Skip to main content

Advertisement

Log in

Targeting Hepatic Fibrosis in Autoimmune Hepatitis

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Hepatic fibrosis develops or progresses in 25 % of patients with autoimmune hepatitis despite corticosteroid therapy. Current management regimens lack reliable noninvasive methods to assess changes in hepatic fibrosis and interventions that disrupt fibrotic pathways. The goals of this review are to indicate promising noninvasive methods to monitor hepatic fibrosis in autoimmune hepatitis and identify anti-fibrotic interventions that warrant evaluation. Laboratory methods can differentiate cirrhosis from non-cirrhosis, but their accuracy in distinguishing changes in histological stage is uncertain. Radiological methods include transient elastography, acoustic radiation force impulse imaging, and magnetic resonance elastography. Methods based on ultrasonography are comparable in detecting advanced fibrosis and cirrhosis, but their performances may be compromised by hepatic inflammation and obesity. Magnetic resonance elastography has excellent performance parameters for all histological stages in diverse liver diseases, is uninfluenced by inflammatory activity or body habitus, has been superior to other radiological methods in nonalcoholic fatty liver disease, and may emerge as the preferred instrument to evaluate fibrosis in autoimmune hepatitis. Promising anti-fibrotic interventions are site- and organelle-specific agents, especially inhibitors of nicotinamide adenine dinucleotide phosphate oxidases, transforming growth factor beta, inducible nitric oxide synthase, lysyl oxidases, and C–C chemokine receptors types 2 and 5. Autoimmune hepatitis has a pro-fibrotic propensity, and noninvasive radiological methods, especially magnetic resonance elastography, and site- and organelle-specific interventions, especially selective antioxidants and inhibitors of collagen cross-linkage, may emerge to strengthen current management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Crapper RM, Bhathal PS, Mackay IR, Frazer IH. ‘Acute’ autoimmune hepatitis. Digestion. 1986;34:216–225.

    Article  CAS  PubMed  Google Scholar 

  2. Nikias GA, Batts KP, Czaja AJ. The nature and prognostic implications of autoimmune hepatitis with an acute presentation. J Hepatol. 1994;21:866–871.

    Article  CAS  PubMed  Google Scholar 

  3. Burgart LJ, Batts KP, Ludwig J, Nikias GA, Czaja AJ. Recent-onset autoimmune hepatitis. Biopsy findings and clinical correlations. Am J Surg Pathol. 1995;19:699–708.

    Article  CAS  PubMed  Google Scholar 

  4. Miyake Y, Iwasaki Y, Kobashi H, et al. Autoimmune hepatitis with acute presentation in Japan. Dig Liver Dis. 2010;42:51–54.

    Article  CAS  PubMed  Google Scholar 

  5. Czaja AJ. Acute and acute severe (fulminant) autoimmune hepatitis. Dig Dis Sci. 2013;58:897–914.

    Article  CAS  PubMed  Google Scholar 

  6. Kessler WR, Cummings OW, Eckert G, et al. Fulminant hepatic failure as the initial presentation of acute autoimmune hepatitis. Clin Gastroenterol Hepatol. 2004;2:625–631.

    Article  PubMed  Google Scholar 

  7. Yasui S, Fujiwara K, Yonemitsu Y, et al. Clinicopathological features of severe and fulminant forms of autoimmune hepatitis. J Gastroenterol. 2011;46:378–390.

    Article  PubMed  Google Scholar 

  8. Fujiwara K, Yasui S, Tawada A, et al. Autoimmune fulminant liver failure in adults: experience in a Japanese center. Hepatol Res. 2011;41:133–141.

    Article  PubMed  Google Scholar 

  9. Mackay IR. Auto-immune (lupoid) hepatitis: an entity in the spectrum of chronic active liver disease. J Gastroenterol Hepatol. 1990;5:352–359.

    Article  CAS  PubMed  Google Scholar 

  10. Czaja AJ, Carpenter HA. Progressive fibrosis during corticosteroid therapy of autoimmune hepatitis. Hepatology. 2004;39:1631–1638.

