes in comparison with the control group were observed in ERG. They contained a reduction in mean amplitudes of the scotopic a-wave (rod–cone response), the scotopic oscillatory potentials (OPs)—OP2 and OP3, the photopic b-wave, and a reduction in the overall index (OP1 + OP2 + OP3) and a prolongation of mean peak times of the scotopic OP1, OP2, OP3, OP4 (p < 0.05). A questionnaire concerning abnormalities of dopamine-dependent visual functions revealed that PD patients with abnormal peak times of OP1, OP2, and OP3 reported non-specific visual disturbances more frequently in comparison with PD patients with normal peak times of OPs. Other analyzed parameters of ERG, DBCVA, RT, and RNFL did not significantly differ between patients with PD and the control group.

Conclusion

In patients with early PD, bioelectrical dysfunction of the retina was observed in the ERG test, probably as a result of dopamine deficiency in the retina. The results of our study indicate that ERG may also be a useful tool for understanding the reason for non-specific visual disturbances occurring in PD patients.
Literature
1.
go back to reference Djamgoz MB, Hankins MW, Hirano J, Archer SN (1997) Neurobiology of retinal dopamine in relation to degenerative states of the tissue. Vision Res 37:3509–3529CrossRefPubMed Djamgoz MB, Hankins MW, Hirano J, Archer SN (1997) Neurobiology of retinal dopamine in relation to degenerative states of the tissue. Vision Res 37:3509–3529CrossRefPubMed
2.
go back to reference Archibald NK, Clarke MP, Mosimann UP, Burn DJ (2009) The retina in Parkinson’s disease. Brain 132:1128–1145CrossRefPubMed Archibald NK, Clarke MP, Mosimann UP, Burn DJ (2009) The retina in Parkinson’s disease. Brain 132:1128–1145CrossRefPubMed
3.
go back to reference Wink B, Harris J (2000) A model of the Parkinsonian visual system: support for the dark adaptation hypothesis. Vision Res 40:1937–1946CrossRefPubMed Wink B, Harris J (2000) A model of the Parkinsonian visual system: support for the dark adaptation hypothesis. Vision Res 40:1937–1946CrossRefPubMed
4.
go back to reference Davidsdottir S, Cronin-Golomb A, Lee A (2005) Visual and spatial symptoms in Parkinson’s disease. Vision Res 45:1285–1296CrossRefPubMed Davidsdottir S, Cronin-Golomb A, Lee A (2005) Visual and spatial symptoms in Parkinson’s disease. Vision Res 45:1285–1296CrossRefPubMed
5.
go back to reference Uc EY, Rizzo M, Anderson SW, Qian S, Rodnitzky RL, Dawson JD (2005) Visual dysfunction in Parkinson disease without dementia. Neurology 65:1907–1913CrossRefPubMed Uc EY, Rizzo M, Anderson SW, Qian S, Rodnitzky RL, Dawson JD (2005) Visual dysfunction in Parkinson disease without dementia. Neurology 65:1907–1913CrossRefPubMed
6.
go back to reference Price MJ, Feldman RG, Adelberg D, Kayne H (1992) Abnormalities in color vision and contrast sensitivity in Parkinson’s disease. Neurology 42:887–890CrossRefPubMed Price MJ, Feldman RG, Adelberg D, Kayne H (1992) Abnormalities in color vision and contrast sensitivity in Parkinson’s disease. Neurology 42:887–890CrossRefPubMed
7.
go back to reference Ikeda H, Head GM, Ellis CJ (1994) Electrophysiological signs of retinal dopamine deficiency in recently diagnosed Parkinson’s disease and a follow up study. Vision Res 34:2629–2638CrossRefPubMed Ikeda H, Head GM, Ellis CJ (1994) Electrophysiological signs of retinal dopamine deficiency in recently diagnosed Parkinson’s disease and a follow up study. Vision Res 34:2629–2638CrossRefPubMed
8.
