Skip to main content
Top
Published in: Digestive Diseases and Sciences 4/2022

01-04-2022 | Autoimmune Hepatitis | Review

Immune Inhibitory Properties and Therapeutic Prospects of Transforming Growth Factor-Beta and Interleukin 10 in Autoimmune Hepatitis

Author: Albert J. Czaja

Published in: Digestive Diseases and Sciences | Issue 4/2022

Login to get access

Abstract

Transforming growth factor-beta and interleukin 10 have diverse immune inhibitory properties that have restored homeostatic defense mechanisms in experimental models of autoimmune disease. The goals of this review are to describe the actions of each cytokine, review their investigational use in animal models and patients, and indicate their prospects as interventions in autoimmune hepatitis. English abstracts were identified in PubMed by multiple search terms. Full-length articles were selected for review, and secondary and tertiary bibliographies were developed. Transforming growth factor-beta expands the natural and inducible populations of regulatory T cells, limits the proliferation of natural killer cells, suppresses the activation of naïve CD8+ T cells, decreases the production of interferon-gamma, and stimulates fibrotic repair. Interleukin 10 selectively inhibits the CD28 co-stimulatory signal for antigen recognition and impairs antigen-specific activation of uncommitted CD4+ and CD8+ T cells. It also inhibits maturation of dendritic cells, suppresses Th17 cells, supports regulatory T cells, and limits production of diverse pro-inflammatory cytokines. Contradictory immune stimulatory effects have been associated with each cytokine and may relate to the dose and accompanying cytokine milieu. Experimental findings have not translated into successful early clinical trials. The recombinant preparation of each agent in low dosage has been safe in human studies. In conclusion, transforming growth factor-beta and interleukin 10 have powerful immune inhibitory actions of potential therapeutic value in autoimmune hepatitis. The keys to their therapeutic application will be to match their predominant non-redundant function with the pivotal pathogenic mechanism or cytokine deficiency and to avoid contradictory immune stimulatory actions.
Literature
2.
go back to reference Czaja AJ. Examining pathogenic concepts of autoimmune hepatitis for cues to future investigations and interventions. World J Gastroenterol 2019;25:6579–6606.PubMedPubMedCentral Czaja AJ. Examining pathogenic concepts of autoimmune hepatitis for cues to future investigations and interventions. World J Gastroenterol 2019;25:6579–6606.PubMedPubMedCentral
3.
go back to reference Liberal R, Grant CR, Longhi MS, Mieli-Vergani G, Vergani D. Regulatory T cells: mechanisms of suppression and impairment in autoimmune liver disease. IUBMB Life 2015;67:88–97.PubMed Liberal R, Grant CR, Longhi MS, Mieli-Vergani G, Vergani D. Regulatory T cells: mechanisms of suppression and impairment in autoimmune liver disease. IUBMB Life 2015;67:88–97.PubMed
4.
go back to reference Taubert R, Hardtke-Wolenski M, Noyan F et al. Intrahepatic regulatory T cells in autoimmune hepatitis are associated with treatment response and depleted with current therapies. J Hepatol 2014;61:1106–1114.PubMed Taubert R, Hardtke-Wolenski M, Noyan F et al. Intrahepatic regulatory T cells in autoimmune hepatitis are associated with treatment response and depleted with current therapies. J Hepatol 2014;61:1106–1114.PubMed
5.
go back to reference Czaja AJ, Strettell MD, Thomson LJ et al. Associations between alleles of the major histocompatibility complex and type 1 autoimmune hepatitis. Hepatology 1997;25:317–323.PubMed Czaja AJ, Strettell MD, Thomson LJ et al. Associations between alleles of the major histocompatibility complex and type 1 autoimmune hepatitis. Hepatology 1997;25:317–323.PubMed
6.
go back to reference Czaja AJ. Genetic factors affecting the occurrence, clinical phenotype, and outcome of autoimmune hepatitis. Clin Gastroenterol Hepatol 2008;6:379–388.PubMed Czaja AJ. Genetic factors affecting the occurrence, clinical phenotype, and outcome of autoimmune hepatitis. Clin Gastroenterol Hepatol 2008;6:379–388.PubMed
7.
go back to reference van Gerven NM, de Boer YS, Zwiers A et al. HLA-DRB1*03:01 and HLA-DRB1*04:01 modify the presentation and outcome in autoimmune hepatitis type-1. Genes Immun 2015;16:247–252.PubMed van Gerven NM, de Boer YS, Zwiers A et al. HLA-DRB1*03:01 and HLA-DRB1*04:01 modify the presentation and outcome in autoimmune hepatitis type-1. Genes Immun 2015;16:247–252.PubMed
8.
go back to reference Mann DA. Epigenetics in liver disease. Hepatology 2014;60:1418–1425.PubMed Mann DA. Epigenetics in liver disease. Hepatology 2014;60:1418–1425.PubMed
9.
go back to reference Czaja AJ. Epigenetic changes and their implications in autoimmune hepatitis. Eur J Clin Investig 2018;48:e12899. Czaja AJ. Epigenetic changes and their implications in autoimmune hepatitis. Eur J Clin Investig 2018;48:e12899.
10.
go back to reference Oo YH, Hubscher SG, Adams DH. Autoimmune hepatitis: new paradigms in the pathogenesis, diagnosis, and management. Hepatol Int 2010;4:475–493.PubMedPubMedCentral Oo YH, Hubscher SG, Adams DH. Autoimmune hepatitis: new paradigms in the pathogenesis, diagnosis, and management. Hepatol Int 2010;4:475–493.PubMedPubMedCentral
12.
go back to reference Floreani A, Restrepo-Jimenez P, Secchi MF et al. Etiopathogenesis of autoimmune hepatitis. J Autoimmun 2018;95:133–143.PubMed Floreani A, Restrepo-Jimenez P, Secchi MF et al. Etiopathogenesis of autoimmune hepatitis. J Autoimmun 2018;95:133–143.PubMed
13.
go back to reference Trivedi PJ, Adams DH. Mucosal immunity in liver autoimmunity: a comprehensive review. J Autoimmun 2013;46:97–111.PubMed Trivedi PJ, Adams DH. Mucosal immunity in liver autoimmunity: a comprehensive review. J Autoimmun 2013;46:97–111.PubMed
14.
go back to reference Mack CL, Adams D, Assis DN et al. Diagnosis and management of autoimmune hepatitis in adults and children: 2019 practice guidance and guidelines from the American Association for the Study of Liver Diseases. Hepatology 2020;72:671–722.PubMed Mack CL, Adams D, Assis DN et al. Diagnosis and management of autoimmune hepatitis in adults and children: 2019 practice guidance and guidelines from the American Association for the Study of Liver Diseases. Hepatology 2020;72:671–722.PubMed
15.
go back to reference O’Garra A, Arai N. The molecular basis of T helper 1 and T helper 2 cell differentiation. Trends Cell Biol 2000;10:542–550.PubMed O’Garra A, Arai N. The molecular basis of T helper 1 and T helper 2 cell differentiation. Trends Cell Biol 2000;10:542–550.PubMed
16.
go back to reference Langrish CL, Chen Y, Blumenschein WM et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005;201:233–240.PubMedPubMedCentral Langrish CL, Chen Y, Blumenschein WM et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005;201:233–240.PubMedPubMedCentral
17.
go back to reference Chtanova T, Tangye SG, Newton R et al. T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J Immunol 2004;173:68–78.PubMed Chtanova T, Tangye SG, Newton R et al. T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J Immunol 2004;173:68–78.PubMed
18.
go back to reference Nurieva RI, Chung Y, Hwang D et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 2008;29:138–149.PubMedPubMedCentral Nurieva RI, Chung Y, Hwang D et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 2008;29:138–149.PubMedPubMedCentral
19.
go back to reference Fazilleau N, Mark L, McHeyzer-Williams LJ, McHeyzer-Williams MG. Follicular helper T cells: lineage and location. Immunity 2009;30:324–335.PubMedPubMedCentral Fazilleau N, Mark L, McHeyzer-Williams LJ, McHeyzer-Williams MG. Follicular helper T cells: lineage and location. Immunity 2009;30:324–335.PubMedPubMedCentral
20.
go back to reference Seo GY, Youn J, Kim PH. IL-21 ensures TGF-beta 1-induced IgA isotype expression in mouse Peyer’s patches. J Leukoc Biol 2009;85:744–750.PubMed Seo GY, Youn J, Kim PH. IL-21 ensures TGF-beta 1-induced IgA isotype expression in mouse Peyer’s patches. J Leukoc Biol 2009;85:744–750.PubMed
21.
go back to reference Kelso A. Th1 and Th2 subsets: paradigms lost? Immunol Today 1995;16:374–379.PubMed Kelso A. Th1 and Th2 subsets: paradigms lost? Immunol Today 1995;16:374–379.PubMed
22.
go back to reference Ramadori G, Armbrust T. Cytokines in the liver. Eur J Gastroenterol Hepatol 2001;13:777–784.PubMed Ramadori G, Armbrust T. Cytokines in the liver. Eur J Gastroenterol Hepatol 2001;13:777–784.PubMed
23.
go back to reference Yu J, Wei M, Becknell B et al. Pro- and antiinflammatory cytokine signaling: reciprocal antagonism regulates interferon-gamma production by human natural killer cells. Immunity 2006;24:575–590.PubMed Yu J, Wei M, Becknell B et al. Pro- and antiinflammatory cytokine signaling: reciprocal antagonism regulates interferon-gamma production by human natural killer cells. Immunity 2006;24:575–590.PubMed
24.
go back to reference Wynn TA. Type 2 cytokines: mechanisms and therapeutic strategies. Nat Rev Immunol 2015;15:271–282.PubMed Wynn TA. Type 2 cytokines: mechanisms and therapeutic strategies. Nat Rev Immunol 2015;15:271–282.PubMed
25.
go back to reference Del Prete G, De Carli M, Almerigogna F et al. Human IL-10 is produced by both type 1 helper (Th1) and type 2 helper (Th2) T cell clones and inhibits their antigen-specific proliferation and cytokine production. J Immunol 1993;150:353–360.PubMed Del Prete G, De Carli M, Almerigogna F et al. Human IL-10 is produced by both type 1 helper (Th1) and type 2 helper (Th2) T cell clones and inhibits their antigen-specific proliferation and cytokine production. J Immunol 1993;150:353–360.PubMed
26.
go back to reference Akdis CA, Joss A, Akdis M, Faith A, Blaser K. A molecular basis for T cell suppression by IL-10: CD28-associated IL-10 receptor inhibits CD28 tyrosine phosphorylation and phosphatidylinositol 3-kinase binding. FASEB J 2000;14:1666–1668.PubMed Akdis CA, Joss A, Akdis M, Faith A, Blaser K. A molecular basis for T cell suppression by IL-10: CD28-associated IL-10 receptor inhibits CD28 tyrosine phosphorylation and phosphatidylinositol 3-kinase binding. FASEB J 2000;14:1666–1668.PubMed
27.
go back to reference Joss A, Akdis M, Faith A, Blaser K, Akdis CA. IL-10 directly acts on T cells by specifically altering the CD28 co-stimulation pathway. Eur J Immunol 2000;30:1683–1690.PubMed Joss A, Akdis M, Faith A, Blaser K, Akdis CA. IL-10 directly acts on T cells by specifically altering the CD28 co-stimulation pathway. Eur J Immunol 2000;30:1683–1690.PubMed
28.
29.
go back to reference Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 1999;190:995–1004.PubMedPubMedCentral Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 1999;190:995–1004.PubMedPubMedCentral
30.
go back to reference Chen W, Jin W, Hardegen N et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003;198:1875–1886.PubMedPubMedCentral Chen W, Jin W, Hardegen N et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003;198:1875–1886.PubMedPubMedCentral
31.
go back to reference Murai M, Turovskaya O, Kim G et al. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat Immunol 2009;10:1178–1184.PubMedPubMedCentral Murai M, Turovskaya O, Kim G et al. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat Immunol 2009;10:1178–1184.PubMedPubMedCentral
32.
go back to reference Ouyang W, Beckett O, Ma Q, Li MO. Transforming growth factor-beta signaling curbs thymic negative selection promoting regulatory T cell development. Immunity 2010;32:642–653.PubMedPubMedCentral Ouyang W, Beckett O, Ma Q, Li MO. Transforming growth factor-beta signaling curbs thymic negative selection promoting regulatory T cell development. Immunity 2010;32:642–653.PubMedPubMedCentral
33.
go back to reference Chaudhry A, Samstein RM, Treuting P et al. Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity 2011;34:566–578.PubMedPubMedCentral Chaudhry A, Samstein RM, Treuting P et al. Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity 2011;34:566–578.PubMedPubMedCentral
34.
go back to reference Strainic MG, Shevach EM, An F, Lin F, Medof ME. Absence of signaling into CD4(+) cells via C3aR and C5aR enables autoinductive TGF-beta1 signaling and induction of Foxp3(+) regulatory T cells. Nat Immunol 2013;14:162–171.PubMed Strainic MG, Shevach EM, An F, Lin F, Medof ME. Absence of signaling into CD4(+) cells via C3aR and C5aR enables autoinductive TGF-beta1 signaling and induction of Foxp3(+) regulatory T cells. Nat Immunol 2013;14:162–171.PubMed
35.
go back to reference Sanjabi S, Oh SA, Li MO. Regulation of the immune response by TGF-beta: from conception to autoimmunity and infection. Cold Spring Harb Perspect Biol 2017;9:a022236.PubMedPubMedCentral Sanjabi S, Oh SA, Li MO. Regulation of the immune response by TGF-beta: from conception to autoimmunity and infection. Cold Spring Harb Perspect Biol 2017;9:a022236.PubMedPubMedCentral
36.
go back to reference Gleeson D, Heneghan MA. British Society of Gastroenterology (BSG) guidelines for management of autoimmune hepatitis. Gut 2011;60:1611–1629.PubMed Gleeson D, Heneghan MA. British Society of Gastroenterology (BSG) guidelines for management of autoimmune hepatitis. Gut 2011;60:1611–1629.PubMed
37.
go back to reference EASL Clinical Practice Guidelines. Autoimmune hepatitis. J Hepatol 2015;63:971–1004. EASL Clinical Practice Guidelines. Autoimmune hepatitis. J Hepatol 2015;63:971–1004.