    Article  PubMed  Google Scholar 

  11. Czaja AJ. Rapidity of treatment response and outcome in type 1 autoimmune hepatitis. J Hepatol. 2009;51:161–167.

    Article  CAS  PubMed  Google Scholar 

  12. Czaja AJ. Hepatic inflammation and progressive liver fibrosis in chronic liver disease. World J Gastroenterol. 2014;20:2515–2532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ishak K, Baptista A, Bianchi L, et al. Histological grading and staging of chronic hepatitis. J Hepatol. 1995;22:696–699.

    Article  CAS  PubMed  Google Scholar 

  14. Davis GL, Czaja AJ, Ludwig J. Development and prognosis of histologic cirrhosis in corticosteroid-treated hepatitis B surface antigen-negative chronic active hepatitis. Gastroenterology. 1984;87:1222–1227.

    CAS  PubMed  Google Scholar 

  15. Roberts SK, Therneau TM, Czaja AJ. Prognosis of histological cirrhosis in type 1 autoimmune hepatitis. Gastroenterology. 1996;110:848–857.

    Article  CAS  PubMed  Google Scholar 

  16. Sanchez-Urdazpal L, Czaja AJ, van Hoek B, Krom RA, Wiesner RH. Prognostic features and role of liver transplantation in severe corticosteroid-treated autoimmune chronic active hepatitis. Hepatology. 1992;15:215–221.

    Article  CAS  PubMed  Google Scholar 

  17. Gregorio GV, Portmann B, Reid F, et al. Autoimmune hepatitis in childhood: a 20-year experience. Hepatology. 1997;25:541–547.

    Article  CAS  PubMed  Google Scholar 

  18. Montano-Loza AJ, Carpenter HA, Czaja AJ. Features associated with treatment failure in type 1 autoimmune hepatitis and predictive value of the model of end-stage liver disease. Hepatology. 2007;46:1138–1145.

    Article  CAS  PubMed  Google Scholar 

  19. Montano-Loza AJ, Mason AL, Ma M, et al. Risk factors for recurrence of autoimmune hepatitis after liver transplantation. Liver Transpl. 2009;15:1254–1261.

    Article  PubMed  Google Scholar 

  20. Manns MP, Czaja AJ, Gorham JD, et al. Diagnosis and management of autoimmune hepatitis. Hepatology. 2010;51:2193–2213.

    Article  CAS  PubMed  Google Scholar 

  21. Montano-Loza AJ, Carpenter HA, Czaja AJ. Predictive factors for hepatocellular carcinoma in type 1 autoimmune hepatitis. Am J Gastroenterol. 2008;103:1944–1951.

    Article  CAS  PubMed  Google Scholar 

  22. Yeoman AD, Al-Chalabi T, Karani JB, et al. Evaluation of risk factors in the development of hepatocellular carcinoma in autoimmune hepatitis: implications for follow-up and screening. Hepatology. 2008;48:863–870.

    Article  PubMed  Google Scholar 

  23. Czaja AJ, Carpenter HA. Decreased fibrosis during corticosteroid therapy of autoimmune hepatitis. J Hepatol. 2004;40:646–652.

    Article  CAS  PubMed  Google Scholar 

  24. Schvarcz R, Glaumann H, Weiland O. Survival and histological resolution of fibrosis in patients with autoimmune chronic active hepatitis. J Hepatol. 1993;18:15–23.

    Article  CAS  PubMed  Google Scholar 

  25. Dufour JF, DeLellis R, Kaplan MM. Reversibility of hepatic fibrosis in autoimmune hepatitis. Ann Intern Med. 1997;127:981–985.

    Article  CAS  PubMed  Google Scholar 

  26. Cotler SJ, Jakate S, Jensen DM. Resolution of cirrhosis in autoimmune hepatitis with corticosteroid therapy. J Clin Gastroenterol. 2001;32:428–430.

    Article  CAS  PubMed  Google Scholar 

  27. Mohamadnejad M, Malekzadeh R, Nasseri-Moghaddam S, et al. Impact of immunosuppressive treatment on liver fibrosis in autoimmune hepatitis. Dig Dis Sci. 2005;50:547–551.