go back to reference Burguera JA, Vilela C, Traba A, Ameave Y, Vallet M (1990) The electroretinogram and visual evoked potentials in patients with Parkinson’s disease. Arch Neurobiol (Madr) 53:1–7 Burguera JA, Vilela C, Traba A, Ameave Y, Vallet M (1990) The electroretinogram and visual evoked potentials in patients with Parkinson’s disease. Arch Neurobiol (Madr) 53:1–7
9.
go back to reference Nightingale S, Mitchell KW, Howe JW (1986) Visual evoked cortical potentials and pattern electroretinograms in Parkinson’s disease and control subjects. J Neurol Neurosurg Psychiatry 49:1280–1287PubMedCentralCrossRefPubMed Nightingale S, Mitchell KW, Howe JW (1986) Visual evoked cortical potentials and pattern electroretinograms in Parkinson’s disease and control subjects. J Neurol Neurosurg Psychiatry 49:1280–1287PubMedCentralCrossRefPubMed
10.
go back to reference Gottlob I, Schneider E, Heider W, Skrandies W (1987) Alteration of visual evoked potentials and electroretinograms in Parkinson’s disease. Electroencephalogr Clin Neurophysiol 66:349–357CrossRefPubMed Gottlob I, Schneider E, Heider W, Skrandies W (1987) Alteration of visual evoked potentials and electroretinograms in Parkinson’s disease. Electroencephalogr Clin Neurophysiol 66:349–357CrossRefPubMed
11.
go back to reference Devos D, Tir M, Maurage CA, Waucquier N, Defebvre L, Defoort-Dhellemmes S, Destée A (2005) ERG and anatomical abnormalities suggesting retinopathy in dementia with Lewy bodies. Neurology 65:1107–1110CrossRefPubMed Devos D, Tir M, Maurage CA, Waucquier N, Defebvre L, Defoort-Dhellemmes S, Destée A (2005) ERG and anatomical abnormalities suggesting retinopathy in dementia with Lewy bodies. Neurology 65:1107–1110CrossRefPubMed
12.
go back to reference Krejcova H, Jerabek J, Filipova M, Bojar M, Polechova P (1985) Vestibilo-ocular and ERG changes in Parkinson patients. J Neurol 232(Suppl.):130 Krejcova H, Jerabek J, Filipova M, Bojar M, Polechova P (1985) Vestibilo-ocular and ERG changes in Parkinson patients. J Neurol 232(Suppl.):130
13.
go back to reference Filipova M, Balik J, Filip V, Rodny J, Krejcova H (1979) Electroretinographic changes in patients with parkinsonism treated with various classes of antiparkinsonian drugs. Act Nerv Super 21:136–138 Filipova M, Balik J, Filip V, Rodny J, Krejcova H (1979) Electroretinographic changes in patients with parkinsonism treated with various classes of antiparkinsonian drugs. Act Nerv Super 21:136–138
14.
go back to reference Filipova M, Terziivanov D, Balik J, Janku I, Filip V, Stika L, Krejcova H (1981) Electroretinogram in parkinsonism and effects of l-DOPA. Act Nerv Super 23:301–302 Filipova M, Terziivanov D, Balik J, Janku I, Filip V, Stika L, Krejcova H (1981) Electroretinogram in parkinsonism and effects of l-DOPA. Act Nerv Super 23:301–302
15.
go back to reference Iudice A, Virgili P, Muratorio A (1980) The electroretinogram in Parkinson’s disease. Res Commun Psychol Psychiat Behav 5:283–289 Iudice A, Virgili P, Muratorio A (1980) The electroretinogram in Parkinson’s disease. Res Commun Psychol Psychiat Behav 5:283–289
16.
go back to reference Kupersmith MJ, Shakin E, Siegel IM, Lieberman A (1982) Visual system abnormalities in patients with Parkinson’s disease. Arch Neurol 39:284–286CrossRefPubMed Kupersmith MJ, Shakin E, Siegel IM, Lieberman A (1982) Visual system abnormalities in patients with Parkinson’s disease. Arch Neurol 39:284–286CrossRefPubMed
17.