38.
go back to reference Czock D, Keller F, Rasche FM, Haussler U. Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokinet 2005;44:61–98.PubMed Czock D, Keller F, Rasche FM, Haussler U. Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokinet 2005;44:61–98.PubMed
39.
go back to reference Czaja AJ. Drug choices in autoimmune hepatitis: part A—steroids. Expert Rev Gastroenterol Hepatol 2012;6:603–615.PubMed Czaja AJ. Drug choices in autoimmune hepatitis: part A—steroids. Expert Rev Gastroenterol Hepatol 2012;6:603–615.PubMed
40.
go back to reference Fu XQ, Cai JY, Li MJ. Prednisone may rebuild the immunologic homeostasis: alteration of Th17 and Treg cells in the lymphocytes from rats’ spleens after treated with prednisone-containing serum. Mol Genet Genomic Med 2019;7:e00800.PubMedPubMedCentral Fu XQ, Cai JY, Li MJ. Prednisone may rebuild the immunologic homeostasis: alteration of Th17 and Treg cells in the lymphocytes from rats’ spleens after treated with prednisone-containing serum. Mol Genet Genomic Med 2019;7:e00800.PubMedPubMedCentral
41.
go back to reference Czaja AJ. Promising pharmacological, molecular and cellular treatments of autoimmune hepatitis. Curr Pharm Des 2011;17:3120–3140.PubMed Czaja AJ. Promising pharmacological, molecular and cellular treatments of autoimmune hepatitis. Curr Pharm Des 2011;17:3120–3140.PubMed
42.
go back to reference Liberal R, Krawitt EL, Vierling JM et al. Cutting edge issues in autoimmune hepatitis. J Autoimmun 2016;75:6–19.PubMed Liberal R, Krawitt EL, Vierling JM et al. Cutting edge issues in autoimmune hepatitis. J Autoimmun 2016;75:6–19.PubMed
43.
go back to reference Jones D, Manns MP, Terracciano L, Torbenson M, Vierling JM. Unmet needs and new models for future trials in autoimmune hepatitis. Lancet Gastroenterol Hepatol 2018;3:363–370.PubMed Jones D, Manns MP, Terracciano L, Torbenson M, Vierling JM. Unmet needs and new models for future trials in autoimmune hepatitis. Lancet Gastroenterol Hepatol 2018;3:363–370.PubMed
44.
go back to reference Czaja AJ. Review article: opportunities to improve and expand thiopurine therapy for autoimmune hepatitis. Aliment Pharmacol Ther 2020;51:1286–1304.PubMed Czaja AJ. Review article: opportunities to improve and expand thiopurine therapy for autoimmune hepatitis. Aliment Pharmacol Ther 2020;51:1286–1304.PubMed
45.
go back to reference Vierling JM, Kerkar N, Czaja AJ et al. Immunosuppressive treatment regimens in autoimmune hepatitis: systematic reviews and meta-analyses supporting American Association for the Study of Liver Diseases guidelines. Hepatology 2020;72:753–769.PubMed Vierling JM, Kerkar N, Czaja AJ et al. Immunosuppressive treatment regimens in autoimmune hepatitis: systematic reviews and meta-analyses supporting American Association for the Study of Liver Diseases guidelines. Hepatology 2020;72:753–769.PubMed
47.
go back to reference Czaja AJ. Factoring the intestinal microbiome into the pathogenesis of autoimmune hepatitis. World J Gastroenterol 2016;22:9257–9278.PubMedPubMedCentral Czaja AJ. Factoring the intestinal microbiome into the pathogenesis of autoimmune hepatitis. World J Gastroenterol 2016;22:9257–9278.PubMedPubMedCentral
49.
go back to reference Czaja AJ. Evolving paradigm for treatment of autoimmune hepatitis. Expert Rev Clin Immunol 2017;13:781–798.PubMed Czaja AJ. Evolving paradigm for treatment of autoimmune hepatitis. Expert Rev Clin Immunol 2017;13:781–798.PubMed
51.
go back to reference Halliday N, Dyson JK, Thorburn D, Lohse AW, Heneghan MA. Review article: experimental therapies in autoimmune hepatitis. Aliment Pharmacol Ther 2020;52:1134–1149.PubMed Halliday N, Dyson JK, Thorburn D, Lohse AW, Heneghan MA. Review article: experimental therapies in autoimmune hepatitis. Aliment Pharmacol Ther 2020;52:1134–1149.PubMed
52.
go back to reference Lucey DR, Clerici M, Shearer GM. Type 1 and type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory diseases. Clin Microbiol Rev 1996;9:532–562.PubMedPubMedCentral Lucey DR, Clerici M, Shearer GM. Type 1 and type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory diseases. Clin Microbiol Rev 1996;9:532–562.PubMedPubMedCentral
53.
go back to reference Peters M. Actions of cytokines on the immune response and viral interactions: an overview. Hepatology 1996;23:909–916.PubMed Peters M. Actions of cytokines on the immune response and viral interactions: an overview. Hepatology 1996;23:909–916.PubMed
54.
go back to reference Akdis M, Aab A, Altunbulakli C et al. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor beta, and TNF-alpha: receptors, functions, and roles in diseases. J Allergy Clin Immunol 2016;138:984–1010.PubMed Akdis M, Aab A, Altunbulakli C et al. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor beta, and TNF-alpha: receptors, functions, and roles in diseases. J Allergy Clin Immunol 2016;138:984–1010.PubMed
55.
go back to reference Weiler-Normann C, Schramm C, Quaas A et al. Infliximab as a rescue treatment in difficult-to-treat autoimmune hepatitis. J Hepatol 2013;58:529–534.PubMed Weiler-Normann C, Schramm C, Quaas A et al. Infliximab as a rescue treatment in difficult-to-treat autoimmune hepatitis. J Hepatol 2013;58:529–534.PubMed
56.
go back to reference Lim TY, Martinez-Llordella M, Kodela E et al. Low-dose interleukin-2 for refractory autoimmune hepatitis. Hepatology 2018;68:1649–1652.PubMed Lim TY, Martinez-Llordella M, Kodela E et al. Low-dose interleukin-2 for refractory autoimmune hepatitis. Hepatology 2018;68:1649–1652.PubMed
57.
go back to reference Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 2006;24:99–146.PubMed Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 2006;24:99–146.PubMed
58.
go back to reference Sanjabi S, Zenewicz LA, Kamanaka M, Flavell RA. Anti-inflammatory and pro-inflammatory roles of TGF-beta, IL-10, and IL-22 in immunity and autoimmunity. Curr Opin Pharmacol 2009;9:447–453.PubMedPubMedCentral Sanjabi S, Zenewicz LA, Kamanaka M, Flavell RA. Anti-inflammatory and pro-inflammatory roles of TGF-beta, IL-10, and IL-22 in immunity and autoimmunity. Curr Opin Pharmacol 2009;9:447–453.PubMedPubMedCentral
59.
go back to reference Oh SA, Li MO. TGF-beta: guardian of T cell function. J Immunol 2013;191:3973–3979.PubMed Oh SA, Li MO. TGF-beta: guardian of T cell function. J Immunol 2013;191:3973–3979.PubMed
60.
go back to reference Asadullah K, Sterry W, Volk HD. Interleukin-10 therapy–review of a new approach. Pharmacol Rev 2003;55:241–269.PubMed Asadullah K, Sterry W, Volk HD. Interleukin-10 therapy–review of a new approach. Pharmacol Rev 2003;55:241–269.PubMed
62.
go back to reference Wang X, Wong K, Ouyang W, Rutz S. Targeting IL-10 family cytokines for the treatment of human diseases. Cold Spring Harb Perspect Biol 2019;11:a028548.PubMedPubMedCentral Wang X, Wong K, Ouyang W, Rutz S. Targeting IL-10 family cytokines for the treatment of human diseases. Cold Spring Harb Perspect Biol 2019;11:a028548.PubMedPubMedCentral
63.
go back to reference Neumann C, Scheffold A, Rutz S. Functions and regulation of T cell-derived interleukin-10. Semin Immunol 2019;44:101344.PubMed Neumann C, Scheffold A, Rutz S. Functions and regulation of T cell-derived interleukin-10. Semin Immunol 2019;44:101344.PubMed
64.
go back to reference Malek TR, Bayer AL. Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol 2004;4:665–674.PubMed Malek TR, Bayer AL. Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol 2004;4:665–674.PubMed
65.
go back to reference Thornton AM, Donovan EE, Piccirillo CA, Shevach EM. Cutting edge: IL-2 is critically required for the in vitro activation of CD4+CD25+ T cell suppressor function. J Immunol 2004;172:6519–6523.PubMed Thornton AM, Donovan EE, Piccirillo CA, Shevach EM. Cutting edge: IL-2 is critically required for the in vitro activation of CD4+CD25+ T cell suppressor function. J Immunol 2004;172:6519–6523.PubMed
66.
go back to reference Arenas-Ramirez N, Woytschak J, Boyman O. Interleukin-2: biology, design and application. Trends Immunol 2015;36:763–777.PubMed Arenas-Ramirez N, Woytschak J, Boyman O. Interleukin-2: biology, design and application. Trends Immunol 2015;36:763–777.PubMed
67.
go back to reference Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annu Rev Immunol 2009;27:485–517.PubMed Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annu Rev Immunol 2009;27:485–517.PubMed
68.
go back to reference Zhou L, Lopes JE, Chong MM et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 2008;453:236–240.PubMedPubMedCentral Zhou L, Lopes JE, Chong MM et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 2008;453:236–240.PubMedPubMedCentral
69.
go back to reference Filippi CM, Juedes AE, Oldham JE et al. Transforming growth factor-beta suppresses the activation of CD8+ T-cells when naive but promotes their survival and function once antigen experienced: a two-faced impact on autoimmunity. Diabetes. 2008;7:2684–2692. Filippi CM, Juedes AE, Oldham JE et al. Transforming growth factor-beta suppresses the activation of CD8+ T-cells when naive but promotes their survival and function once antigen experienced: a two-faced impact on autoimmunity. Diabetes. 2008;7:2684–2692.
70.
go back to reference Dardalhon V, Awasthi A, Kwon H et al. IL-4 inhibits TGF-beta-induced Foxp3+ T cells and together with TGF-beta, generates IL-9+ IL-10+ Foxp3(-) effector T cells. Nat Immunol 2008;9:1347–1355.PubMedPubMedCentral Dardalhon V, Awasthi A, Kwon H et al. IL-4 inhibits TGF-beta-induced Foxp3+ T cells and together with TGF-beta, generates IL-9+ IL-10+ Foxp3(-) effector T cells. Nat Immunol 2008;9:1347–1355.PubMedPubMedCentral
71.
go back to reference Veldhoen M, Uyttenhove C, van Snick J et al. Transforming growth factor-beta “reprograms” the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 2008;9:1341–1346.PubMed Veldhoen M, Uyttenhove C, van Snick J et al. Transforming growth factor-beta “reprograms” the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 2008;9:1341–1346.PubMed
72.
go back to reference Martinez GJ, Zhang Z, Chung Y et al. Smad3 differentially regulates the induction of regulatory and inflammatory T cell differentiation. J Biol Chem 2009;284:35283–35286.PubMedPubMedCentral Martinez GJ, Zhang Z, Chung Y et al. Smad3 differentially regulates the induction of regulatory and inflammatory T cell differentiation. J Biol Chem 2009;284:35283–35286.PubMedPubMedCentral
73.
go back to reference Gagliani N, Amezcua Vesely MC, Iseppon A et al. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 2015;523:221–225.PubMedPubMedCentral Gagliani N, Amezcua Vesely MC, Iseppon A et al. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 2015;523:221–225.PubMedPubMedCentral
74.
go back to reference Bettelli E, Carrier Y, Gao W et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006;441:235–238.PubMed Bettelli E, Carrier Y, Gao W et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006;441:235–238.PubMed
75.
go back to reference Yang L, Anderson DE, Baecher-Allan C et al. IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature 2008;454:350–352.PubMedPubMedCentral Yang L, Anderson DE, Baecher-Allan C et al. IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature 2008;454:350–352.PubMedPubMedCentral
76.
go back to reference Lin JT, Martin SL, Xia L, Gorham JD. TGF-beta 1 uses distinct mechanisms to inhibit IFN-gamma expression in CD4+ T cells at priming and at recall: differential involvement of Stat4 and T-bet. J Immunol 2005;174:5950–5958.PubMed Lin JT, Martin SL, Xia L, Gorham JD. TGF-beta 1 uses distinct mechanisms to inhibit IFN-gamma expression in CD4+ T cells at priming and at recall: differential involvement of Stat4 and T-bet. J Immunol 2005;174:5950–5958.PubMed
77.
go back to reference Kitani A, Fuss I, Nakamura K et al. Transforming growth factor (TGF)-beta1-producing regulatory T cells induce Smad-mediated interleukin 10 secretion that facilitates coordinated immunoregulatory activity and amelioration of TGF-beta1-mediated fibrosis. J Exp Med 2003;198:1179–1188.PubMedPubMedCentral Kitani A, Fuss I, Nakamura K et al. Transforming growth factor (TGF)-beta1-producing regulatory T cells induce Smad-mediated interleukin 10 secretion that facilitates coordinated immunoregulatory activity and amelioration of TGF-beta1-mediated fibrosis. J Exp Med 2003;198:1179–1188.PubMedPubMedCentral
78.
go back to reference McGeachy MJ, Bak-Jensen KS, Chen Y et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol 2007;8:1390–1397.PubMed McGeachy MJ, Bak-Jensen KS, Chen Y et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol 2007;8:1390–1397.PubMed
79.
go back to reference Espevik T, Waage A, Faxvaag A, Shalaby MR. Regulation of interleukin-2 and interleukin-6 production from T-cells: involvement of interleukin-1 beta and transforming growth factor-beta. Cell Immunol 1990;126:47–56.PubMed Espevik T, Waage A, Faxvaag A, Shalaby MR. Regulation of interleukin-2 and interleukin-6 production from T-cells: involvement of interleukin-1 beta and transforming growth factor-beta. Cell Immunol 1990;126:47–56.PubMed
80.
go back to reference Ahuja SS, Paliogianni F, Yamada H, Balow JE, Boumpas DT. Effect of transforming growth factor-beta on early and late activation events in human T cells. J Immunol 1993;150:3109–3118.PubMed Ahuja SS, Paliogianni F, Yamada H, Balow JE, Boumpas DT. Effect of transforming growth factor-beta on early and late activation events in human T cells. J Immunol 1993;150:3109–3118.PubMed
81.
go back to reference Fargeas C, Wu CY, Nakajima T et al. Differential effect of transforming growth factor beta on the synthesis of Th1- and Th2-like lymphokines by human T lymphocytes. Eur J Immunol 1992;22:2173–2176.PubMed Fargeas C, Wu CY, Nakajima T et al. Differential effect of transforming growth factor beta on the synthesis of Th1- and Th2-like lymphokines by human T lymphocytes. Eur J Immunol 1992;22:2173–2176.PubMed
82.
go back to reference Heath VL, Murphy EE, Crain C, Tomlinson MG, O’Garra A. TGF-beta1 down-regulates Th2 development and results in decreased IL-4-induced STAT6 activation and GATA-3 expression. Eur J Immunol 2000;30:2639–2649.PubMed Heath VL, Murphy EE, Crain C, Tomlinson MG, O’Garra A. TGF-beta1 down-regulates Th2 development and results in decreased IL-4-induced STAT6 activation and GATA-3 expression. Eur J Immunol 2000;30:2639–2649.PubMed
83.
go back to reference Letterio JJ, Roberts AB. Regulation of immune responses by TGF-beta. Annu Rev Immunol 1998;16:137–161.PubMed Letterio JJ, Roberts AB. Regulation of immune responses by TGF-beta. Annu Rev Immunol 1998;16:137–161.PubMed
84.
go back to reference Roberts AB. Molecular and cell biology of TGF-beta. Miner Electrolyte Metab 1998;24:111–119.PubMed Roberts AB. Molecular and cell biology of TGF-beta. Miner Electrolyte Metab 1998;24:111–119.PubMed
85.
go back to reference Govinden R, Bhoola KD. Genealogy, expression, and cellular function of transforming growth factor-beta. Pharmacol Ther 2003;98:257–265.PubMed Govinden R, Bhoola KD. Genealogy, expression, and cellular function of transforming growth factor-beta. Pharmacol Ther 2003;98:257–265.PubMed
86.
go back to reference Schiller M, Javelaud D, Mauviel A. TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. J Dermatol Sci 2004;35:83–92.PubMed Schiller M, Javelaud D, Mauviel A. TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. J Dermatol Sci 2004;35:83–92.PubMed
87.
go back to reference Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB J 2004;18:816–827.PubMed Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB J 2004;18:816–827.PubMed
88.