    Article  CAS  PubMed  Google Scholar 

  28. Zimmermann H, Reichen J, Zimmermann A, et al. Reversibility of secondary biliary fibrosis by biliodigestive anastomosis in the rat. Gastroenterology. 1992;103:579–589.

    Article  CAS  PubMed  Google Scholar 

  29. Dunn MA, Cheever AW, Paglia LM, et al. Reversal of advanced liver fibrosis in rabbits with Schistosomiasis japonica. Am J Trop Med Hyg. 1994;50:499–505.

    CAS  PubMed  Google Scholar 

  30. Soloway RD, Baggenstoss AH, Schoenfield LJ, Summerskill WH. Observer error and sampling variability tested in evaluation of hepatitis and cirrhosis by liver biopsy. Am J Dig Dis. 1971;16:1082–1086.

    Article  CAS  PubMed  Google Scholar 

  31. Theodossi A, Skene AM, Portmann B, et al. Observer variation in assessment of liver biopsies including analysis by kappa statistics. Gastroenterology. 1980;79:232–241.

    CAS  PubMed  Google Scholar 

  32. Friedman SL, Bansal MB. Reversal of hepatic fibrosis—fact or fantasy? Hepatology. 2006;43:S82–S88.

    Article  CAS  PubMed  Google Scholar 

  33. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology. 2008;134:1655–1669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ghiassi-Nejad Z, Friedman SL. Advances in antifibrotic therapy. Expert Rev Gastroenterol Hepatol. 2008;2:803–816.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cohen-Naftaly M, Friedman SL. Current status of novel antifibrotic therapies in patients with chronic liver disease. Therap Adv Gastroenterol. 2011;4:391–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Friedman SL. Fibrogenic cell reversion underlies fibrosis regression in liver. Proc Natl Acad Sci USA. 2012;109:9230–9231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Czaja AJ. Review article: prevention and reversal of hepatic fibrosis in autoimmune hepatitis. Aliment Pharmacol Ther. 2014;39:385–406.

    Article  CAS  PubMed  Google Scholar 

  38. Grattagliano I, Calamita G, Cocco T, Wang DQ, Portincasa P. Pathogenic role of oxidative and nitrosative stress in primary biliary cirrhosis. World J Gastroenterol. 2014;20:5746–5759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Czaja AJ. Targeting apoptosis in autoimmune hepatitis. Dig Dis Sci. 2014;59:2890–2904.

    Article  CAS  PubMed  Google Scholar 

  40. Czaja AJ. Review article: chemokines as orchestrators of autoimmune hepatitis and potential therapeutic targets. Aliment Pharmacol Ther. 2014;40:261–279.

    Article  CAS  PubMed  Google Scholar 

  41. Marra F, Tacke F. Roles for chemokines in liver disease. Gastroenterology. 2014;147:577–594 e571.

  42. Seki E, Schwabe RF. Hepatic inflammation and fibrosis: functional links and key pathways. Hepatology. 2015;61:1066–1079.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Richter K, Konzack A, Pihlajaniemi T, Heljasvaara R, Kietzmann T. Redox-fibrosis: impact of TGFbeta1 on ROS generators, mediators and functional consequences. Redox Biol. 2015;6:344–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Abramovitch S, Sharvit E, Weisman Y, et al. Vitamin D inhibits development of liver fibrosis in an animal model but cannot ameliorate established cirrhosis. Am J Physiol Gastrointest Liver Physiol. 2015;308:G112–G120.

    Article  CAS  PubMed  Google Scholar 

  45. Reiter FP, Hohenester S, Nagel JM, et al. 1,25-(OH)(2)-vitamin D(3) prevents activation of hepatic stellate cells in vitro and ameliorates inflammatory liver damage but not fibrosis in the Abcb4(−/−) model. Biochem Biophys Res Commun. 2015;459:227–233.

    Article  CAS  PubMed  Google Scholar 

  46. Beilfuss A, Sowa JP, Sydor S, et al. Vitamin D counteracts fibrogenic TGF-beta signalling in human hepatic stellate cells both receptor-dependently and independently. Gut. 2015;64:791–799.