go back to reference Peppe A, Stanzione P, Pierantozzi M, Semprini R, Bassi A, Santilli AM, Formisano R, Piccolino M, Bernardi G (1998) Does pattern electroretinogram spatial tuning alteration in Parkinson’s disease depend on motor disturbances or retinal dopaminergic loss? Electroencephalogr Clin Neurophysiol 106:374–382CrossRefPubMed Peppe A, Stanzione P, Pierantozzi M, Semprini R, Bassi A, Santilli AM, Formisano R, Piccolino M, Bernardi G (1998) Does pattern electroretinogram spatial tuning alteration in Parkinson’s disease depend on motor disturbances or retinal dopaminergic loss? Electroencephalogr Clin Neurophysiol 106:374–382CrossRefPubMed
18.
go back to reference Garcia-Martin E, Satue M, Fuertes I, Otin S, Alarcia R, Herrero R, Bambo MP, Fernandez J, Pablo LE (2012) Ability and reproducibility of Fourier-domain optical coherence tomography to detect retinal nerve fiber layer atrophy in Parkinson’s disease. Ophthalmology 119:2161–2167CrossRefPubMed Garcia-Martin E, Satue M, Fuertes I, Otin S, Alarcia R, Herrero R, Bambo MP, Fernandez J, Pablo LE (2012) Ability and reproducibility of Fourier-domain optical coherence tomography to detect retinal nerve fiber layer atrophy in Parkinson’s disease. Ophthalmology 119:2161–2167CrossRefPubMed
19.
go back to reference Inzelberg R, Ramirez JA, Nisipeanu P, Ophir A (2004) Retinal nerve fiber layer thinning in Parkinson disease. Vision Res 44:2793–2797CrossRefPubMed Inzelberg R, Ramirez JA, Nisipeanu P, Ophir A (2004) Retinal nerve fiber layer thinning in Parkinson disease. Vision Res 44:2793–2797CrossRefPubMed
20.
go back to reference Moschos MM, Tagaris G, Markopoulos I, Margetis I, Tsapakis S, Kanakis M, Koutsandrea C (2011) Morphologic changes and functional retinal impairment in patients with Parkinson disease without visual loss. Eur J Ophthalmol 21:24–29CrossRefPubMed Moschos MM, Tagaris G, Markopoulos I, Margetis I, Tsapakis S, Kanakis M, Koutsandrea C (2011) Morphologic changes and functional retinal impairment in patients with Parkinson disease without visual loss. Eur J Ophthalmol 21:24–29CrossRefPubMed
21.
go back to reference Tsironi EE, Dastiridou A, Katsanos A, Dardiotis E, Veliki S, Patramani G, Zacharaki F, Ralli S, Hadjigeorgiou GM (2012) Perimetric and retinal nerve fiber layer findings in patients with Parkinson’s disease. BMC Ophthalmol 12:54PubMedCentralCrossRefPubMed Tsironi EE, Dastiridou A, Katsanos A, Dardiotis E, Veliki S, Patramani G, Zacharaki F, Ralli S, Hadjigeorgiou GM (2012) Perimetric and retinal nerve fiber layer findings in patients with Parkinson’s disease. BMC Ophthalmol 12:54PubMedCentralCrossRefPubMed
22.
go back to reference Archibald NK, Clarke MP, Mosimann UP, Burn DJ (2011) Retinal thickness in Parkinson’s disease. Parkinsonism Relat Disord 17:431–436CrossRefPubMed Archibald NK, Clarke MP, Mosimann UP, Burn DJ (2011) Retinal thickness in Parkinson’s disease. Parkinsonism Relat Disord 17:431–436CrossRefPubMed
23.
go back to reference Aaker GD, Myung JS, Ehrlich JR, Mohammed M, Henchcliffe C, Kiss S (2010) Detection of retinal changes in Parkinson’s disease with spectral-domain optical coherence tomography. Clin Ophthalmol 4:1427–1432PubMedCentralPubMed Aaker GD, Myung JS, Ehrlich JR, Mohammed M, Henchcliffe C, Kiss S (2010) Detection of retinal changes in Parkinson’s disease with spectral-domain optical coherence tomography. Clin Ophthalmol 4:1427–1432PubMedCentralPubMed
24.