89.
go back to reference McKaig BC, Hughes K, Tighe PJ, Mahida YR. Differential expression of TGF-beta isoforms by normal and inflammatory bowel disease intestinal myofibroblasts. Am J Physiol Cell Physiol 2002;282:C172-182.PubMed McKaig BC, Hughes K, Tighe PJ, Mahida YR. Differential expression of TGF-beta isoforms by normal and inflammatory bowel disease intestinal myofibroblasts. Am J Physiol Cell Physiol 2002;282:C172-182.PubMed
90.
go back to reference Ask K, Bonniaud P, Maass K et al. Progressive pulmonary fibrosis is mediated by TGF-beta isoform 1 but not TGF-beta3. Int J Biochem Cell Biol 2008;40:484–495.PubMed Ask K, Bonniaud P, Maass K et al. Progressive pulmonary fibrosis is mediated by TGF-beta isoform 1 but not TGF-beta3. Int J Biochem Cell Biol 2008;40:484–495.PubMed
91.
go back to reference Cowin AJ, Hatzirodos N, Holding CA et al. Effect of healing on the expression of transforming growth factor beta(s) and their receptors in chronic venous leg ulcers. J Investig Dermatol 2001;117:1282–1289.PubMed Cowin AJ, Hatzirodos N, Holding CA et al. Effect of healing on the expression of transforming growth factor beta(s) and their receptors in chronic venous leg ulcers. J Investig Dermatol 2001;117:1282–1289.PubMed
92.
go back to reference Howat WJ, Holgate ST, Lackie PM. TGF-beta isoform release and activation during in vitro bronchial epithelial wound repair. Am J Physiol Lung Cell Mol Physiol 2002;282:L115-123.PubMed Howat WJ, Holgate ST, Lackie PM. TGF-beta isoform release and activation during in vitro bronchial epithelial wound repair. Am J Physiol Lung Cell Mol Physiol 2002;282:L115-123.PubMed
93.
go back to reference Miyazono K, Ten Dijke P, Ichijo H, Heldin CH. Receptors for transforming growth factor-beta. Adv Immunol 1994;55:181–220.PubMed Miyazono K, Ten Dijke P, Ichijo H, Heldin CH. Receptors for transforming growth factor-beta. Adv Immunol 1994;55:181–220.PubMed
94.
go back to reference Wang J, Zheng H, Sung CC, Richter KK, Hauer-Jensen M. Cellular sources of transforming growth factor-beta isoforms in early and chronic radiation enteropathy. Am J Pathol 1998;153:1531–1540.PubMedPubMedCentral Wang J, Zheng H, Sung CC, Richter KK, Hauer-Jensen M. Cellular sources of transforming growth factor-beta isoforms in early and chronic radiation enteropathy. Am J Pathol 1998;153:1531–1540.PubMedPubMedCentral
95.
go back to reference Yang L, Pang Y, Moses HL. TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol 2010;31:220–227.PubMedPubMedCentral Yang L, Pang Y, Moses HL. TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol 2010;31:220–227.PubMedPubMedCentral
96.
go back to reference Todorovic V, Jurukovski V, Chen Y et al. Latent TGF-beta binding proteins. Int J Biochem Cell Biol 2005;37:38–41.PubMed Todorovic V, Jurukovski V, Chen Y et al. Latent TGF-beta binding proteins. Int J Biochem Cell Biol 2005;37:38–41.PubMed
97.
go back to reference Marek A, Brodzicki J, Liberek A, Korzon M. TGF-beta (transforming growth factor-beta) in chronic inflammatory conditions—a new diagnostic and prognostic marker? Med Sci Monit 2002;8:RA145–RA151.PubMed Marek A, Brodzicki J, Liberek A, Korzon M. TGF-beta (transforming growth factor-beta) in chronic inflammatory conditions—a new diagnostic and prognostic marker? Med Sci Monit 2002;8:RA145–RA151.PubMed
98.
go back to reference Tran DQ, Andersson J, Wang R et al. GARP (LRRC32) is essential for the surface expression of latent TGF-beta on platelets and activated FOXP3+ regulatory T cells. Proc Natl Acad Sci USA 2009;106:13445–13450.PubMedPubMedCentral Tran DQ, Andersson J, Wang R et al. GARP (LRRC32) is essential for the surface expression of latent TGF-beta on platelets and activated FOXP3+ regulatory T cells. Proc Natl Acad Sci USA 2009;106:13445–13450.PubMedPubMedCentral
99.
go back to reference Wang R, Zhu J, Dong X et al. GARP regulates the bioavailability and activation of TGFbeta. Mol Biol Cell 2012;23:1129–1139.PubMedPubMedCentral Wang R, Zhu J, Dong X et al. GARP regulates the bioavailability and activation of TGFbeta. Mol Biol Cell 2012;23:1129–1139.PubMedPubMedCentral
100.
go back to reference Lyons RM, Keski-Oja J, Moses HL. Proteolytic activation of latent transforming growth factor-beta from fibroblast-conditioned medium. J Cell Biol 1988;106:1659–1665.PubMed Lyons RM, Keski-Oja J, Moses HL. Proteolytic activation of latent transforming growth factor-beta from fibroblast-conditioned medium. J Cell Biol 1988;106:1659–1665.PubMed
101.
go back to reference Dubois CM, Laprise MH, Blanchette F, Gentry LE, Leduc R. Processing of transforming growth factor beta 1 precursor by human furin convertase. J Biol Chem 1995;270:10618–10624.PubMed Dubois CM, Laprise MH, Blanchette F, Gentry LE, Leduc R. Processing of transforming growth factor beta 1 precursor by human furin convertase. J Biol Chem 1995;270:10618–10624.PubMed
102.
go back to reference Pesu M, Watford WT, Wei L et al. T-cell-expressed proprotein convertase furin is essential for maintenance of peripheral immune tolerance. Nature 2008;455:246–250.PubMedPubMedCentral Pesu M, Watford WT, Wei L et al. T-cell-expressed proprotein convertase furin is essential for maintenance of peripheral immune tolerance. Nature 2008;455:246–250.PubMedPubMedCentral
103.
go back to reference Annes JP, Munger JS, Rifkin DB. Making sense of latent TGFbeta activation. J Cell Sci 2003;116:217–224.PubMed Annes JP, Munger JS, Rifkin DB. Making sense of latent TGFbeta activation. J Cell Sci 2003;116:217–224.PubMed
104.
go back to reference Jobling MF, Mott JD, Finnegan MT et al. Isoform-specific activation of latent transforming growth factor beta (LTGF-beta) by reactive oxygen species. Radiat Res 2006;166:839–848.PubMed Jobling MF, Mott JD, Finnegan MT et al. Isoform-specific activation of latent transforming growth factor beta (LTGF-beta) by reactive oxygen species. Radiat Res 2006;166:839–848.PubMed
105.
go back to reference Murphy-Ullrich JE, Poczatek M. Activation of latent TGF-beta by thrombospondin-1: mechanisms and physiology. Cytokine Growth Factor Rev 2000;11:59–69.PubMed Murphy-Ullrich JE, Poczatek M. Activation of latent TGF-beta by thrombospondin-1: mechanisms and physiology. Cytokine Growth Factor Rev 2000;11:59–69.PubMed
106.
go back to reference Munger JS, Huang X, Kawakatsu H et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 1999;96:319–328.PubMed Munger JS, Huang X, Kawakatsu H et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 1999;96:319–328.PubMed
107.
go back to reference Yang Z, Mu Z, Dabovic B et al. Absence of integrin-mediated TGFbeta1 activation in vivo recapitulates the phenotype of TGFbeta1-null mice. J Cell Biol 2007;176:787–793.PubMedPubMedCentral Yang Z, Mu Z, Dabovic B et al. Absence of integrin-mediated TGFbeta1 activation in vivo recapitulates the phenotype of TGFbeta1-null mice. J Cell Biol 2007;176:787–793.PubMedPubMedCentral
108.
go back to reference Travis MA, Reizis B, Melton AC et al. Loss of integrin alpha(v)beta8 on dendritic cells causes autoimmunity and colitis in mice. Nature 2007;449:361–365.PubMedPubMedCentral Travis MA, Reizis B, Melton AC et al. Loss of integrin alpha(v)beta8 on dendritic cells causes autoimmunity and colitis in mice. Nature 2007;449:361–365.PubMedPubMedCentral
109.
go back to reference Lacy-Hulbert A, Smith AM, Tissire H et al. Ulcerative colitis and autoimmunity induced by loss of myeloid alphav integrins. Proc Natl Acad Sci USA 2007;104:15823–15828.PubMedPubMedCentral Lacy-Hulbert A, Smith AM, Tissire H et al. Ulcerative colitis and autoimmunity induced by loss of myeloid alphav integrins. Proc Natl Acad Sci USA 2007;104:15823–15828.PubMedPubMedCentral
110.
go back to reference Melton AC, Bailey-Bucktrout SL, Travis MA et al. Expression of alphavbeta8 integrin on dendritic cells regulates Th17 cell development and experimental autoimmune encephalomyelitis in mice. J Clin Investig 2010;120:4436–4444.PubMedPubMedCentral Melton AC, Bailey-Bucktrout SL, Travis MA et al. Expression of alphavbeta8 integrin on dendritic cells regulates Th17 cell development and experimental autoimmune encephalomyelitis in mice. J Clin Investig 2010;120:4436–4444.PubMedPubMedCentral
111.
go back to reference Stockis J, Colau D, Coulie PG, Lucas S. Membrane protein GARP is a receptor for latent TGF-beta on the surface of activated human Treg. Eur J Immunol 2009;39:3315–3322.PubMed Stockis J, Colau D, Coulie PG, Lucas S. Membrane protein GARP is a receptor for latent TGF-beta on the surface of activated human Treg. Eur J Immunol 2009;39:3315–3322.PubMed
112.
go back to reference Sun L, Jin H, Li H. GARP: a surface molecule of regulatory T cells that is involved in the regulatory function and TGF-beta releasing. Oncotarget 2016;7:42826–42836.PubMedPubMedCentral Sun L, Jin H, Li H. GARP: a surface molecule of regulatory T cells that is involved in the regulatory function and TGF-beta releasing. Oncotarget 2016;7:42826–42836.PubMedPubMedCentral
113.
go back to reference de Jong R, van Lier RA, Ruscetti FW et al. Differential effect of transforming growth factor-beta 1 on the activation of human naive and memory CD4+ T lymphocytes. Int Immunol 1994;6:631–638.PubMed de Jong R, van Lier RA, Ruscetti FW et al. Differential effect of transforming growth factor-beta 1 on the activation of human naive and memory CD4+ T lymphocytes. Int Immunol 1994;6:631–638.PubMed
114.
go back to reference Massague J, Seoane J, Wotton D. Smad transcription factors. Genes Dev 2005;19:2783–2810.PubMed Massague J, Seoane J, Wotton D. Smad transcription factors. Genes Dev 2005;19:2783–2810.PubMed
115.
go back to reference Takimoto T, Wakabayashi Y, Sekiya T et al. Smad2 and Smad3 are redundantly essential for the TGF-beta-mediated regulation of regulatory T plasticity and Th1 development. J Immunol 2010;185:842–855.PubMed Takimoto T, Wakabayashi Y, Sekiya T et al. Smad2 and Smad3 are redundantly essential for the TGF-beta-mediated regulation of regulatory T plasticity and Th1 development. J Immunol 2010;185:842–855.PubMed
116.
go back to reference Gu AD, Wang Y, Lin L, Zhang SS, Wan YY. Requirements of transcription factor Smad-dependent and -independent TGF-beta signaling to control discrete T-cell functions. Proc Natl Acad Sci USA 2012;109:905–910.PubMedPubMedCentral Gu AD, Wang Y, Lin L, Zhang SS, Wan YY. Requirements of transcription factor Smad-dependent and -independent TGF-beta signaling to control discrete T-cell functions. Proc Natl Acad Sci USA 2012;109:905–910.PubMedPubMedCentral
117.
go back to reference Kuwahara M, Yamashita M, Shinoda K et al. The transcription factor Sox4 is a downstream target of signaling by the cytokine TGF-beta and suppresses T(H)2 differentiation. Nat Immunol 2012;13:778–786.PubMedPubMedCentral Kuwahara M, Yamashita M, Shinoda K et al. The transcription factor Sox4 is a downstream target of signaling by the cytokine TGF-beta and suppresses T(H)2 differentiation. Nat Immunol 2012;13:778–786.PubMedPubMedCentral
118.
go back to reference Ebner R, Chen RH, Lawler S, Zioncheck T, Derynck R. Determination of type I receptor specificity by the type II receptors for TGF-beta or activin. Science 1993;262:900–902.PubMed Ebner R, Chen RH, Lawler S, Zioncheck T, Derynck R. Determination of type I receptor specificity by the type II receptors for TGF-beta or activin. Science 1993;262:900–902.PubMed
119.
go back to reference Attisano L, Carcamo J, Ventura F et al. Identification of human activin and TGF beta type I receptors that form heteromeric kinase complexes with type II receptors. Cell 1993;75:671–680.PubMed Attisano L, Carcamo J, Ventura F et al. Identification of human activin and TGF beta type I receptors that form heteromeric kinase complexes with type II receptors. Cell 1993;75:671–680.PubMed
120.
go back to reference Attisano L, Wrana JL, Lopez-Casillas F, Massague J. TGF-beta receptors and actions. Biochim Biophys Acta 1994;1222:71–80.PubMed Attisano L, Wrana JL, Lopez-Casillas F, Massague J. TGF-beta receptors and actions. Biochim Biophys Acta 1994;1222:71–80.PubMed
121.
go back to reference Massague J. How cells read TGF-beta signals. Nat Rev Mol Cell Biol 2000;1:169–178.PubMed Massague J. How cells read TGF-beta signals. Nat Rev Mol Cell Biol 2000;1:169–178.PubMed
122.
go back to reference Rahimi RA, Leof EB. TGF-beta signaling: a tale of two responses. J Cell Biochem 2007;102:593–608.PubMed Rahimi RA, Leof EB. TGF-beta signaling: a tale of two responses. J Cell Biochem 2007;102:593–608.PubMed
123.
go back to reference Wrana JL, Attisano L, Wieser R, Ventura F, Massague J. Mechanism of activation of the TGF-beta receptor. Nature 1994;370:341–347.PubMed Wrana JL, Attisano L, Wieser R, Ventura F, Massague J. Mechanism of activation of the TGF-beta receptor. Nature 1994;370:341–347.PubMed
124.
go back to reference Derynck R, Zhang Y, Feng XH. Smads: transcriptional activators of TGF-beta responses. Cell 1998;95:737–740.PubMed Derynck R, Zhang Y, Feng XH. Smads: transcriptional activators of TGF-beta responses. Cell 1998;95:737–740.PubMed
125.
go back to reference Varga J, Pasche B. Transforming growth factor beta as a therapeutic target in systemic sclerosis. Nat Rev Rheumatol 2009;5:200–206.PubMedPubMedCentral Varga J, Pasche B. Transforming growth factor beta as a therapeutic target in systemic sclerosis. Nat Rev Rheumatol 2009;5:200–206.PubMedPubMedCentral
126.
go back to reference Chen CH, Seguin-Devaux C, Burke NA et al. Transforming growth factor beta blocks Tec kinase phosphorylation, Ca2+ influx, and NFATc translocation causing inhibition of T cell differentiation. J Exp Med 2003;197:1689–1699.PubMedPubMedCentral Chen CH, Seguin-Devaux C, Burke NA et al. Transforming growth factor beta blocks Tec kinase phosphorylation, Ca2+ influx, and NFATc translocation causing inhibition of T cell differentiation. J Exp Med 2003;197:1689–1699.PubMedPubMedCentral
127.
go back to reference Szabo SJ, Kim ST, Costa GL et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 2000;100:655–669.PubMed Szabo SJ, Kim ST, Costa GL et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 2000;100:655–669.PubMed
128.
go back to reference Miller SA, Weinmann AS. Molecular mechanisms by which T-bet regulates T-helper cell commitment. Immunol Rev 2010;238:233–246.PubMedPubMedCentral Miller SA, Weinmann AS. Molecular mechanisms by which T-bet regulates T-helper cell commitment. Immunol Rev 2010;238:233–246.PubMedPubMedCentral
129.
go back to reference Kallies A, Good-Jacobson KL. Transcription factor T-bet orchestrates lineage development and function in the immune system. Trends Immunol 2017;38:287–297.PubMed Kallies A, Good-Jacobson KL. Transcription factor T-bet orchestrates lineage development and function in the immune system. Trends Immunol 2017;38:287–297.PubMed
130.
go back to reference Hesslein DG, Lanier LL. Transcriptional control of natural killer cell development and function. Adv Immunol 2011;109:45–85.PubMed Hesslein DG, Lanier LL. Transcriptional control of natural killer cell development and function. Adv Immunol 2011;109:45–85.PubMed
131.
go back to reference Johnson JL, Rosenthal RL, Knox JJ et al. The transcription factor T-bet resolves memory B cell subsets with distinct tissue distributions and antibody specificities in mice and humans. Immunity 2020;52:842–855.PubMedPubMedCentral Johnson JL, Rosenthal RL, Knox JJ et al. The transcription factor T-bet resolves memory B cell subsets with distinct tissue distributions and antibody specificities in mice and humans. Immunity 2020;52:842–855.PubMedPubMedCentral
132.
go back to reference Gorelik L, Constant S, Flavell RA. Mechanism of transforming growth factor beta-induced inhibition of T helper type 1 differentiation. J Exp Med. 2002;195:1499–1505.PubMedPubMedCentral Gorelik L, Constant S, Flavell RA. Mechanism of transforming growth factor beta-induced inhibition of T helper type 1 differentiation. J Exp Med. 2002;195:1499–1505.PubMedPubMedCentral
133.
go back to reference Ho IC, Tai TS, Pai SY. GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation. Nat Rev Immunol 2009;9:125–135.PubMedPubMedCentral Ho IC, Tai TS, Pai SY. GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation. Nat Rev Immunol 2009;9:125–135.PubMedPubMedCentral
134.