    Article  CAS  PubMed  Google Scholar 

  47. Wang H, Zhang Q, Chai Y, et al. 1,25(OH)2D3 downregulates the Toll-like receptor 4-mediated inflammatory pathway and ameliorates liver injury in diabetic rats. J Endocrinol Invest. 2015;38:1083–1091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Montano-Loza AJ, Czaja AJ. Cell Mediators of autoimmune hepatitis and their therapeutic implications. Dig Dis Sci. 2014;60:1528–1542.

    Article  PubMed  CAS  Google Scholar 

  49. Czaja AJ. Transitioning from idiopathic to explainable autoimmune hepatitis. Dig Dis Sci. 2015;60:2881–2900.

    Article  CAS  PubMed  Google Scholar 

  50. Berg CP, Stein GM, Keppeler H, et al. Apoptosis-associated antigens recognized by autoantibodies in patients with the autoimmune liver disease primary biliary cirrhosis. Apoptosis. 2008;13:63–75.

    Article  CAS  PubMed  Google Scholar 

  51. Seki E, De Minicis S, Osterreicher CH, et al. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med. 2007;13:1324–1332.

    Article  CAS  PubMed  Google Scholar 

  52. Seki E, Brenner DA. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology. 2008;48:322–335.

    Article  CAS  PubMed  Google Scholar 

  53. Paik YH, Schwabe RF, Bataller R, et al. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology. 2003;37:1043–1055.

    Article  CAS  PubMed  Google Scholar 

  54. Liu C, Chen X, Yang L, et al. Transcriptional repression of the transforming growth factor beta (TGF-beta) Pseudoreceptor BMP and activin membrane-bound inhibitor (BAMBI) by Nuclear Factor kappaB (NF-kappaB) p50 enhances TGF-beta signaling in hepatic stellate cells. J Biol Chem. 2014;289:7082–7091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Seki E, Schnabl B. Role of innate immunity and the microbiota in liver fibrosis: crosstalk between the liver and gut. J Physiol. 2012;590:447–458.

    Article  CAS  PubMed  Google Scholar 

  56. Zhu Q, Zou L, Jagavelu K, et al. Intestinal decontamination inhibits TLR4 dependent fibronectin-mediated cross-talk between stellate cells and endothelial cells in liver fibrosis in mice. J Hepatol. 2012;56:893–899.

    Article  CAS  PubMed  Google Scholar 

  57. Miyake Y, Yamamoto K. Role of gut microbiota in liver diseases. Hepatol Res. 2013;43:139–146.

    Article  CAS  PubMed  Google Scholar 

  58. Sanchez B, Hevia A, Gonzalez S, Margolles A. Interaction of intestinal microorganisms with the human host in the framework of autoimmune diseases. Front Immunol. 2015;6:594.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Henao-Mejia J, Elinav E, Thaiss CA, Licona-Limon P, Flavell RA. Role of the intestinal microbiome in liver disease. J Autoimmun. 2013;46:66–73.

    Article  CAS  PubMed  Google Scholar 

  60. Geuking MB, Koller Y, Rupp S, McCoy KD. The interplay between the gut microbiota and the immune system. Gut Microbes. 2014;5:411–418.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Yuksel M, Wang Y, Tai N, et al. A novel “humanized mouse” model for autoimmune hepatitis and the association of gut microbiota with liver inflammation. Hepatology. 2015;62:1536–1550.

    Article  CAS  PubMed  Google Scholar 

  62. Kerr JF, Cooksley WG, Searle J, et al. The nature of piecemeal necrosis in chronic active hepatitis. Lancet. 1979;2:827–828.

    Article  CAS  PubMed  Google Scholar 

  63. Fox CK, Furtwaengler A, Nepomuceno RR, Martinez OM, Krams SM. Apoptotic pathways in primary biliary cirrhosis and autoimmune hepatitis. Liver. 2001;21:272–279.

    Article  CAS  PubMed  Google Scholar 

  64. Bai J, Odin JA. Apoptosis and the liver: relation to autoimmunity and related conditions. Autoimmun Rev. 2003;2:36–42.

    Article  PubMed  Google Scholar 

  65. Canbay A, Taimr P, Torok N, et al. Apoptotic body engulfment by a human stellate cell line is profibrogenic. Lab Invest. 2003;83:655–663.