go back to reference Satue M, Seral M, Otin S, Alarcia R, Herrero R, Bambo MP, Fuertes MI, Pablo LE, Garcia-Martin E (2014) Retinal thinning and correlation with functional disability in patients with Parkinson’s disease. Br J Ophthalmol 98:350–355CrossRefPubMed Satue M, Seral M, Otin S, Alarcia R, Herrero R, Bambo MP, Fuertes MI, Pablo LE, Garcia-Martin E (2014) Retinal thinning and correlation with functional disability in patients with Parkinson’s disease. Br J Ophthalmol 98:350–355CrossRefPubMed
25.
go back to reference Albrecht P, Müller AK, Südmeyer M, Ferrea S, Ringelstein M, Cohn E, Aktas O, Dietlein T, Lappas A, Foerster A, Hartung HP, Schnitzler A, Methner A (2012) Optical coherence tomography in parkinsonian syndromes. PLoS One 7:e34891PubMedCentralCrossRefPubMed Albrecht P, Müller AK, Südmeyer M, Ferrea S, Ringelstein M, Cohn E, Aktas O, Dietlein T, Lappas A, Foerster A, Hartung HP, Schnitzler A, Methner A (2012) Optical coherence tomography in parkinsonian syndromes. PLoS One 7:e34891PubMedCentralCrossRefPubMed
26.
go back to reference Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M (2009) International Society for Clinical Electrophysiology of Vision. ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol 118:69–77CrossRefPubMed Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M (2009) International Society for Clinical Electrophysiology of Vision. ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol 118:69–77CrossRefPubMed
27.
go back to reference Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B 57:289–300 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B 57:289–300
28.
go back to reference Jaffe MJ, Bruno G, Campbell G, Lavine RA, Karson CN, Weinberger DR (1987) Ganzfeld electroretinographic findings in parkinsonism: untreated patients and the effect of levodopa intravenous infusion. J Neurol Neurosurg Psychiatry 50:847–852PubMedCentralCrossRefPubMed Jaffe MJ, Bruno G, Campbell G, Lavine RA, Karson CN, Weinberger DR (1987) Ganzfeld electroretinographic findings in parkinsonism: untreated patients and the effect of levodopa intravenous infusion. J Neurol Neurosurg Psychiatry 50:847–852PubMedCentralCrossRefPubMed
29.
go back to reference Penn RD, Hagins WA (1969) Signal transmission along retinal rods and the origin of the electroretinographic a-wave. Nature 223:201–205CrossRefPubMed Penn RD, Hagins WA (1969) Signal transmission along retinal rods and the origin of the electroretinographic a-wave. Nature 223:201–205CrossRefPubMed
30.
go back to reference Stella SL Jr, Thoreson WB (2000) Differential modulation of rod and cone calcium currents in tiger salamander retina by D2 dopamine receptors and cAMP. Eur J Neurosci 12:3537–3548CrossRefPubMed Stella SL Jr, Thoreson WB (2000) Differential modulation of rod and cone calcium currents in tiger salamander retina by D2 dopamine receptors and cAMP. Eur J Neurosci 12:3537–3548CrossRefPubMed
31.
go back to reference Akopian A, Witkovsky P (1996) D2 dopamine receptor-mediated inhibition of a hyperpolarization-activated current in rod photoreceptors. J Neurophysiol 76:1828PubMed Akopian A, Witkovsky P (1996) D2 dopamine receptor-mediated inhibition of a hyperpolarization-activated current in rod photoreceptors. J Neurophysiol 76:1828PubMed
32.
go back to reference Krizaj D, Gábriel R, Owen WG, Witkovsky P (1998) Dopamine D2 receptor-mediated modulation of rod-cone coupling in the Xenopus retina. J Comp Neurol 398:529–538PubMedCentralCrossRefPubMed Krizaj D, Gábriel R, Owen WG, Witkovsky P (1998) Dopamine D2 receptor-mediated modulation of rod-cone coupling in the Xenopus retina. J Comp Neurol 398:529–538PubMedCentralCrossRefPubMed
33.