go back to reference Hosoya T, Maillard I, Engel JD. From the cradle to the grave: activities of GATA-3 throughout T-cell development and differentiation. Immunol Rev 2010;238:110–125.PubMedPubMedCentral Hosoya T, Maillard I, Engel JD. From the cradle to the grave: activities of GATA-3 throughout T-cell development and differentiation. Immunol Rev 2010;238:110–125.PubMedPubMedCentral
135.
go back to reference Lentjes MH, Niessen HE, Akiyama Y et al. The emerging role of GATA transcription factors in development and disease. Expert Rev Mol Med 2016;18:e3.PubMedPubMedCentral Lentjes MH, Niessen HE, Akiyama Y et al. The emerging role of GATA transcription factors in development and disease. Expert Rev Mol Med 2016;18:e3.PubMedPubMedCentral
136.
go back to reference Gorelik L, Fields PE, Flavell RA. Cutting edge: TGF-beta inhibits Th type 2 development through inhibition of GATA-3 expression. J Immunol 2000;165:4773–4777.PubMed Gorelik L, Fields PE, Flavell RA. Cutting edge: TGF-beta inhibits Th type 2 development through inhibition of GATA-3 expression. J Immunol 2000;165:4773–4777.PubMed
137.
go back to reference Kehrl JH, Roberts AB, Wakefield LM et al. Transforming growth factor beta is an important immunomodulatory protein for human B lymphocytes. J Immunol 1986;137:3855–3860.PubMed Kehrl JH, Roberts AB, Wakefield LM et al. Transforming growth factor beta is an important immunomodulatory protein for human B lymphocytes. J Immunol 1986;137:3855–3860.PubMed
138.
go back to reference Petit-Koskas E, Genot E, Lawrence D, Kolb JP. Inhibition of the proliferative response of human B lymphocytes to B cell growth factor by transforming growth factor-beta. Eur J Immunol 1988;18:111–116.PubMed Petit-Koskas E, Genot E, Lawrence D, Kolb JP. Inhibition of the proliferative response of human B lymphocytes to B cell growth factor by transforming growth factor-beta. Eur J Immunol 1988;18:111–116.PubMed
139.
go back to reference Kee BL, Rivera RR, Murre C. Id3 inhibits B lymphocyte progenitor growth and survival in response to TGF-beta. Nat Immunol 2001;2:242–247.PubMed Kee BL, Rivera RR, Murre C. Id3 inhibits B lymphocyte progenitor growth and survival in response to TGF-beta. Nat Immunol 2001;2:242–247.PubMed
140.
go back to reference Bouchard C, Fridman WH, Sautes C. Effect of TGF-beta1 on cell cycle regulatory proteins in LPS-stimulated normal mouse B lymphocytes. J Immunol 1997;159:4155–4164.PubMed Bouchard C, Fridman WH, Sautes C. Effect of TGF-beta1 on cell cycle regulatory proteins in LPS-stimulated normal mouse B lymphocytes. J Immunol 1997;159:4155–4164.PubMed
141.
go back to reference Li MO, Sanjabi S, Flavell RA. Transforming growth factor-beta controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity 2006;25:455–471.PubMed Li MO, Sanjabi S, Flavell RA. Transforming growth factor-beta controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity 2006;25:455–471.PubMed
142.
go back to reference Travis MA, Sheppard D. TGF-beta activation and function in immunity. Annu Rev Immunol 2014;32:51–82.PubMed Travis MA, Sheppard D. TGF-beta activation and function in immunity. Annu Rev Immunol 2014;32:51–82.PubMed
143.
go back to reference Gorham JD, Lin JT, Sung JL, Rudner LA, French MA. Genetic regulation of autoimmune disease: BALB/c background TGF-beta 1-deficient mice develop necroinflammatory IFN-gamma-dependent hepatitis. J Immunol 2001;166:6413–6422.PubMed Gorham JD, Lin JT, Sung JL, Rudner LA, French MA. Genetic regulation of autoimmune disease: BALB/c background TGF-beta 1-deficient mice develop necroinflammatory IFN-gamma-dependent hepatitis. J Immunol 2001;166:6413–6422.PubMed
144.
go back to reference Gorham JD. Transforming growth factor-beta1, Th1 responses, and autoimmune liver disease. Transfusion (Paris) 2005;45:51S-59S. Gorham JD. Transforming growth factor-beta1, Th1 responses, and autoimmune liver disease. Transfusion (Paris) 2005;45:51S-59S.
145.
go back to reference Shull MM, Ormsby I, Kier AB et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 1992;359:693–699.PubMedPubMedCentral Shull MM, Ormsby I, Kier AB et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 1992;359:693–699.PubMedPubMedCentral
146.
go back to reference Marie JC, Liggitt D, Rudensky AY. Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-beta receptor. Immunity 2006;25:441–454.PubMed Marie JC, Liggitt D, Rudensky AY. Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-beta receptor. Immunity 2006;25:441–454.PubMed
147.
go back to reference Liu Y, Zhang P, Li J et al. A critical function for TGF-beta signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nat Immunol 2008;9:632–640.PubMed Liu Y, Zhang P, Li J et al. A critical function for TGF-beta signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nat Immunol 2008;9:632–640.PubMed
148.
go back to reference Zheng Y, Josefowicz S, Chaudhry A et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 2010;463:808–812.PubMedPubMedCentral Zheng Y, Josefowicz S, Chaudhry A et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 2010;463:808–812.PubMedPubMedCentral
149.
go back to reference Schlenner SM, Weigmann B, Ruan Q, Chen Y, von Boehmer H. Smad3 binding to the foxp3 enhancer is dispensable for the development of regulatory T cells with the exception of the gut. J Exp Med 2012;209:1529–1535.PubMedPubMedCentral Schlenner SM, Weigmann B, Ruan Q, Chen Y, von Boehmer H. Smad3 binding to the foxp3 enhancer is dispensable for the development of regulatory T cells with the exception of the gut. J Exp Med 2012;209:1529–1535.PubMedPubMedCentral
150.
go back to reference Molinero LL, Miller ML, Evaristo C, Alegre ML. High TCR stimuli prevent induced regulatory T cell differentiation in a NF-kappaB-dependent manner. J Immunol 2011;186:4609–4617.PubMed Molinero LL, Miller ML, Evaristo C, Alegre ML. High TCR stimuli prevent induced regulatory T cell differentiation in a NF-kappaB-dependent manner. J Immunol 2011;186:4609–4617.PubMed
151.
go back to reference Wei J, Duramad O, Perng OA et al. Antagonistic nature of T helper 1/2 developmental programs in opposing peripheral induction of Foxp3+ regulatory T cells. Proc Natl Acad Sci USA 2007;104:18169–18174.PubMedPubMedCentral Wei J, Duramad O, Perng OA et al. Antagonistic nature of T helper 1/2 developmental programs in opposing peripheral induction of Foxp3+ regulatory T cells. Proc Natl Acad Sci USA 2007;104:18169–18174.PubMedPubMedCentral
152.
go back to reference Geissmann F, Revy P, Regnault A et al. TGF-beta 1 prevents the noncognate maturation of human dendritic Langerhans cells. J Immunol 1999;162:4567–4575.PubMed Geissmann F, Revy P, Regnault A et al. TGF-beta 1 prevents the noncognate maturation of human dendritic Langerhans cells. J Immunol 1999;162:4567–4575.PubMed
153.
go back to reference Pallotta MT, Orabona C, Volpi C et al. Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nat Immunol 2011;12:870–878.PubMed Pallotta MT, Orabona C, Volpi C et al. Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nat Immunol 2011;12:870–878.PubMed
154.
go back to reference Munn DH, Mellor AL. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol 2013;34:137–143.PubMed Munn DH, Mellor AL. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol 2013;34:137–143.PubMed
155.
go back to reference Su HC, Leite-Morris KA, Braun L, Biron CA. A role for transforming growth factor-beta 1 in regulating natural killer cell and T lymphocyte proliferative responses during acute infection with lymphocytic choriomeningitis virus. J Immunol 1991;147:2717–2727.PubMed Su HC, Leite-Morris KA, Braun L, Biron CA. A role for transforming growth factor-beta 1 in regulating natural killer cell and T lymphocyte proliferative responses during acute infection with lymphocytic choriomeningitis virus. J Immunol 1991;147:2717–2727.PubMed
156.
go back to reference Park YP, Choi SC, Kiesler P et al. Complex regulation of human NKG2D-DAP10 cell surface expression: opposing roles of the gammac cytokines and TGF-beta1. Blood 2011;118:3019–3027.PubMedPubMedCentral Park YP, Choi SC, Kiesler P et al. Complex regulation of human NKG2D-DAP10 cell surface expression: opposing roles of the gammac cytokines and TGF-beta1. Blood 2011;118:3019–3027.PubMedPubMedCentral
157.
go back to reference Sun C, Fu B, Gao Y et al. TGF-beta1 down-regulation of NKG2D/DAP10 and 2B4/SAP expression on human NK cells contributes to HBV persistence. PLoS Pathog 2012;8:e1002594.PubMedPubMedCentral Sun C, Fu B, Gao Y et al. TGF-beta1 down-regulation of NKG2D/DAP10 and 2B4/SAP expression on human NK cells contributes to HBV persistence. PLoS Pathog 2012;8:e1002594.PubMedPubMedCentral
158.
go back to reference Castriconi R, Cantoni C, Della Chiesa M et al. Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci USA 2003;100:4120–4125.PubMedPubMedCentral Castriconi R, Cantoni C, Della Chiesa M et al. Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci USA 2003;100:4120–4125.PubMedPubMedCentral
159.
go back to reference Mills KH. Induction, function and regulation of IL-17-producing T cells. Eur J Immunol 2008;38:2636–2649.PubMed Mills KH. Induction, function and regulation of IL-17-producing T cells. Eur J Immunol 2008;38:2636–2649.PubMed
160.
go back to reference Esplugues E, Huber S, Gagliani N et al. Control of TH17 cells occurs in the small intestine. Nature 2011;475:514–518.PubMedPubMedCentral Esplugues E, Huber S, Gagliani N et al. Control of TH17 cells occurs in the small intestine. Nature 2011;475:514–518.PubMedPubMedCentral
161.
go back to reference Chalmin F, Mignot G, Bruchard M et al. Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression. Immunity 2012;36:362–373.PubMed Chalmin F, Mignot G, Bruchard M et al. Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression. Immunity 2012;36:362–373.PubMed
162.
go back to reference Zhao F, Hoechst B, Gamrekelashvili J et al. Human CCR4+ CCR6+ Th17 cells suppress autologous CD8+ T cell responses. J Immunol 2012;188:6055–6062.PubMed Zhao F, Hoechst B, Gamrekelashvili J et al. Human CCR4+ CCR6+ Th17 cells suppress autologous CD8+ T cell responses. J Immunol 2012;188:6055–6062.PubMed
163.
go back to reference Sharma M, Kaveri SV, Bayry J. Th17 cells, pathogenic or not? TGF-beta3 imposes the embargo. Cell Mol Immunol 2013;10:101–102.PubMedPubMedCentral Sharma M, Kaveri SV, Bayry J. Th17 cells, pathogenic or not? TGF-beta3 imposes the embargo. Cell Mol Immunol 2013;10:101–102.PubMedPubMedCentral
164.
go back to reference Liu HP, Cao AT, Feng T et al. TGF-beta converts Th1 cells into Th17 cells through stimulation of Runx1 expression. Eur J Immunol 2015;45:1010–1018.PubMedPubMedCentral Liu HP, Cao AT, Feng T et al. TGF-beta converts Th1 cells into Th17 cells through stimulation of Runx1 expression. Eur J Immunol 2015;45:1010–1018.PubMedPubMedCentral
165.
go back to reference Wei L, Laurence A, Elias KM, O’Shea JJ. IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. J Biol Chem 2007;282:34605–34610.PubMed Wei L, Laurence A, Elias KM, O’Shea JJ. IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. J Biol Chem 2007;282:34605–34610.PubMed
166.
go back to reference Nurieva R, Yang XO, Martinez G et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 2007;448:480–483.PubMed Nurieva R, Yang XO, Martinez G et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 2007;448:480–483.PubMed
167.
go back to reference Kimura A, Kishimoto T. IL-6: regulator of Treg/Th17 balance. Eur J Immunol 2010;40:1830–1835.PubMed Kimura A, Kishimoto T. IL-6: regulator of Treg/Th17 balance. Eur J Immunol 2010;40:1830–1835.PubMed
168.
go back to reference Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity 2004;21:467–476.PubMed Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity 2004;21:467–476.PubMed
169.
go back to reference Fujino S, Andoh A, Bamba S et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 2003;52:65–70.PubMedPubMedCentral Fujino S, Andoh A, Bamba S et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 2003;52:65–70.PubMedPubMedCentral
170.
go back to reference Nakae S, Nambu A, Sudo K, Iwakura Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol 2003;171:6173–6177.PubMed Nakae S, Nambu A, Sudo K, Iwakura Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol 2003;171:6173–6177.PubMed
171.
go back to reference Tzartos JS, Friese MA, Craner MJ et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol 2008;172:146–155.PubMedPubMedCentral Tzartos JS, Friese MA, Craner MJ et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol 2008;172:146–155.PubMedPubMedCentral
172.
go back to reference Wong CK, Ho CY, Li EK, Lam CW. Elevation of proinflammatory cytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus. Lupus 2000;9:589–593.PubMed Wong CK, Ho CY, Li EK, Lam CW. Elevation of proinflammatory cytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus. Lupus 2000;9:589–593.PubMed
173.
go back to reference Mangan PR, Harrington LE, O’Quinn DB et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 2006;441:231–234.PubMed Mangan PR, Harrington LE, O’Quinn DB et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 2006;441:231–234.PubMed
174.
go back to reference Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006;24:179–189.PubMed Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006;24:179–189.PubMed
175.
go back to reference Korn T, Bettelli E, Gao W et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 2007;448:484–487.PubMedPubMedCentral Korn T, Bettelli E, Gao W et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 2007;448:484–487.PubMedPubMedCentral
176.
go back to reference Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 2003;278:1910–1914.PubMed Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 2003;278:1910–1914.PubMed
177.
go back to reference Zhou L, Ivanov II, Spolski R et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 2007;8:967–974.PubMed Zhou L, Ivanov II, Spolski R et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 2007;8:967–974.PubMed
178.
go back to reference Volpe E, Servant N, Zollinger R et al. A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat Immunol 2008;9:650–657.PubMed Volpe E, Servant N, Zollinger R et al. A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat Immunol 2008;9:650–657.PubMed
179.
go back to reference McGeachy MJ, Chen Y, Tato CM et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol 2009;10:314–324.PubMedPubMedCentral McGeachy MJ, Chen Y, Tato CM et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol 2009;10:314–324.PubMedPubMedCentral
180.
go back to reference Yang XO, Pappu BP, Nurieva R et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 2008;28:29–39.PubMed Yang XO, Pappu BP, Nurieva R et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 2008;28:29–39.PubMed
181.
go back to reference Manel N, Unutmaz D, Littman DR. The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol 2008;9:641–649.PubMedPubMedCentral Manel N, Unutmaz D, Littman DR. The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol 2008;9:641–649.PubMedPubMedCentral
182.
go back to reference Ghoreschi K, Laurence A, Yang XP et al. Generation of pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature 2010;467:967–971.PubMedPubMedCentral Ghoreschi K, Laurence A, Yang XP et al. Generation of pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature 2010;467:967–971.PubMedPubMedCentral
183.
go back to reference Komatsu N, Mariotti-Ferrandiz ME, Wang Y et al. Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc Natl Acad Sci USA 2009;106:1903–1908.PubMedPubMedCentral Komatsu N, Mariotti-Ferrandiz ME, Wang Y et al. Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc Natl Acad Sci USA 2009;106:1903–1908.PubMedPubMedCentral
184.
go back to reference Komatsu N, Okamoto K, Sawa S et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med 2014;20:62–68.PubMed Komatsu N, Okamoto K, Sawa S et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med 2014;20:62–68.PubMed
185.
go back to reference Gao GF, Jakobsen BK. Molecular interactions of coreceptor CD8 and MHC class I: the molecular basis for functional coordination with the T-cell receptor. Immunol Today 2000;21:630–636.PubMed Gao GF, Jakobsen BK. Molecular interactions of coreceptor CD8 and MHC class I: the molecular basis for functional coordination with the T-cell receptor. Immunol Today 2000;21:630–636.PubMed
186.