    Article  CAS  PubMed  Google Scholar 

  66. Zhan SS, Jiang JX, Wu J, et al. Phagocytosis of apoptotic bodies by hepatic stellate cells induces NADPH oxidase and is associated with liver fibrosis in vivo. Hepatology. 2006;43:435–443.

    Article  CAS  PubMed  Google Scholar 

  67. Friedman SL, Arthur MJ. Activation of cultured rat hepatic lipocytes by Kupffer cell conditioned medium. Direct enhancement of matrix synthesis and stimulation of cell proliferation via induction of platelet-derived growth factor receptors. J Clin Invest. 1989;84:1780–1785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bachem MG, Melchior R, Gressner AM. The role of thrombocytes in liver fibrogenesis: effects of platelet lysate and thrombocyte-derived growth factors on the mitogenic activity and glycosaminoglycan synthesis of cultured rat liver fat storing cells. J Clin Chem Clin Biochem. 1989;27:555–565.

    CAS  PubMed  Google Scholar 

  69. Czaja MJ, Weiner FR, Flanders KC, et al. In vitro and in vivo association of transforming growth factor-beta 1 with hepatic fibrosis. J Cell Biol. 1989;108:2477–2482.

    Article  CAS  PubMed  Google Scholar 

  70. Hayashi H, Sakai T. Biological significance of local TGF-beta activation in liver diseases. Front Physiol. 2012;3:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bataller R, Gines P, Nicolas JM, et al. Angiotensin II induces contraction and proliferation of human hepatic stellate cells. Gastroenterology. 2000;118:1149–1156.

    Article  CAS  PubMed  Google Scholar 

  72. Bataller R, Sancho-Bru P, Gines P, et al. Activated human hepatic stellate cells express the renin–angiotensin system and synthesize angiotensin II. Gastroenterology. 2003;125:117–125.

    Article  CAS  PubMed  Google Scholar 

  73. Watanabe A, Hashmi A, Gomes DA, et al. Apoptotic hepatocyte DNA inhibits hepatic stellate cell chemotaxis via toll-like receptor 9. Hepatology. 2007;46:1509–1518.

    Article  CAS  PubMed  Google Scholar 

  74. Chambel SS, Santos-Goncalves A, Duarte TL. The dual role of Nrf2 in nonalcoholic fatty liver disease: regulation of antioxidant defenses and hepatic lipid metabolism. Biomed Res Int. 2015;2015:597134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Wheeler MD, Kono H, Yin M, et al. The role of Kupffer cell oxidant production in early ethanol-induced liver disease. Free Radic Biol Med. 2001;31:1544–1549.

    Article  CAS  PubMed  Google Scholar 

  76. Cui W, Matsuno K, Iwata K, et al. NOX1/nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) oxidase promotes proliferation of stellate cells and aggravates liver fibrosis induced by bile duct ligation. Hepatology. 2011;54:949–958.

    Article  CAS  PubMed  Google Scholar 

  77. Kono H, Rusyn I, Yin M, et al. NADPH oxidase-derived free radicals are key oxidants in alcohol-induced liver disease. J Clin Invest. 2000;106:867–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. De Minicis S, Brenner DA. NOX in liver fibrosis. Arch Biochem Biophys. 2007;462:266–272.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Paik YH, Iwaisako K, Seki E, et al. The nicotinamide adenine dinucleotide phosphate oxidase (NOX) homologues NOX1 and NOX2/gp91(phox) mediate hepatic fibrosis in mice. Hepatology. 2011;53:1730–1741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Paik YH, Kim J, Aoyama T, et al. Role of NADPH oxidases in liver fibrosis. Antioxid Redox Signal. 2014;20:2854–2872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bettaieb A, Jiang JX, Sasaki Y, et al. Hepatocyte nicotinamide adenine dinucleotide phosphate reduced oxidase 4 regulates stress signaling, fibrosis, and insulin sensitivity during development of steatohepatitis in mice. Gastroenterology. 2015;149:468 e410–480 e410.

    Article  CAS  Google Scholar 

  82. Canbay A, Feldstein AE, Higuchi H, et al. Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression. Hepatology. 2003;38:1188–1198.