go back to reference Shulman LM, Fox DA (1996) Dopamine inhibits mammalian photoreceptor Na+, K+ -ATPase activity via a selective effect on the alpha3 isozyme. Proc Natl Acad Sci U S A 93:8034–8039PubMedCentralCrossRefPubMed Shulman LM, Fox DA (1996) Dopamine inhibits mammalian photoreceptor Na+, K+ -ATPase activity via a selective effect on the alpha3 isozyme. Proc Natl Acad Sci U S A 93:8034–8039PubMedCentralCrossRefPubMed
34.
go back to reference Nowak JZ, Sek B, Schorderet M (1991) Dark-induced supersensitivity of dopamine D-1 and D-2 receptors in rat retina. NeuroReport 2:429–432CrossRefPubMed Nowak JZ, Sek B, Schorderet M (1991) Dark-induced supersensitivity of dopamine D-1 and D-2 receptors in rat retina. NeuroReport 2:429–432CrossRefPubMed
35.
go back to reference Jackson CR, Capozzi M, Dai H, McMahon DG (2014) Circadian perinatal photoperiod has enduring effects on retinal dopamine and visual function. J Neurosci 34:4627–4633PubMedCentralCrossRefPubMed Jackson CR, Capozzi M, Dai H, McMahon DG (2014) Circadian perinatal photoperiod has enduring effects on retinal dopamine and visual function. J Neurosci 34:4627–4633PubMedCentralCrossRefPubMed
36.
go back to reference Krizaj D (1993) Witkovsky P. Effects of submicromolar concentrations of dopamine on photoreceptor to horizontal cell communication Brain Res 627:122–128PubMed Krizaj D (1993) Witkovsky P. Effects of submicromolar concentrations of dopamine on photoreceptor to horizontal cell communication Brain Res 627:122–128PubMed
37.
go back to reference Wachtmeister L, Dowling JE (1978) The oscillatory potentials of the mudpuppy retina. Invest Ophthalmol Vis Sci 17:1176–1188PubMed Wachtmeister L, Dowling JE (1978) The oscillatory potentials of the mudpuppy retina. Invest Ophthalmol Vis Sci 17:1176–1188PubMed
38.
go back to reference Yonemura D, Kawasaki K (1979) New approaches to ophthalmic electrodiagnosis by retinal oscillatory potential, drug-induced responses from retinal pigment epithelium and cone potential. Doc Ophthalmol 48:163–222CrossRefPubMed Yonemura D, Kawasaki K (1979) New approaches to ophthalmic electrodiagnosis by retinal oscillatory potential, drug-induced responses from retinal pigment epithelium and cone potential. Doc Ophthalmol 48:163–222CrossRefPubMed
39.
go back to reference Heynen H, Wachtmeister L, van Norren D (1985) Origin of the oscillatory potentials in the primate retina. Vision Res 25:1365–1373CrossRefPubMed Heynen H, Wachtmeister L, van Norren D (1985) Origin of the oscillatory potentials in the primate retina. Vision Res 25:1365–1373CrossRefPubMed
40.
go back to reference Dong CJ, Agey P, Hare WA (2004) Origins of the electroretinogram oscillatory potentials in the rabbit retina. Vis Neurosci 21:533–543CrossRefPubMed Dong CJ, Agey P, Hare WA (2004) Origins of the electroretinogram oscillatory potentials in the rabbit retina. Vis Neurosci 21:533–543CrossRefPubMed
41.
go back to reference Zhang DQ, Zhou TR, McMahon DG (2007) Functional heterogeneity of retinal dopaminergic neurons underlying their multiple roles in vision. J Neurosci 27:692–699CrossRefPubMed Zhang DQ, Zhou TR, McMahon DG (2007) Functional heterogeneity of retinal dopaminergic neurons underlying their multiple roles in vision. J Neurosci 27:692–699CrossRefPubMed
42.
go back to reference Hempel FG (1973) Modification of the Rabbit Electroretinogram by Reserpine. Ophthalmic Res 4:65–75CrossRef Hempel FG (1973) Modification of the Rabbit Electroretinogram by Reserpine. Ophthalmic Res 4:65–75CrossRef
43.