go back to reference Russell JH, Ley TJ. Lymphocyte-mediated cytotoxicity. Annu Rev Immunol 2002;20:323–370.PubMed Russell JH, Ley TJ. Lymphocyte-mediated cytotoxicity. Annu Rev Immunol 2002;20:323–370.PubMed
188.
go back to reference Yu Q, Erman B, Bhandoola A, Sharrow SO, Singer A. In vitro evidence that cytokine receptor signals are required for differentiation of double positive thymocytes into functionally mature CD8+ T cells. J Exp Med 2003;197:475–487.PubMedPubMedCentral Yu Q, Erman B, Bhandoola A, Sharrow SO, Singer A. In vitro evidence that cytokine receptor signals are required for differentiation of double positive thymocytes into functionally mature CD8+ T cells. J Exp Med 2003;197:475–487.PubMedPubMedCentral
189.
go back to reference Brugnera E, Bhandoola A, Cibotti R et al. Coreceptor reversal in the thymus: signaled CD4+8+ thymocytes initially terminate CD8 transcription even when differentiating into CD8+ T cells. Immunity 2000;13:59–71.PubMed Brugnera E, Bhandoola A, Cibotti R et al. Coreceptor reversal in the thymus: signaled CD4+8+ thymocytes initially terminate CD8 transcription even when differentiating into CD8+ T cells. Immunity 2000;13:59–71.PubMed
190.
go back to reference Mazzucchelli R, Durum SK. Interleukin-7 receptor expression: intelligent design. Nat Rev Immunol 2007;7:144–154.PubMed Mazzucchelli R, Durum SK. Interleukin-7 receptor expression: intelligent design. Nat Rev Immunol 2007;7:144–154.PubMed
191.
go back to reference Ouyang W, Oh SA, Ma Q et al. TGF-beta cytokine signaling promotes CD8+ T cell development and low-affinity CD4+ T cell homeostasis by regulation of interleukin-7 receptor alpha expression. Immunity 2013;39:335–346.PubMedPubMedCentral Ouyang W, Oh SA, Ma Q et al. TGF-beta cytokine signaling promotes CD8+ T cell development and low-affinity CD4+ T cell homeostasis by regulation of interleukin-7 receptor alpha expression. Immunity 2013;39:335–346.PubMedPubMedCentral
192.
go back to reference Thomas DA, Massague J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 2005;8:369–380.PubMed Thomas DA, Massague J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 2005;8:369–380.PubMed
193.
go back to reference Pardali K, Moustakas A. Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta 2007;1775:21–62.PubMed Pardali K, Moustakas A. Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta 2007;1775:21–62.PubMed
194.
go back to reference Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 2002;3:349–363.PubMed Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 2002;3:349–363.PubMed
195.
go back to reference Dobaczewski M, Bujak M, Li N et al. Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction. Circ Res 2010;107:418–428.PubMedPubMedCentral Dobaczewski M, Bujak M, Li N et al. Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction. Circ Res 2010;107:418–428.PubMedPubMedCentral
196.
go back to reference Verrecchia F, Chu ML, Mauviel A. Identification of novel TGF-beta /Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. J Biol Chem 2001;276:17058–17062.PubMed Verrecchia F, Chu ML, Mauviel A. Identification of novel TGF-beta /Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. J Biol Chem 2001;276:17058–17062.PubMed
197.
go back to reference Iwano M, Plieth D, Danoff TM et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Investig 2002;110:341–350.PubMedPubMedCentral Iwano M, Plieth D, Danoff TM et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Investig 2002;110:341–350.PubMedPubMedCentral
198.
go back to reference Roberts AB, Tian F, Byfield SD et al. Smad3 is key to TGF-beta-mediated epithelial-to-mesenchymal transition, fibrosis, tumor suppression and metastasis. Cytokine Growth Factor Rev 2006;17:19–27.PubMed Roberts AB, Tian F, Byfield SD et al. Smad3 is key to TGF-beta-mediated epithelial-to-mesenchymal transition, fibrosis, tumor suppression and metastasis. Cytokine Growth Factor Rev 2006;17:19–27.PubMed
199.
go back to reference Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res 2009;19:156–172.PubMed Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res 2009;19:156–172.PubMed
200.
201.
go back to reference Krenning G, Zeisberg EM, Kalluri R. The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol 2010;225:631–637.PubMedPubMedCentral Krenning G, Zeisberg EM, Kalluri R. The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol 2010;225:631–637.PubMedPubMedCentral
202.
go back to reference Piera-Velazquez S, Li Z, Jimenez SA. Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol 2011;179:1074–1080.PubMedPubMedCentral Piera-Velazquez S, Li Z, Jimenez SA. Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol 2011;179:1074–1080.PubMedPubMedCentral
203.
204.
go back to reference Dooley S, ten Dijke P. TGF-beta in progression of liver disease. Cell Tissue Res 2012;347:245–256.PubMed Dooley S, ten Dijke P. TGF-beta in progression of liver disease. Cell Tissue Res 2012;347:245–256.PubMed
205.
go back to reference Czaja MJ, Weiner FR, Flanders KC et al. In vitro and in vivo association of transforming growth factor-beta 1 with hepatic fibrosis. J Cell Biol 1989;108:2477–2482.PubMed Czaja MJ, Weiner FR, Flanders KC et al. In vitro and in vivo association of transforming growth factor-beta 1 with hepatic fibrosis. J Cell Biol 1989;108:2477–2482.PubMed
206.
go back to reference Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 2000;275:2247–2250.PubMed Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 2000;275:2247–2250.PubMed
207.
go back to reference Mauviel A. Transforming growth factor-beta: a key mediator of fibrosis. Methods Mol Med 2005;117:69–80.PubMed Mauviel A. Transforming growth factor-beta: a key mediator of fibrosis. Methods Mol Med 2005;117:69–80.PubMed
208.
go back to reference Breitkopf K, Godoy P, Ciuclan L, Singer MV, Dooley S. TGF-beta/Smad signaling in the injured liver. Z Gastroenterol 2006;44:57–66.PubMed Breitkopf K, Godoy P, Ciuclan L, Singer MV, Dooley S. TGF-beta/Smad signaling in the injured liver. Z Gastroenterol 2006;44:57–66.PubMed
209.
go back to reference Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 2008;88:125–172.PubMed Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 2008;88:125–172.PubMed
210.
go back to reference Czaja AJ. Hepatic inflammation and progressive liver fibrosis in chronic liver disease. World J Gastroenterol 2014;20:2515–2532.PubMedPubMedCentral Czaja AJ. Hepatic inflammation and progressive liver fibrosis in chronic liver disease. World J Gastroenterol 2014;20:2515–2532.PubMedPubMedCentral
211.
go back to reference Seki E, Brenner DA. Recent advancement of molecular mechanisms of liver fibrosis. J Hepatobiliary Pancreat Sci 2015;22:512–518.PubMedPubMedCentral Seki E, Brenner DA. Recent advancement of molecular mechanisms of liver fibrosis. J Hepatobiliary Pancreat Sci 2015;22:512–518.PubMedPubMedCentral
212.
go back to reference Seki E, Schwabe RF. Hepatic inflammation and fibrosis: functional links and key pathways. Hepatology 2015;61:1066–1079.PubMed Seki E, Schwabe RF. Hepatic inflammation and fibrosis: functional links and key pathways. Hepatology 2015;61:1066–1079.PubMed
213.
go back to reference Nakao A, Afrakhte M, Moren A et al. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature 1997;389:631–635.PubMed Nakao A, Afrakhte M, Moren A et al. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature 1997;389:631–635.PubMed
214.
go back to reference Schnabl B, Kweon YO, Frederick JP et al. The role of Smad3 in mediating mouse hepatic stellate cell activation. Hepatology 2001;34:89–100.PubMed Schnabl B, Kweon YO, Frederick JP et al. The role of Smad3 in mediating mouse hepatic stellate cell activation. Hepatology 2001;34:89–100.PubMed
215.
go back to reference Furukawa F, Matsuzaki K, Mori S et al. p38 MAPK mediates fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts. Hepatology 2003;38:879–889.PubMed Furukawa F, Matsuzaki K, Mori S et al. p38 MAPK mediates fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts. Hepatology 2003;38:879–889.PubMed
216.
go back to reference Del Castillo G, Murillo MM, Alvarez-Barrientos A et al. Autocrine production of TGF-beta confers resistance to apoptosis after an epithelial-mesenchymal transition process in hepatocytes: role of EGF receptor ligands. Exp Cell Res 2006;312:2860–2871.PubMed Del Castillo G, Murillo MM, Alvarez-Barrientos A et al. Autocrine production of TGF-beta confers resistance to apoptosis after an epithelial-mesenchymal transition process in hepatocytes: role of EGF receptor ligands. Exp Cell Res 2006;312:2860–2871.PubMed
217.
go back to reference Taura K, Miura K, Iwaisako K et al. Hepatocytes do not undergo epithelial-mesenchymal transition in liver fibrosis in mice. Hepatology 2010;51:1027–1036.PubMed Taura K, Miura K, Iwaisako K et al. Hepatocytes do not undergo epithelial-mesenchymal transition in liver fibrosis in mice. Hepatology 2010;51:1027–1036.PubMed
218.
go back to reference Popov Y, Schuppan D. Epithelial-to-mesenchymal transition in liver fibrosis: dead or alive? Gastroenterology 2010;139:722–725.PubMed Popov Y, Schuppan D. Epithelial-to-mesenchymal transition in liver fibrosis: dead or alive? Gastroenterology 2010;139:722–725.PubMed
219.
go back to reference Scholten D, Osterreicher CH, Scholten A et al. Genetic labeling does not detect epithelial-to-mesenchymal transition of cholangiocytes in liver fibrosis in mice. Gastroenterology 2010;139:987–998.PubMed Scholten D, Osterreicher CH, Scholten A et al. Genetic labeling does not detect epithelial-to-mesenchymal transition of cholangiocytes in liver fibrosis in mice. Gastroenterology 2010;139:987–998.PubMed
220.
go back to reference Chu AS, Diaz R, Hui JJ et al. Lineage tracing demonstrates no evidence of cholangiocyte epithelial-to-mesenchymal transition in murine models of hepatic fibrosis. Hepatology 2011;53:1685–1695.PubMed Chu AS, Diaz R, Hui JJ et al. Lineage tracing demonstrates no evidence of cholangiocyte epithelial-to-mesenchymal transition in murine models of hepatic fibrosis. Hepatology 2011;53:1685–1695.PubMed
221.
go back to reference Pender SL, Breese EJ, Gunther U et al. Suppression of T cell-mediated injury in human gut by interleukin 10: role of matrix metalloproteinases. Gastroenterology 1998;115:573–583.PubMed Pender SL, Breese EJ, Gunther U et al. Suppression of T cell-mediated injury in human gut by interleukin 10: role of matrix metalloproteinases. Gastroenterology 1998;115:573–583.PubMed
222.
go back to reference Yuan W, Varga J. Transforming growth factor-beta repression of matrix metalloproteinase-1 in dermal fibroblasts involves Smad3. J Biol Chem 2001;276:38502–38510.PubMed Yuan W, Varga J. Transforming growth factor-beta repression of matrix metalloproteinase-1 in dermal fibroblasts involves Smad3. J Biol Chem 2001;276:38502–38510.PubMed
223.
go back to reference Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008;134:1655–1669.PubMed Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008;134:1655–1669.PubMed
224.
go back to reference Qureshi HY, Sylvester J, El Mabrouk M, Zafarullah M. TGF-beta-induced expression of tissue inhibitor of metalloproteinases-3 gene in chondrocytes is mediated by extracellular signal-regulated kinase pathway and Sp1 transcription factor. J Cell Physiol 2005;203:345–352.PubMed Qureshi HY, Sylvester J, El Mabrouk M, Zafarullah M. TGF-beta-induced expression of tissue inhibitor of metalloproteinases-3 gene in chondrocytes is mediated by extracellular signal-regulated kinase pathway and Sp1 transcription factor. J Cell Physiol 2005;203:345–352.PubMed
225.
go back to reference Qureshi HY, Ricci G, Zafarullah M. Smad signaling pathway is a pivotal component of tissue inhibitor of metalloproteinases-3 regulation by transforming growth factor beta in human chondrocytes. Biochim Biophys Acta 2008;1783:1605–1612.PubMed Qureshi HY, Ricci G, Zafarullah M. Smad signaling pathway is a pivotal component of tissue inhibitor of metalloproteinases-3 regulation by transforming growth factor beta in human chondrocytes. Biochim Biophys Acta 2008;1783:1605–1612.PubMed
226.
go back to reference Radaeva S, Sun R, Jaruga B et al. Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology 2006;130:435–452.PubMed Radaeva S, Sun R, Jaruga B et al. Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology 2006;130:435–452.PubMed
227.
go back to reference Melhem A, Muhanna N, Bishara A et al. Anti-fibrotic activity of NK cells in experimental liver injury through killing of activated HSC. J Hepatol 2006;45:60–71.PubMed Melhem A, Muhanna N, Bishara A et al. Anti-fibrotic activity of NK cells in experimental liver injury through killing of activated HSC. J Hepatol 2006;45:60–71.PubMed
228.
go back to reference Jeong WI, Park O, Suh YG et al. Suppression of innate immunity (natural killer cell/interferon-gamma) in the advanced stages of liver fibrosis in mice. Hepatology 2011;53:1342–1351.PubMed Jeong WI, Park O, Suh YG et al. Suppression of innate immunity (natural killer cell/interferon-gamma) in the advanced stages of liver fibrosis in mice. Hepatology 2011;53:1342–1351.PubMed
229.
go back to reference Monteleone G, Kumberova A, Croft NM et al. Blocking Smad7 restores TGF-beta1 signaling in chronic inflammatory bowel disease. J Clin Investig 2001;108:601–609.PubMedPubMedCentral Monteleone G, Kumberova A, Croft NM et al. Blocking Smad7 restores TGF-beta1 signaling in chronic inflammatory bowel disease. J Clin Investig 2001;108:601–609.PubMedPubMedCentral
230.
go back to reference Boirivant M, Pallone F, Di Giacinto C et al. Inhibition of Smad7 with a specific antisense oligonucleotide facilitates TGF-beta1-mediated suppression of colitis. Gastroenterology 2006;131:1786–1798.PubMed Boirivant M, Pallone F, Di Giacinto C et al. Inhibition of Smad7 with a specific antisense oligonucleotide facilitates TGF-beta1-mediated suppression of colitis. Gastroenterology 2006;131:1786–1798.PubMed
231.
go back to reference Monteleone G, Boirivant M, Pallone F, MacDonald TT. TGF-beta1 and Smad7 in the regulation of IBD. Mucosal Immunol 2008;1:S50-53.PubMed Monteleone G, Boirivant M, Pallone F, MacDonald TT. TGF-beta1 and Smad7 in the regulation of IBD. Mucosal Immunol 2008;1:S50-53.PubMed
232.
go back to reference Raz E, Dudler J, Lotz M et al. Modulation of disease activity in murine systemic lupus erythematosus by cytokine gene delivery. Lupus 1995;4:286–292.PubMed Raz E, Dudler J, Lotz M et al. Modulation of disease activity in murine systemic lupus erythematosus by cytokine gene delivery. Lupus 1995;4:286–292.PubMed
233.
go back to reference Kuruvilla AP, Shah R, Hochwald GM et al. Protective effect of transforming growth factor beta 1 on experimental autoimmune diseases in mice. Proc Natl Acad Sci USA 1991;88:2918–2921.PubMedPubMedCentral Kuruvilla AP, Shah R, Hochwald GM et al. Protective effect of transforming growth factor beta 1 on experimental autoimmune diseases in mice. Proc Natl Acad Sci USA 1991;88:2918–2921.PubMedPubMedCentral
234.
go back to reference Thorbecke GJ, Shah R, Leu CH et al. Involvement of endogenous tumor necrosis factor alpha and transforming growth factor beta during induction of collagen type II arthritis in mice. Proc Natl Acad Sci USA 1992;89:7375–7379.PubMedPubMedCentral Thorbecke GJ, Shah R, Leu CH et al. Involvement of endogenous tumor necrosis factor alpha and transforming growth factor beta during induction of collagen type II arthritis in mice. Proc Natl Acad Sci USA 1992;89:7375–7379.PubMedPubMedCentral
235.