    Article  CAS  PubMed  Google Scholar 

  83. Canbay A, Friedman S, Gores GJ. Apoptosis: the nexus of liver injury and fibrosis. Hepatology. 2004;39:273–278.

    Article  PubMed  Google Scholar 

  84. Esrefoglu M. Oxidative stress and benefits of antioxidant agents in acute and chronic hepatitis. Hepat Mon. 2012;12:160–167.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Squadrito GL, Pryor WA. Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic Biol Med. 1998;25:392–403.

    Article  CAS  PubMed  Google Scholar 

  86. Pryor WA, Squadrito GL. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol. 1995;268:L699–L722.

    CAS  PubMed  Google Scholar 

  87. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87:315–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sanz-Cameno P, Medina J, Garcia-Buey L, et al. Enhanced intrahepatic inducible nitric oxide synthase expression and nitrotyrosine accumulation in primary biliary cirrhosis and autoimmune hepatitis. J Hepatol. 2002;37:723–729.

    Article  CAS  PubMed  Google Scholar 

  89. Mohiuddin I, Chai H, Lin PH, et al. Nitrotyrosine and chlorotyrosine: clinical significance and biological functions in the vascular system. J Surg Res. 2006;133:143–149.

    Article  CAS  PubMed  Google Scholar 

  90. Zhang Y, Hogg N. S-Nitrosothiols: cellular formation and transport. Free Radic Biol Med. 2005;38:831–838.

    Article  CAS  PubMed  Google Scholar 

  91. Abdelmegeed MA, Song BJ. Functional roles of protein nitration in acute and chronic liver diseases. Oxid Med Cell Longev. 2014;2014:149627.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Song BJ, Akbar M, Abdelmegeed MA, et al. Mitochondrial dysfunction and tissue injury by alcohol, high fat, nonalcoholic substances and pathological conditions through post-translational protein modifications. Redox Biol. 2014;3:109–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Beyazit Y, Efe C, Tanoglu A, et al. Nitric oxide is a potential mediator of hepatic inflammation and fibrogenesis in autoimmune hepatitis. Scand J Gastroenterol. 2015;50:204–210.

    Article  CAS  PubMed  Google Scholar 

  94. Pall ML, Levine S. Nrf2, a master regulator of detoxification and also antioxidant, anti-inflammatory and other cytoprotective mechanisms, is raised by health promoting factors. Sheng Li Xue Bao. 2015;67:1–18.

    CAS  PubMed  Google Scholar 

  95. Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221:3–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hiura M, Honma Y, Miyagawa K, et al. Alleviation mechanisms against hepatocyte oxidative stress in patients with chronic hepatic disorders. Hepatol Res. 2015;45:1124–1135.

    Article  CAS  PubMed  Google Scholar 

  97. Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem. 2005;74:739–789.

    Article  PubMed  CAS  Google Scholar 

  98. Hetz C, Chevet E, Harding HP. Targeting the unfolded protein response in disease. Nat Rev Drug Discov. 2013;12:703–719.

    Article  CAS  PubMed  Google Scholar 

  99. Peters M. Actions of cytokines on the immune response and viral interactions: an overview. Hepatology. 1996;23:909–916.

    Article  CAS  PubMed  Google Scholar 

  100. Steinke JW, Borish L. 3. Cytokines and chemokines. J Allergy Clin Immunol. 2006;117:S441–S445.

    Article  CAS  PubMed  Google Scholar 

  101. Fallahi P, Ferri C, Ferrari SM, et al. Cytokines and HCV-related disorders. Clin Dev Immunol. 2012;2012:468107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Dinarello CA. Proinflammatory cytokines. Chest. 2000;118:503–508.

    Article  CAS  PubMed  Google Scholar 

  103. Breitkopf K, Godoy P, Ciuclan L, Singer MV, Dooley S. TGF-beta/Smad signaling in the injured liver. Z Gastroenterol. 2006;44:57–66.