go back to reference Gutiéerrez O, Spiguel RD (1973) Oscillatory potentials of the cat retina: effects of adrenergic drugs. Life Sci 13:991–999CrossRef Gutiéerrez O, Spiguel RD (1973) Oscillatory potentials of the cat retina: effects of adrenergic drugs. Life Sci 13:991–999CrossRef
44.
go back to reference Karwoski CJ, Xu X (1999) Current source-density analysis of light-evoked field potentials in rabbit retina. Vis Neurosci 16:369–377CrossRefPubMed Karwoski CJ, Xu X (1999) Current source-density analysis of light-evoked field potentials in rabbit retina. Vis Neurosci 16:369–377CrossRefPubMed
45.
go back to reference Green DG, Kapousta-Bruneau NV (1999) A dissection of the electroretinogram from the isolated rat retina with microelectrode and drugs. Vis Neurosci 16:727–741CrossRefPubMed Green DG, Kapousta-Bruneau NV (1999) A dissection of the electroretinogram from the isolated rat retina with microelectrode and drugs. Vis Neurosci 16:727–741CrossRefPubMed
46.
go back to reference Masu M, Iwakabe H, Tagawa Y, Miyoshi T, Yamashita M, Fukuda Y, Sasaki H, Hiroi K, Nakamura Y, Shigemoto R, Takada M, Nakamura K, Nakao K, Katsuki M, Nakanishi S (1995) Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6 gene. Cell 80:757–765CrossRefPubMed Masu M, Iwakabe H, Tagawa Y, Miyoshi T, Yamashita M, Fukuda Y, Sasaki H, Hiroi K, Nakamura Y, Shigemoto R, Takada M, Nakamura K, Nakao K, Katsuki M, Nakanishi S (1995) Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6 gene. Cell 80:757–765CrossRefPubMed
47.
go back to reference Dong CJ, Hare WA (2000) Contribution to the kinetics and amplitude of the electroretinogram b-wave by third-order retinal neurons in the rabbit retina. Vision Res 40:579–589CrossRefPubMed Dong CJ, Hare WA (2000) Contribution to the kinetics and amplitude of the electroretinogram b-wave by third-order retinal neurons in the rabbit retina. Vision Res 40:579–589CrossRefPubMed
48.
go back to reference Bodis-Wollner I (2003) Neuropsychological and perceptual defects in Parkinson’s disease. Parkinsonism Relat Disord 9(Suppl 2):S83–S89CrossRefPubMed Bodis-Wollner I (2003) Neuropsychological and perceptual defects in Parkinson’s disease. Parkinsonism Relat Disord 9(Suppl 2):S83–S89CrossRefPubMed
49.
go back to reference Gonon FG (1988) Nonlinear relationship between impulse flow and dopamine released by rat midbrain dopaminergic neurons as studied by in vivo electrochemistry. Neuroscience 24:19–28CrossRefPubMed Gonon FG (1988) Nonlinear relationship between impulse flow and dopamine released by rat midbrain dopaminergic neurons as studied by in vivo electrochemistry. Neuroscience 24:19–28CrossRefPubMed
50.
go back to reference Floresco SB, West AR, Ash B, Moore H, Grace AA (2003) Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 6:968–973CrossRefPubMed Floresco SB, West AR, Ash B, Moore H, Grace AA (2003) Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 6:968–973CrossRefPubMed
Metadata
Title
Bioelectrical function and structural assessment of the retina in patients with early stages of Parkinson’s disease (PD)
Authors
Barbara Nowacka
Wojciech Lubiński
Krystyna Honczarenko
Andrzej Potemkowski
Krzysztof Safranow
Publication date
01-10-2015
Publisher
Springer Berlin Heidelberg
Published in
Documenta Ophthalmologica / Issue 2/2015
Print ISSN: 0012-4486
Electronic ISSN: 1573-2622
DOI
https://doi.org/10.1007/s10633-015-9503-0

Other articles of this Issue 2/2015

Documenta Ophthalmologica 2/2015 Go to the issue