go back to reference King C, Davies J, Mueller R et al. TGF-beta1 alters APC preference, polarizing islet antigen responses toward a Th2 phenotype. Immunity 1998;8:601–613.PubMed King C, Davies J, Mueller R et al. TGF-beta1 alters APC preference, polarizing islet antigen responses toward a Th2 phenotype. Immunity 1998;8:601–613.PubMed
236.
go back to reference Moritani M, Yoshimoto K, Wong SF et al. Abrogation of autoimmune diabetes in nonobese diabetic mice and protection against effector lymphocytes by transgenic paracrine TGF-beta1. J Clin Investig 1998;102:499–506.PubMedPubMedCentral Moritani M, Yoshimoto K, Wong SF et al. Abrogation of autoimmune diabetes in nonobese diabetic mice and protection against effector lymphocytes by transgenic paracrine TGF-beta1. J Clin Investig 1998;102:499–506.PubMedPubMedCentral
237.
go back to reference Grewal IS, Grewal KD, Wong FS et al. Expression of transgene encoded TGF-beta in islets prevents autoimmune diabetes in NOD mice by a local mechanism. J Autoimmun 2002;19:9–22.PubMed Grewal IS, Grewal KD, Wong FS et al. Expression of transgene encoded TGF-beta in islets prevents autoimmune diabetes in NOD mice by a local mechanism. J Autoimmun 2002;19:9–22.PubMed
238.
go back to reference Racke MK, Dhib-Jalbut S, Cannella B et al. Prevention and treatment of chronic relapsing experimental allergic encephalomyelitis by transforming growth factor-beta 1. J Immunol 1991;146:3012–3017.PubMed Racke MK, Dhib-Jalbut S, Cannella B et al. Prevention and treatment of chronic relapsing experimental allergic encephalomyelitis by transforming growth factor-beta 1. J Immunol 1991;146:3012–3017.PubMed
239.
go back to reference Johns LD, Flanders KC, Ranges GE, Sriram S. Successful treatment of experimental allergic encephalomyelitis with transforming growth factor-beta 1. J Immunol 1991;147:1792–1796.PubMed Johns LD, Flanders KC, Ranges GE, Sriram S. Successful treatment of experimental allergic encephalomyelitis with transforming growth factor-beta 1. J Immunol 1991;147:1792–1796.PubMed
240.
go back to reference Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001;19:683–765.PubMed Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001;19:683–765.PubMed
241.
go back to reference Ouyang W, Rutz S, Crellin NK, Valdez PA, Hymowitz SG. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol 2011;29:71–109.PubMed Ouyang W, Rutz S, Crellin NK, Valdez PA, Hymowitz SG. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol 2011;29:71–109.PubMed
242.
go back to reference O’Garra A, Vieira P. T(H)1 cells control themselves by producing interleukin-10. Nat Rev Immunol 2007;7:425–428.PubMed O’Garra A, Vieira P. T(H)1 cells control themselves by producing interleukin-10. Nat Rev Immunol 2007;7:425–428.PubMed
243.
go back to reference Xiao S, Brooks CR, Sobel RA, Kuchroo VK. Tim-1 is essential for induction and maintenance of IL-10 in regulatory B cells and their regulation of tissue inflammation. J Immunol 2015;194:1602–1608.PubMed Xiao S, Brooks CR, Sobel RA, Kuchroo VK. Tim-1 is essential for induction and maintenance of IL-10 in regulatory B cells and their regulation of tissue inflammation. J Immunol 2015;194:1602–1608.PubMed
245.
go back to reference DiLillo DJ, Matsushita T, Tedder TF. B10 cells and regulatory B cells balance immune responses during inflammation, autoimmunity, and cancer. Ann N Y Acad Sci 2010;1183:38–57.PubMed DiLillo DJ, Matsushita T, Tedder TF. B10 cells and regulatory B cells balance immune responses during inflammation, autoimmunity, and cancer. Ann N Y Acad Sci 2010;1183:38–57.PubMed
246.
go back to reference Mauri C, Bosma A. Immune regulatory function of B cells. Annu Rev Immunol 2012;30:221–241.PubMed Mauri C, Bosma A. Immune regulatory function of B cells. Annu Rev Immunol 2012;30:221–241.PubMed
247.
go back to reference Bouaziz JD, Le Buanec H, Saussine A, Bensussan A, Bagot M. IL-10 producing regulatory B cells in mice and humans: state of the art. Curr Mol Med 2012;12:519–527.PubMed Bouaziz JD, Le Buanec H, Saussine A, Bensussan A, Bagot M. IL-10 producing regulatory B cells in mice and humans: state of the art. Curr Mol Med 2012;12:519–527.PubMed
248.
249.
go back to reference Donnelly RP, Dickensheets H, Finbloom DS. The interleukin-10 signal transduction pathway and regulation of gene expression in mononuclear phagocytes. J Interferon Cytokine Res 1999;19:563–573.PubMed Donnelly RP, Dickensheets H, Finbloom DS. The interleukin-10 signal transduction pathway and regulation of gene expression in mononuclear phagocytes. J Interferon Cytokine Res 1999;19:563–573.PubMed
250.
go back to reference Ho AS, Liu Y, Khan TA et al. A receptor for interleukin 10 is related to interferon receptors. Proc Natl Acad Sci USA 1993;90:11267–11271.PubMedPubMedCentral Ho AS, Liu Y, Khan TA et al. A receptor for interleukin 10 is related to interferon receptors. Proc Natl Acad Sci USA 1993;90:11267–11271.PubMedPubMedCentral
251.
go back to reference Tan JC, Indelicato SR, Narula SK, Zavodny PJ, Chou CC. Characterization of interleukin-10 receptors on human and mouse cells. J Biol Chem 1993;268:21053–21059.PubMed Tan JC, Indelicato SR, Narula SK, Zavodny PJ, Chou CC. Characterization of interleukin-10 receptors on human and mouse cells. J Biol Chem 1993;268:21053–21059.PubMed
252.
go back to reference Pestka S, Krause CD, Sarkar D et al. Interleukin-10 and related cytokines and receptors. Annu Rev Immunol 2004;22:929–979.PubMed Pestka S, Krause CD, Sarkar D et al. Interleukin-10 and related cytokines and receptors. Annu Rev Immunol 2004;22:929–979.PubMed
253.
go back to reference Donnelly RP, Sheikh F, Kotenko SV, Dickensheets H. The expanded family of class II cytokines that share the IL-10 receptor-2 (IL-10R2) chain. J Leukoc Biol 2004;76:314–321.PubMed Donnelly RP, Sheikh F, Kotenko SV, Dickensheets H. The expanded family of class II cytokines that share the IL-10 receptor-2 (IL-10R2) chain. J Leukoc Biol 2004;76:314–321.PubMed
254.
go back to reference Kotenko SV, Gallagher G, Baurin VV et al. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 2003;4:69–77.PubMed Kotenko SV, Gallagher G, Baurin VV et al. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 2003;4:69–77.PubMed
255.
go back to reference Sheppard P, Kindsvogel W, Xu W et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 2003;4:63–68.PubMed Sheppard P, Kindsvogel W, Xu W et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 2003;4:63–68.PubMed
256.
go back to reference Yoon SI, Jones BC, Logsdon NJ et al. Structure and mechanism of receptor sharing by the IL-10R2 common chain. Structure 2010;18:638–648.PubMedPubMedCentral Yoon SI, Jones BC, Logsdon NJ et al. Structure and mechanism of receptor sharing by the IL-10R2 common chain. Structure 2010;18:638–648.PubMedPubMedCentral
257.
go back to reference Radaeva S, Sun R, Pan HN, Hong F, Gao B. Interleukin 22 (IL-22) plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation. Hepatology 2004;39:1332–1342.PubMed Radaeva S, Sun R, Pan HN, Hong F, Gao B. Interleukin 22 (IL-22) plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation. Hepatology 2004;39:1332–1342.PubMed
258.
go back to reference Rutz S, Ouyang W. Regulation of interleukin-10 and interleukin-22 expression in T helper cells. Curr Opin Immunol 2011;23:605–612.PubMed Rutz S, Ouyang W. Regulation of interleukin-10 and interleukin-22 expression in T helper cells. Curr Opin Immunol 2011;23:605–612.PubMed
259.
go back to reference Yang X, Zheng SG. Interleukin-22: a likely target for treatment of autoimmune diseases. Autoimmun Rev 2014;13:615–620.PubMedPubMedCentral Yang X, Zheng SG. Interleukin-22: a likely target for treatment of autoimmune diseases. Autoimmun Rev 2014;13:615–620.PubMedPubMedCentral
260.
go back to reference Staples KJ, Smallie T, Williams LM et al. IL-10 induces IL-10 in primary human monocyte-derived macrophages via the transcription factor Stat3. J Immunol 2007;178:4779–4785.PubMed Staples KJ, Smallie T, Williams LM et al. IL-10 induces IL-10 in primary human monocyte-derived macrophages via the transcription factor Stat3. J Immunol 2007;178:4779–4785.PubMed
261.
262.
go back to reference Greenfield EA, Nguyen KA, Kuchroo VK. CD28/B7 costimulation: a review. Crit Rev Immunol 1998;18:389–418.PubMed Greenfield EA, Nguyen KA, Kuchroo VK. CD28/B7 costimulation: a review. Crit Rev Immunol 1998;18:389–418.PubMed
263.
go back to reference Dustin ML, Shaw AS. Costimulation: building an immunological synapse. Science 1999;283:649–650.PubMed Dustin ML, Shaw AS. Costimulation: building an immunological synapse. Science 1999;283:649–650.PubMed
264.
go back to reference Czaja AJ. Understanding the pathogenesis of autoimmune hepatitis. Am J Gastroenterol 2001;96:1224–1231.PubMed Czaja AJ. Understanding the pathogenesis of autoimmune hepatitis. Am J Gastroenterol 2001;96:1224–1231.PubMed
265.
go back to reference Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol 2005;23:515–548.PubMed Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol 2005;23:515–548.PubMed
266.
go back to reference Cai Z, Brunmark AB, Luxembourg AT et al. Probing the activation requirements for naive CD8+ T cells with Drosophila cell transfectants as antigen presenting cells. Immunol Rev 1998;165:249–265.PubMed Cai Z, Brunmark AB, Luxembourg AT et al. Probing the activation requirements for naive CD8+ T cells with Drosophila cell transfectants as antigen presenting cells. Immunol Rev 1998;165:249–265.PubMed
267.
go back to reference Mescher MF, Curtsinger JM, Agarwal P et al. Signals required for programming effector and memory development by CD8+ T cells. Immunol Rev 2006;211:81–92.PubMed Mescher MF, Curtsinger JM, Agarwal P et al. Signals required for programming effector and memory development by CD8+ T cells. Immunol Rev 2006;211:81–92.PubMed
268.
go back to reference Mescher MF, Agarwal P, Casey KA et al. Molecular basis for checkpoints in the CD8 T cell response: tolerance versus activation. Semin Immunol 2007;19:153–161.PubMedPubMedCentral Mescher MF, Agarwal P, Casey KA et al. Molecular basis for checkpoints in the CD8 T cell response: tolerance versus activation. Semin Immunol 2007;19:153–161.PubMedPubMedCentral
269.
go back to reference Allison JP. CD28-B7 interactions in T-cell activation. Curr Opin Immunol 1994;6:414–419.PubMed Allison JP. CD28-B7 interactions in T-cell activation. Curr Opin Immunol 1994;6:414–419.PubMed
270.
go back to reference Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol 1996;14:233–258.PubMed Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol 1996;14:233–258.PubMed
271.
go back to reference Curtsinger JM, Schmidt CS, Mondino A et al. Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. J Immunol 1999;162:3256–3262.PubMed Curtsinger JM, Schmidt CS, Mondino A et al. Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. J Immunol 1999;162:3256–3262.PubMed
273.
go back to reference Curtsinger JM, Valenzuela JO, Agarwal P, Lins D, Mescher MF. Type I IFNs provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation. J Immunol 2005;174:4465–4469.PubMed Curtsinger JM, Valenzuela JO, Agarwal P, Lins D, Mescher MF. Type I IFNs provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation. J Immunol 2005;174:4465–4469.PubMed
274.
go back to reference de Waal Malefyt R, Haanen J, Spits H et al. Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med 1991;174:915–924. de Waal Malefyt R, Haanen J, Spits H et al. Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med 1991;174:915–924.
275.
go back to reference de Waal Malefyt R, Abrams J, Bennett B, Figdor CG, de Vries JE. Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med 1991;174:1209–1220. de Waal Malefyt R, Abrams J, Bennett B, Figdor CG, de Vries JE. Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med 1991;174:1209–1220.
276.
go back to reference Harding FA, McArthur JG, Gross JA, Raulet DH, Allison JP. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 1992;356:607–609.PubMed Harding FA, McArthur JG, Gross JA, Raulet DH, Allison JP. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 1992;356:607–609.PubMed
277.
go back to reference Tan P, Anasetti C, Hansen JA et al. Induction of alloantigen-specific hyporesponsiveness in human T lymphocytes by blocking interaction of CD28 with its natural ligand B7/BB1. J Exp Med 1993;177:165–173.PubMed Tan P, Anasetti C, Hansen JA et al. Induction of alloantigen-specific hyporesponsiveness in human T lymphocytes by blocking interaction of CD28 with its natural ligand B7/BB1. J Exp Med 1993;177:165–173.PubMed
278.
go back to reference Groux H, Bigler M, de Vries JE, Roncarolo MG. Inhibitory and stimulatory effects of IL-10 on human CD8+ T cells. J Immunol 1998;160:3188–3193.PubMed Groux H, Bigler M, de Vries JE, Roncarolo MG. Inhibitory and stimulatory effects of IL-10 on human CD8+ T cells. J Immunol 1998;160:3188–3193.PubMed
279.
go back to reference Rowbottom AW, Lepper MA, Garland RJ, Cox CV, Corley EG. Interleukin-10-induced CD8 cell proliferation. Immunology 1999;98:80–89.PubMedPubMedCentral Rowbottom AW, Lepper MA, Garland RJ, Cox CV, Corley EG. Interleukin-10-induced CD8 cell proliferation. Immunology 1999;98:80–89.PubMedPubMedCentral
280.
go back to reference Chikuma S, Bluestone JA. CTLA-4 and tolerance: the biochemical point of view. Immunol Res 2003;28:241–253.PubMed Chikuma S, Bluestone JA. CTLA-4 and tolerance: the biochemical point of view. Immunol Res 2003;28:241–253.PubMed
281.
go back to reference Chikuma S, Abbas AK, Bluestone JA. B7-independent inhibition of T cells by CTLA-4. J Immunol 2005;175:177–181.PubMed Chikuma S, Abbas AK, Bluestone JA. B7-independent inhibition of T cells by CTLA-4. J Immunol 2005;175:177–181.PubMed
282.
go back to reference Chikuma S. CTLA-4, an essential immune-checkpoint for T-cell activation. Curr Top Microbiol Immunol 2017;410:99–126.PubMed Chikuma S. CTLA-4, an essential immune-checkpoint for T-cell activation. Curr Top Microbiol Immunol 2017;410:99–126.PubMed
283.
go back to reference Coomes SM, Kannan Y, Pelly VS et al. CD4(+) Th2 cells are directly regulated by IL-10 during allergic airway inflammation. Mucosal Immunol 2017;10:150–161.PubMed Coomes SM, Kannan Y, Pelly VS et al. CD4(+) Th2 cells are directly regulated by IL-10 during allergic airway inflammation. Mucosal Immunol 2017;10:150–161.PubMed
284.
go back to reference Walker JA, McKenzie ANJ. TH2 cell development and function. Nat Rev Immunol 2018;18:121–133.PubMed Walker JA, McKenzie ANJ. TH2 cell development and function. Nat Rev Immunol 2018;18:121–133.PubMed
285.
go back to reference Huber S, Gagliani N, Esplugues E et al. Th17 cells express interleukin-10 receptor and are controlled by Foxp3(-) and Foxp3+ regulatory CD4+ T cells in an interleukin-10-dependent manner. Immunity 2011;34:554–565.PubMedPubMedCentral Huber S, Gagliani N, Esplugues E et al. Th17 cells express interleukin-10 receptor and are controlled by Foxp3(-) and Foxp3+ regulatory CD4+ T cells in an interleukin-10-dependent manner. Immunity 2011;34:554–565.PubMedPubMedCentral
286.