    Article  CAS  PubMed  Google Scholar 

  104. Dooley S, ten Dijke P. TGF-beta in progression of liver disease. Cell Tissue Res. 2012;347:245–256.

    Article  CAS  PubMed  Google Scholar 

  105. Jeong WI, Park O, Suh YG, et al. Suppression of innate immunity (natural killer cell/interferon-gamma) in the advanced stages of liver fibrosis in mice. Hepatology. 2011;53:1342–1351.

    Article  CAS  PubMed  Google Scholar 

  106. Paladino N, Flores AC, Fainboim H, et al. The most severe forms of type I autoimmune hepatitis are associated with genetically determined levels of TGF-beta1. Clin Immunol. 2010;134:305–312.

    Article  CAS  PubMed  Google Scholar 

  107. Miura K, Kodama Y, Inokuchi S, et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology. 2010;139:323–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pradere JP, Kluwe J, De Minicis S, et al. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology. 2013;58:1461–1473.

    Article  CAS  PubMed  Google Scholar 

  109. Meng F, Wang K, Aoyama T, et al. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology. 2012;143:765–776 e761–763.

  110. Chiu YS, Wei CC, Lin YJ, Hsu YH, Chang MS. IL-20 and IL-20R1 antibodies protect against liver fibrosis. Hepatology. 2014;60:1003–1014.

    Article  CAS  PubMed  Google Scholar 

  111. Petrasek J, Bala S, Csak T, et al. IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice. J Clin Invest. 2012;122:3476–3489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kong X, Feng D, Wang H, et al. Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. Hepatology. 2012;56:1150–1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Saiman Y, Friedman SL. The role of chemokines in acute liver injury. Front Physiol. 2012;3:213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Seki E, de Minicis S, Inokuchi S, et al. CCR2 promotes hepatic fibrosis in mice. Hepatology. 2009;50:185–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Berres ML, Koenen RR, Rueland A, et al. Antagonism of the chemokine Ccl5 ameliorates experimental liver fibrosis in mice. J Clin Invest. 2010;120:4129–4140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Friedman S, Sanyal A, Goodman Z, et al. Efficacy and safety study of cenicriviroc for the treatment of non-alcoholic steatohepatitis in adult subjects with liver fibrosis: CENTAUR Phase 2b study design. Contemp Clin Trials. 2016;47:356–365.

    Article  PubMed  Google Scholar 

  117. Gonzalez EO, Boix V, Deltoro MG, et al. The effects of Maraviroc on liver fibrosis in HIV/HCV co-infected patients. J Int AIDS Soc. 2014;17:19643.

    Article  PubMed  Google Scholar 

  118. Woollard SM, Kanmogne GD. Maraviroc: a review of its use in HIV infection and beyond. Drug Des Devel Ther. 2015;9:5447–5468.

    PubMed  PubMed Central  Google Scholar 

  119. Arteh J, Narra S, Nair S. Prevalence of vitamin D deficiency in chronic liver disease. Dig Dis Sci. 2010;55:2624–2628.

    Article  CAS  PubMed  Google Scholar 

  120. Efe C, Kav T, Aydin C, et al. Low serum vitamin D levels are associated with severe histological features and poor response to therapy in patients with autoimmune hepatitis. Dig Dis Sci. 2014;59:3035–3042.

    Article  CAS  PubMed  Google Scholar 

  121. Stokes CS, Volmer DA, Grunhage F, Lammert F. Vitamin D in chronic liver disease. Liver Int. 2013;33:338–352.

    Article  CAS  PubMed  Google Scholar 

  122. Gabr SA, Alghadir AH, Allam AA, et al. Correlation between vitamin D levels and apoptosis in geriatric patients infected with hepatitis C virus genotype 4. Clin Interv Aging. 2016;11:523–533.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Abramovitch S, Dahan-Bachar L, Sharvit E, et al. Vitamin D inhibits proliferation and profibrotic marker expression in hepatic stellate cells and decreases thioacetamide-induced liver fibrosis in rats. Gut. 2011;60:1728–1737.

    Article  CAS  PubMed  Google Scholar 

  124. Smyk DS, Orfanidou T, Invernizzi P, Bogdanos DP, Lenzi M. Vitamin D in autoimmune liver disease. Clin Res Hepatol Gastroenterol. 2013;37:535–545.