go back to reference Wang P, Wu P, Siegel MI, Egan RW, Billah MM. Interleukin (IL)-10 inhibits nuclear factor kappa B (NF kappa B) activation in human monocytes. IL-10 and IL-4 suppress cytokine synthesis by different mechanisms. J Biol Chem 1995;270:9558–9563.PubMed Wang P, Wu P, Siegel MI, Egan RW, Billah MM. Interleukin (IL)-10 inhibits nuclear factor kappa B (NF kappa B) activation in human monocytes. IL-10 and IL-4 suppress cytokine synthesis by different mechanisms. J Biol Chem 1995;270:9558–9563.PubMed
287.
go back to reference Schuetze N, Schoeneberger S, Mueller U et al. IL-12 family members: differential kinetics of their TLR4-mediated induction by Salmonella enteritidis and the impact of IL-10 in bone marrow-derived macrophages. Int Immunol 2005;17:649–659.PubMed Schuetze N, Schoeneberger S, Mueller U et al. IL-12 family members: differential kinetics of their TLR4-mediated induction by Salmonella enteritidis and the impact of IL-10 in bone marrow-derived macrophages. Int Immunol 2005;17:649–659.PubMed
288.
go back to reference Maloy KJ, Kullberg MC. IL-23 and Th17 cytokines in intestinal homeostasis. Mucosal Immunol 2008;1:339–349.PubMed Maloy KJ, Kullberg MC. IL-23 and Th17 cytokines in intestinal homeostasis. Mucosal Immunol 2008;1:339–349.PubMed
289.
go back to reference Veenbergen S, Li P, Raatgeep HC et al. IL-10 signaling in dendritic cells controls IL-1beta-mediated IFNgamma secretion by human CD4(+) T cells: relevance to inflammatory bowel disease. Mucosal Immunol 2019;12:1201–1211.PubMedPubMedCentral Veenbergen S, Li P, Raatgeep HC et al. IL-10 signaling in dendritic cells controls IL-1beta-mediated IFNgamma secretion by human CD4(+) T cells: relevance to inflammatory bowel disease. Mucosal Immunol 2019;12:1201–1211.PubMedPubMedCentral
290.
go back to reference Cai G, Kastelein RA, Hunter CA. IL-10 enhances NK cell proliferation, cytotoxicity and production of IFN-gamma when combined with IL-18. Eur J Immunol 1999;29:2658–2665.PubMed Cai G, Kastelein RA, Hunter CA. IL-10 enhances NK cell proliferation, cytotoxicity and production of IFN-gamma when combined with IL-18. Eur J Immunol 1999;29:2658–2665.PubMed
291.
go back to reference Santin AD, Hermonat PL, Ravaggi A et al. Interleukin-10 increases Th1 cytokine production and cytotoxic potential in human papillomavirus-specific CD8(+) cytotoxic T lymphocytes. J Virol 2000;74:4729–4737.PubMedPubMedCentral Santin AD, Hermonat PL, Ravaggi A et al. Interleukin-10 increases Th1 cytokine production and cytotoxic potential in human papillomavirus-specific CD8(+) cytotoxic T lymphocytes. J Virol 2000;74:4729–4737.PubMedPubMedCentral
292.
go back to reference Itoh K, Hirohata S. The role of IL-10 in human B cell activation, proliferation, and differentiation. J Immunol 1995;154:4341–4350.PubMed Itoh K, Hirohata S. The role of IL-10 in human B cell activation, proliferation, and differentiation. J Immunol 1995;154:4341–4350.PubMed
293.
go back to reference Levy Y, Brouet JC. Interleukin-10 prevents spontaneous death of germinal center B cells by induction of the bcl-2 protein. J Clin Investig 1994;93:424–428.PubMedPubMedCentral Levy Y, Brouet JC. Interleukin-10 prevents spontaneous death of germinal center B cells by induction of the bcl-2 protein. J Clin Investig 1994;93:424–428.PubMedPubMedCentral
294.
go back to reference Blazar BR, Taylor PA, Smith S, Vallera DA. Interleukin-10 administration decreases survival in murine recipients of major histocompatibility complex disparate donor bone marrow grafts. Blood 1995;85:842–851.PubMed Blazar BR, Taylor PA, Smith S, Vallera DA. Interleukin-10 administration decreases survival in murine recipients of major histocompatibility complex disparate donor bone marrow grafts. Blood 1995;85:842–851.PubMed
295.
go back to reference Lauw FN, Pajkrt D, Hack CE et al. Proinflammatory effects of IL-10 during human endotoxemia. J Immunol 2000;165:2783–2789.PubMed Lauw FN, Pajkrt D, Hack CE et al. Proinflammatory effects of IL-10 during human endotoxemia. J Immunol 2000;165:2783–2789.PubMed
296.
go back to reference Calabresi PA, Fields NS, Maloni HW et al. Phase 1 trial of transforming growth factor beta 2 in chronic progressive MS. Neurology 1998;51:289–292.PubMed Calabresi PA, Fields NS, Maloni HW et al. Phase 1 trial of transforming growth factor beta 2 in chronic progressive MS. Neurology 1998;51:289–292.PubMed
297.
go back to reference Monteleone G, Fantini MC, Onali S et al. Phase I clinical trial of Smad7 knockdown using antisense oligonucleotide in patients with active Crohn’s disease. Mol Ther 2012;20:870–876.PubMedPubMedCentral Monteleone G, Fantini MC, Onali S et al. Phase I clinical trial of Smad7 knockdown using antisense oligonucleotide in patients with active Crohn’s disease. Mol Ther 2012;20:870–876.PubMedPubMedCentral
298.
go back to reference Monteleone G, Neurath MF, Ardizzone S et al. Mongersen, an oral SMAD7 antisense oligonucleotide, and Crohn’s disease. N Engl J Med 2015;372:1104–1113.PubMed Monteleone G, Neurath MF, Ardizzone S et al. Mongersen, an oral SMAD7 antisense oligonucleotide, and Crohn’s disease. N Engl J Med 2015;372:1104–1113.PubMed
299.
go back to reference Marafini I, Monteleone G. Therapeutic oligonucleotides for patients with inflammatory bowel diseases. Biologics 2020;14:47–51.PubMedPubMedCentral Marafini I, Monteleone G. Therapeutic oligonucleotides for patients with inflammatory bowel diseases. Biologics 2020;14:47–51.PubMedPubMedCentral
300.
go back to reference Feagan BG, Sands BE, Rossiter G et al. Effects of Mongersen (GED-0301) on endoscopic and clinical outcomes in patients with active Crohn’s Disease. Gastroenterology 2018;154:61–64.PubMed Feagan BG, Sands BE, Rossiter G et al. Effects of Mongersen (GED-0301) on endoscopic and clinical outcomes in patients with active Crohn’s Disease. Gastroenterology 2018;154:61–64.PubMed
301.
go back to reference Sands BE, Feagan BG, Sandborn WJ et al. Mongersen (GED-0301) for active Crohn’s disease: results of a Phase 3 study. Am J Gastroenterol 2020;115:738–745.PubMed Sands BE, Feagan BG, Sandborn WJ et al. Mongersen (GED-0301) for active Crohn’s disease: results of a Phase 3 study. Am J Gastroenterol 2020;115:738–745.PubMed
302.
go back to reference Denton CP, Merkel PA, Furst DE et al. Recombinant human anti-transforming growth factor beta1 antibody therapy in systemic sclerosis: a multicenter, randomized, placebo-controlled phase I/II trial of CAT-192. Arthritis Rheum 2007;56:323–333.PubMed Denton CP, Merkel PA, Furst DE et al. Recombinant human anti-transforming growth factor beta1 antibody therapy in systemic sclerosis: a multicenter, randomized, placebo-controlled phase I/II trial of CAT-192. Arthritis Rheum 2007;56:323–333.PubMed
303.
go back to reference Sellon RK, Tonkonogy S, Schultz M et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun 1998;66:5224–5231.PubMedPubMedCentral Sellon RK, Tonkonogy S, Schultz M et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun 1998;66:5224–5231.PubMedPubMedCentral
304.
go back to reference Kang SS, Bloom SM, Norian LA et al. An antibiotic-responsive mouse model of fulminant ulcerative colitis. PLoS Med 2008;5:e41.PubMedPubMedCentral Kang SS, Bloom SM, Norian LA et al. An antibiotic-responsive mouse model of fulminant ulcerative colitis. PLoS Med 2008;5:e41.PubMedPubMedCentral
305.
go back to reference Quattrocchi E, Dallman MJ, Dhillon AP et al. Murine IL-10 gene transfer inhibits established collagen-induced arthritis and reduces adenovirus-mediated inflammatory responses in mouse liver. J Immunol 2001;166:5970–5978.PubMed Quattrocchi E, Dallman MJ, Dhillon AP et al. Murine IL-10 gene transfer inhibits established collagen-induced arthritis and reduces adenovirus-mediated inflammatory responses in mouse liver. J Immunol 2001;166:5970–5978.PubMed
306.
go back to reference Steidler L, Hans W, Schotte L et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 2000;289:1352–1355.PubMed Steidler L, Hans W, Schotte L et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 2000;289:1352–1355.PubMed
307.
go back to reference Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 1993;75:263–274.PubMed Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 1993;75:263–274.PubMed
308.
go back to reference Steidler L, Neirynck S, Huyghebaert N et al. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat Biotechnol. 2003;21:785–789.PubMed Steidler L, Neirynck S, Huyghebaert N et al. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat Biotechnol. 2003;21:785–789.PubMed
309.
go back to reference Keystone E, Wherry J, Grint P. IL-10 as a therapeutic strategy in the treatment of rheumatoid arthritis. Rheum Dis Clin N Am 1998;24:629–639. Keystone E, Wherry J, Grint P. IL-10 as a therapeutic strategy in the treatment of rheumatoid arthritis. Rheum Dis Clin N Am 1998;24:629–639.
310.
go back to reference van Roon JA, Lafeber FP, Bijlsma JW. Synergistic activity of interleukin-4 and interleukin-10 in suppression of inflammation and joint destruction in rheumatoid arthritis. Arthritis Rheum 2001;44:3–12.PubMed van Roon JA, Lafeber FP, Bijlsma JW. Synergistic activity of interleukin-4 and interleukin-10 in suppression of inflammation and joint destruction in rheumatoid arthritis. Arthritis Rheum 2001;44:3–12.PubMed
311.
go back to reference van Roon J, Wijngaarden S, Lafeber FP et al. Interleukin 10 treatment of patients with rheumatoid arthritis enhances Fc gamma receptor expression on monocytes and responsiveness to immune complex stimulation. J Rheumatol 2003;30:648–651.PubMed van Roon J, Wijngaarden S, Lafeber FP et al. Interleukin 10 treatment of patients with rheumatoid arthritis enhances Fc gamma receptor expression on monocytes and responsiveness to immune complex stimulation. J Rheumatol 2003;30:648–651.PubMed
312.
go back to reference van Deventer SJ, Elson CO, Fedorak RN. Multiple doses of intravenous interleukin 10 in steroid-refractory Crohn’s disease. Crohn’s Disease Study Group. Gastroenterology 1997;113:383–389.PubMed van Deventer SJ, Elson CO, Fedorak RN. Multiple doses of intravenous interleukin 10 in steroid-refractory Crohn’s disease. Crohn’s Disease Study Group. Gastroenterology 1997;113:383–389.PubMed
313.
go back to reference Fedorak RN, Gangl A, Elson CO et al. Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn’s disease. The Interleukin 10 Inflammatory Bowel Disease Cooperative Study Group. Gastroenterology 2000;119:1473–1482.PubMed Fedorak RN, Gangl A, Elson CO et al. Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn’s disease. The Interleukin 10 Inflammatory Bowel Disease Cooperative Study Group. Gastroenterology 2000;119:1473–1482.PubMed
314.
go back to reference Schreiber S, Fedorak RN, Nielsen OH et al. Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn’s disease. Crohn’s Disease IL-10 Cooperative Study Group. Gastroenterology 2000;119:1461–1472.PubMed Schreiber S, Fedorak RN, Nielsen OH et al. Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn’s disease. Crohn’s Disease IL-10 Cooperative Study Group. Gastroenterology 2000;119:1461–1472.PubMed
315.
go back to reference Colombel JF, Rutgeerts P, Malchow H et al. Interleukin 10 (Tenovil) in the prevention of postoperative recurrence of Crohn’s disease. Gut 2001;49:42–46.PubMedPubMedCentral Colombel JF, Rutgeerts P, Malchow H et al. Interleukin 10 (Tenovil) in the prevention of postoperative recurrence of Crohn’s disease. Gut 2001;49:42–46.PubMedPubMedCentral
316.
go back to reference Tilg H, van Montfrans C, van den Ende A et al. Treatment of Crohn’s disease with recombinant human interleukin 10 induces the proinflammatory cytokine interferon gamma. Gut 2002;50:191–195.PubMedPubMedCentral Tilg H, van Montfrans C, van den Ende A et al. Treatment of Crohn’s disease with recombinant human interleukin 10 induces the proinflammatory cytokine interferon gamma. Gut 2002;50:191–195.PubMedPubMedCentral
317.
go back to reference Asadullah K, Sterry W, Stephanek K et al. IL-10 is a key cytokine in psoriasis. Proof of principle by IL-10 therapy: a new therapeutic approach. J Clin Investig 1998;101:783–794.PubMedPubMedCentral Asadullah K, Sterry W, Stephanek K et al. IL-10 is a key cytokine in psoriasis. Proof of principle by IL-10 therapy: a new therapeutic approach. J Clin Investig 1998;101:783–794.PubMedPubMedCentral
318.
go back to reference Asadullah K, Docke WD, Ebeling M et al. Interleukin 10 treatment of psoriasis: clinical results of a phase 2 trial. Arch Dermatol 1999;135:187–192.PubMed Asadullah K, Docke WD, Ebeling M et al. Interleukin 10 treatment of psoriasis: clinical results of a phase 2 trial. Arch Dermatol 1999;135:187–192.PubMed
319.
go back to reference Reich K, Garbe C, Blaschke V et al. Response of psoriasis to interleukin-10 is associated with suppression of cutaneous type 1 inflammation, downregulation of the epidermal interleukin-8/CXCR2 pathway and normalization of keratinocyte maturation. J Investig Dermatol 2001;116:319–329.PubMed Reich K, Garbe C, Blaschke V et al. Response of psoriasis to interleukin-10 is associated with suppression of cutaneous type 1 inflammation, downregulation of the epidermal interleukin-8/CXCR2 pathway and normalization of keratinocyte maturation. J Investig Dermatol 2001;116:319–329.PubMed
320.
go back to reference McInnes IB, Illei GG, Danning CL et al. IL-10 improves skin disease and modulates endothelial activation and leukocyte effector function in patients with psoriatic arthritis. J Immunol 2001;167:4075–4082.PubMed McInnes IB, Illei GG, Danning CL et al. IL-10 improves skin disease and modulates endothelial activation and leukocyte effector function in patients with psoriatic arthritis. J Immunol 2001;167:4075–4082.PubMed
321.
go back to reference Kimball AB, Kawamura T, Tejura K et al. Clinical and immunologic assessment of patients with psoriasis in a randomized, double-blind, placebo-controlled trial using recombinant human interleukin 10. Arch Dermatol 2002;138:1341–1346.PubMed Kimball AB, Kawamura T, Tejura K et al. Clinical and immunologic assessment of patients with psoriasis in a randomized, double-blind, placebo-controlled trial using recombinant human interleukin 10. Arch Dermatol 2002;138:1341–1346.PubMed
322.
go back to reference Buruiana FE, Sola I, Alonso-Coello P. Recombinant human interleukin 10 for induction of remission in Crohn’s disease. Cochrane Database Syst Rev 2010;11:CD005109. Buruiana FE, Sola I, Alonso-Coello P. Recombinant human interleukin 10 for induction of remission in Crohn’s disease. Cochrane Database Syst Rev 2010;11:CD005109.
323.
go back to reference Demols A, Deviere J. New frontiers in the pharmacological prevention of post-ERCP pancreatitis: the cytokines. JOP 2003;4:49–57.PubMed Demols A, Deviere J. New frontiers in the pharmacological prevention of post-ERCP pancreatitis: the cytokines. JOP 2003;4:49–57.PubMed
324.
go back to reference Lieb JG 2nd, Draganov PV. Early successes and late failures in the prevention of post endoscopic retrograde cholangiopancreatography. World J Gastroenterol 2007;13:3567–3574.PubMed Lieb JG 2nd, Draganov PV. Early successes and late failures in the prevention of post endoscopic retrograde cholangiopancreatography. World J Gastroenterol 2007;13:3567–3574.PubMed
325.
go back to reference Deviere J, Le Moine O, Van Laethem JL et al. Interleukin 10 reduces the incidence of pancreatitis after therapeutic endoscopic retrograde cholangiopancreatography. Gastroenterology 2001;120:498–505.PubMed Deviere J, Le Moine O, Van Laethem JL et al. Interleukin 10 reduces the incidence of pancreatitis after therapeutic endoscopic retrograde cholangiopancreatography. Gastroenterology 2001;120:498–505.PubMed
326.
go back to reference Dumot JA, Conwell DL, Zuccaro G Jr et al. A randomized, double blind study of interleukin 10 for the prevention of ERCP-induced pancreatitis. Am J Gastroenterol 2001;96:2098–2102.PubMed Dumot JA, Conwell DL, Zuccaro G Jr et al. A randomized, double blind study of interleukin 10 for the prevention of ERCP-induced pancreatitis. Am J Gastroenterol 2001;96:2098–2102.PubMed
327.
go back to reference Sherman S, Cheng CL, Costamagna G et al. Efficacy of recombinant human interleukin-10 in prevention of post-endoscopic retrograde cholangiopancreatography pancreatitis in subjects with increased risk. Pancreas 2009;38:267–274.PubMed Sherman S, Cheng CL, Costamagna G et al. Efficacy of recombinant human interleukin-10 in prevention of post-endoscopic retrograde cholangiopancreatography pancreatitis in subjects with increased risk. Pancreas 2009;38:267–274.PubMed
328.
go back to reference Van Laethem JL, Marchant A, Delvaux A et al. Interleukin 10 prevents necrosis in murine experimental acute pancreatitis. Gastroenterology 1995;108:1917–1922.PubMed Van Laethem JL, Marchant A, Delvaux A et al. Interleukin 10 prevents necrosis in murine experimental acute pancreatitis. Gastroenterology 1995;108:1917–1922.PubMed
329.
go back to reference Chernoff AE, Granowitz EV, Shapiro L et al. A randomized, controlled trial of IL-10 in humans. Inhibition of inflammatory cytokine production and immune responses. J Immunol 1995;154:5492–5499.PubMed Chernoff AE, Granowitz EV, Shapiro L et al. A randomized, controlled trial of IL-10 in humans. Inhibition of inflammatory cytokine production and immune responses. J Immunol 1995;154:5492–5499.PubMed
330.
go back to reference Fuchs AC, Granowitz EV, Shapiro L et al. Clinical, hematologic, and immunologic effects of interleukin-10 in humans. J Clin Immunol 1996;16:291–303.PubMed Fuchs AC, Granowitz EV, Shapiro L et al. Clinical, hematologic, and immunologic effects of interleukin-10 in humans. J Clin Immunol 1996;16:291–303.PubMed
331.
go back to reference Bayer EM, Herr W, Kanzler S et al. Transforming growth factor-beta1 in autoimmune hepatitis: correlation of liver tissue expression and serum levels with disease activity. J Hepatol 1998;28:803–811.PubMed Bayer EM, Herr W, Kanzler S et al. Transforming growth factor-beta1 in autoimmune hepatitis: correlation of liver tissue expression and serum levels with disease activity. J Hepatol 1998;28:803–811.PubMed
332.
go back to reference Sakaguchi K, Kitano M, Nishimura M et al. Serum level of transforming growth factor-beta1 (TGF-beta1) and the expression of TGF-beta receptor type II in peripheral blood mononuclear cells in patients with autoimmune hepatitis. Hepatogastroenterology 2004;51:1780–1783.PubMed Sakaguchi K, Kitano M, Nishimura M et al. Serum level of transforming growth factor-beta1 (TGF-beta1) and the expression of TGF-beta receptor type II in peripheral blood mononuclear cells in patients with autoimmune hepatitis. Hepatogastroenterology 2004;51:1780–1783.PubMed
333.
go back to reference Gutkowski K, Gutkowska D, Kiszka J et al. Serum interleukin17 levels predict inflammatory activity in patients with autoimmune hepatitis. Pol Arch Intern Med 2018;128:150–156.PubMed Gutkowski K, Gutkowska D, Kiszka J et al. Serum interleukin17 levels predict inflammatory activity in patients with autoimmune hepatitis. Pol Arch Intern Med 2018;128:150–156.PubMed
334.
go back to reference Schramm C, Protschka M, Kohler HH et al. Impairment of TGF-beta signaling in T cells increases susceptibility to experimental autoimmune hepatitis in mice. Am J Physiol Gastrointest Liver Physiol 2003;284:G525-535.PubMed Schramm C, Protschka M, Kohler HH et al. Impairment of TGF-beta signaling in T cells increases susceptibility to experimental autoimmune hepatitis in mice. Am J Physiol Gastrointest Liver Physiol 2003;284:G525-535.PubMed
335.
go back to reference Paladino N, Flores AC, Fainboim H et al. The most severe forms of type I autoimmune hepatitis are associated with genetically determined levels of TGF-beta1. Clin Immunol 2010;134:305–312.PubMed Paladino N, Flores AC, Fainboim H et al. The most severe forms of type I autoimmune hepatitis are associated with genetically determined levels of TGF-beta1. Clin Immunol 2010;134:305–312.PubMed
336.
go back to reference Dunning AM, Ellis PD, McBride S et al. A transforming growth factorbeta1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Res 2003;63:2610–2615.PubMed Dunning AM, Ellis PD, McBride S et al. A transforming growth factorbeta1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Res 2003;63:2610–2615.PubMed
337.
go back to reference Yokota M, Ichihara S, Lin TL, Nakashima N, Yamada Y. Association of a T29–>C polymorphism of the transforming growth factor-beta1 gene with genetic susceptibility to myocardial infarction in Japanese. Circulation 2000;101:2783–2787.PubMed Yokota M, Ichihara S, Lin TL, Nakashima N, Yamada Y. Association of a T29–>C polymorphism of the transforming growth factor-beta1 gene with genetic susceptibility to myocardial infarction in Japanese. Circulation 2000;101:2783–2787.PubMed
338.
go back to reference Bathgate AJ, Pravica V, Perrey C, Hayes PC, Hutchinson IV. Polymorphisms in tumour necrosis factor alpha, interleukin-10 and transforming growth factor beta1 genes and end-stage liver disease. Eur J Gastroenterol Hepatol 2000;12:1329–1333.PubMed Bathgate AJ, Pravica V, Perrey C, Hayes PC, Hutchinson IV. Polymorphisms in tumour necrosis factor alpha, interleukin-10 and transforming growth factor beta1 genes and end-stage liver disease. Eur J Gastroenterol Hepatol 2000;12:1329–1333.PubMed
339.
go back to reference Chaouali M, Fernandes V, Ghazouani E, Pereira L, Kochkar R. Association of STAT4, TGFbeta1, SH2B3 and PTPN22 polymorphisms with autoimmune hepatitis. Exp Mol Pathol 2018;105:279–284.PubMed Chaouali M, Fernandes V, Ghazouani E, Pereira L, Kochkar R. Association of STAT4, TGFbeta1, SH2B3 and PTPN22 polymorphisms with autoimmune hepatitis. Exp Mol Pathol 2018;105:279–284.PubMed
340.
go back to reference Liberal R, Grant CR, Holder BS et al. In autoimmune hepatitis type 1 or the autoimmune hepatitis-sclerosing cholangitis variant defective regulatory T-cell responsiveness to IL-2 results in low IL-10 production and impaired suppression. Hepatology 2015;62:863–875.PubMed Liberal R, Grant CR, Holder BS et al. In autoimmune hepatitis type 1 or the autoimmune hepatitis-sclerosing cholangitis variant defective regulatory T-cell responsiveness to IL-2 results in low IL-10 production and impaired suppression. Hepatology 2015;62:863–875.PubMed
341.
go back to reference Chen J, Liu W, Zhu W. Foxp3(+) Treg sells are associated with pathological process of autoimmune hepatitis by activating methylation modification in autoimmune hepatitis patients. Med Sci Monit 2019;25:6204–6212.PubMedPubMedCentral Chen J, Liu W, Zhu W. Foxp3(+) Treg sells are associated with pathological process of autoimmune hepatitis by activating methylation modification in autoimmune hepatitis patients. Med Sci Monit 2019;25:6204–6212.PubMedPubMedCentral
343.
go back to reference Horan GS, Wood S, Ona V et al. Partial inhibition of integrin alpha(v)beta6 prevents pulmonary fibrosis without exacerbating inflammation. Am J Respir Crit Care Med 2008;177:56–65.PubMed Horan GS, Wood S, Ona V et al. Partial inhibition of integrin alpha(v)beta6 prevents pulmonary fibrosis without exacerbating inflammation. Am J Respir Crit Care Med 2008;177:56–65.PubMed
344.
go back to reference Puthawala K, Hadjiangelis N, Jacoby SC et al. Inhibition of integrin alpha(v)beta6, an activator of latent transforming growth factor-beta, prevents radiation-induced lung fibrosis. Am J Respir Crit Care Med 2008;177:82–90.PubMed Puthawala K, Hadjiangelis N, Jacoby SC et al. Inhibition of integrin alpha(v)beta6, an activator of latent transforming growth factor-beta, prevents radiation-induced lung fibrosis. Am J Respir Crit Care Med 2008;177:82–90.PubMed
345.
go back to reference Longhi MS, Ma Y, Mitry RR et al. Effect of CD4+ CD25+ regulatory T-cells on CD8 T-cell function in patients with autoimmune hepatitis. J Autoimmun 2005;25:63–71.PubMed Longhi MS, Ma Y, Mitry RR et al. Effect of CD4+ CD25+ regulatory T-cells on CD8 T-cell function in patients with autoimmune hepatitis. J Autoimmun 2005;25:63–71.PubMed
346.
go back to reference Longhi MS, Ma Y, Bogdanos DP et al. Impairment of CD4(+)CD25(+) regulatory T-cells in autoimmune liver disease. J Hepatol 2004;41:31–37.PubMed Longhi MS, Ma Y, Bogdanos DP et al. Impairment of CD4(+)CD25(+) regulatory T-cells in autoimmune liver disease. J Hepatol 2004;41:31–37.PubMed
347.
go back to reference Czaja AJ, Carpenter HA. Progressive fibrosis during corticosteroid therapy of autoimmune hepatitis. Hepatology 2004;39:1631–1638.PubMed Czaja AJ, Carpenter HA. Progressive fibrosis during corticosteroid therapy of autoimmune hepatitis. Hepatology 2004;39:1631–1638.PubMed
348.
go back to reference Czaja AJ. Review article: Prevention and reversal of hepatic fibrosis in autoimmune hepatitis. Aliment Pharmacol Ther 2014;39:385–406.PubMed Czaja AJ. Review article: Prevention and reversal of hepatic fibrosis in autoimmune hepatitis. Aliment Pharmacol Ther 2014;39:385–406.PubMed
349.
go back to reference Mead AL, Wong TT, Cordeiro MF, Anderson IK, Khaw PT. Evaluation of anti-TGF-beta2 antibody as a new postoperative anti-scarring agent in glaucoma surgery. Investig Ophthalmol Vis Sci 2003;44:3394–3401. Mead AL, Wong TT, Cordeiro MF, Anderson IK, Khaw PT. Evaluation of anti-TGF-beta2 antibody as a new postoperative anti-scarring agent in glaucoma surgery. Investig Ophthalmol Vis Sci 2003;44:3394–3401.
350.
go back to reference Juarez P, Vilchis-Landeros MM, Ponce-Coria J et al. Soluble betaglycan reduces renal damage progression in db/db mice. Am J Physiol Renal Physiol 2007;292:F321-329.PubMed Juarez P, Vilchis-Landeros MM, Ponce-Coria J et al. Soluble betaglycan reduces renal damage progression in db/db mice. Am J Physiol Renal Physiol 2007;292:F321-329.PubMed
351.
go back to reference Petersen M, Thorikay M, Deckers M et al. Oral administration of GW788388, an inhibitor of TGF-beta type I and II receptor kinases, decreases renal fibrosis. Kidney Int 2008;73:705–715.PubMed Petersen M, Thorikay M, Deckers M et al. Oral administration of GW788388, an inhibitor of TGF-beta type I and II receptor kinases, decreases renal fibrosis. Kidney Int 2008;73:705–715.PubMed
352.
go back to reference Itoh S, ten Dijke P. Negative regulation of TGF-beta receptor/Smad signal transduction. Curr Opin Cell Biol 2007;19:176–184.PubMed Itoh S, ten Dijke P. Negative regulation of TGF-beta receptor/Smad signal transduction. Curr Opin Cell Biol 2007;19:176–184.PubMed
353.
go back to reference Lan HY. Smad7 as a therapeutic agent for chronic kidney diseases. Front Biosci 2008;13:4984–4992.PubMed Lan HY. Smad7 as a therapeutic agent for chronic kidney diseases. Front Biosci 2008;13:4984–4992.PubMed
355.
go back to reference Czaja AJ, Manns MP. Advances in the diagnosis, pathogenesis and management of autoimmune hepatitis. Gastroenterology 2010;139:58–72.PubMed Czaja AJ, Manns MP. Advances in the diagnosis, pathogenesis and management of autoimmune hepatitis. Gastroenterology 2010;139:58–72.PubMed
356.
go back to reference Burak KW, Swain MG, Santodomino-Garzon T et al. Rituximab for the treatment of patients with autoimmune hepatitis who are refractory or intolerant to standard therapy. Can J Gastroenterol 2013;27:273–280.PubMedPubMedCentral Burak KW, Swain MG, Santodomino-Garzon T et al. Rituximab for the treatment of patients with autoimmune hepatitis who are refractory or intolerant to standard therapy. Can J Gastroenterol 2013;27:273–280.PubMedPubMedCentral
357.
go back to reference D’Agostino D, Costaguta A, Alvarez F. Successful treatment of refractory autoimmune hepatitis with rituximab. Pediatrics 2013;132:e526-530.PubMed D’Agostino D, Costaguta A, Alvarez F. Successful treatment of refractory autoimmune hepatitis with rituximab. Pediatrics 2013;132:e526-530.PubMed
358.
go back to reference Smith KA. Interleukin-2: inception, impact, and implications. Science 1988;240:1169–1176.PubMed Smith KA. Interleukin-2: inception, impact, and implications. Science 1988;240:1169–1176.PubMed
359.
go back to reference Nelson BH. IL-2, regulatory T cells, and tolerance. J Immunol 2004;172:3983–3988.PubMed Nelson BH. IL-2, regulatory T cells, and tolerance. J Immunol 2004;172:3983–3988.PubMed
360.
go back to reference Willems F, Marchant A, Delville JP et al. Interleukin-10 inhibits B7 and intercellular adhesion molecule-1 expression on human monocytes. Eur J Immunol 1994;24:1007–1009.PubMed Willems F, Marchant A, Delville JP et al. Interleukin-10 inhibits B7 and intercellular adhesion molecule-1 expression on human monocytes. Eur J Immunol 1994;24:1007–1009.PubMed
361.
go back to reference Creery WD, Diaz-Mitoma F, Filion L, Kumar A. Differential modulation of B7–1 and B7–2 isoform expression on human monocytes by cytokines which influence the development of T helper cell phenotype. Eur J Immunol 1996;26:1273–1277.PubMed Creery WD, Diaz-Mitoma F, Filion L, Kumar A. Differential modulation of B7–1 and B7–2 isoform expression on human monocytes by cytokines which influence the development of T helper cell phenotype. Eur J Immunol 1996;26:1273–1277.PubMed
Metadata
Title
Immune Inhibitory Properties and Therapeutic Prospects of Transforming Growth Factor-Beta and Interleukin 10 in Autoimmune Hepatitis
Author
Albert J. Czaja
Publication date
01-04-2022
Publisher
Springer US
Published in
Digestive Diseases and Sciences / Issue 4/2022
Print ISSN: 0163-2116
Electronic ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-021-06968-6

Other articles of this Issue 4/2022

Digestive Diseases and Sciences 4/2022 Go to the issue