    Article  CAS  PubMed  Google Scholar 

  125. Hochrath K, Stokes CS, Geisel J, et al. Vitamin D modulates biliary fibrosis in ABCB4-deficient mice. Hepatol Int. 2014;8:443–452.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Zhu L, Kong M, Han YP, et al. Spontaneous liver fibrosis induced by long term dietary vitamin D deficiency in adult mice is related to chronic inflammation and enhanced apoptosis. Can J Physiol Pharmacol. 2015;93:385–394.

    Article  CAS  PubMed  Google Scholar 

  127. Ding N, Yu RT, Subramaniam N, et al. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell. 2013;153:601–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ramirez AM, Wongtrakool C, Welch T, et al. Vitamin D inhibition of pro-fibrotic effects of transforming growth factor beta1 in lung fibroblasts and epithelial cells. J Steroid Biochem Mol Biol. 2010;118:142–150.

    Article  CAS  PubMed  Google Scholar 

  129. Artaza JN, Sirad F, Ferrini MG, Norris KC. 1,25(OH)2vitamin D3 inhibits cell proliferation by promoting cell cycle arrest without inducing apoptosis and modifies cell morphology of mesenchymal multipotent cells. J Steroid Biochem Mol Biol. 2010;119:73–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Potter JJ, Liu X, Koteish A, Mezey E. 1,25-dihydroxyvitamin D3 and its nuclear receptor repress human alpha1 (I) collagen expression and type I collagen formation. Liver Int. 2013;33:677–686.

    Article  CAS  PubMed  Google Scholar 

  131. Artaza JN, Norris KC. Vitamin D reduces the expression of collagen and key profibrotic factors by inducing an antifibrotic phenotype in mesenchymal multipotent cells. J Endocrinol. 2009;200:207–221.

    Article  CAS  PubMed  Google Scholar 

  132. Vogel A, Strassburg CP, Manns MP. Genetic association of vitamin D receptor polymorphisms with primary biliary cirrhosis and autoimmune hepatitis. Hepatology. 2002;35:126–131.

    Article  CAS  PubMed  Google Scholar 

  133. Fan L, Tu X, Zhu Y, et al. Genetic association of vitamin D receptor polymorphisms with autoimmune hepatitis and primary biliary cirrhosis in the Chinese. J Gastroenterol Hepatol. 2005;20:249–255.

    Article  CAS  PubMed  Google Scholar 

  134. Wan LY, Zhang YQ, Li JM, et al. Liganded vitamin D receptor through its interacting repressor inhibits the expression of type I collagen alpha1. DNA Cell Biol. 2016. doi:10.1089/dna.2016.3367.

    Google Scholar 

  135. Iredale JP, Benyon RC, Pickering J, et al. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest. 1998;102:538–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Issa R, Williams E, Trim N, et al. Apoptosis of hepatic stellate cells: involvement in resolution of biliary fibrosis and regulation by soluble growth factors. Gut. 2001;48:548–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Tharaux PL, Chatziantoniou C, Fakhouri F, Dussaule JC. Angiotensin II activates collagen I gene through a mechanism involving the MAP/ER kinase pathway. Hypertension. 2000;36:330–336.

    Article  CAS  PubMed  Google Scholar 

  138. Marra F, Efsen E, Romanelli RG, et al. Ligands of peroxisome proliferator-activated receptor gamma modulate profibrogenic and proinflammatory actions in hepatic stellate cells. Gastroenterology. 2000;119:466–478.

    Article  CAS  PubMed  Google Scholar 

  139. Yu J, Zhang S, Chu ES, et al. Peroxisome proliferator-activated receptors gamma reverses hepatic nutritional fibrosis in mice and suppresses activation of hepatic stellate cells in vitro. Int J Biochem Cell Biol. 2010;42:948–957.

    Article  CAS  PubMed  Google Scholar 

  140. Hezode C, Roudot-Thoraval F, Nguyen S, et al. Daily cannabis smoking as a risk factor for progression of fibrosis in chronic hepatitis C. Hepatology. 2005;42:63–71.

    Article  CAS  PubMed  Google Scholar 

  141. Julien B, Grenard P, Teixeira-Clerc F, et al. Antifibrogenic role of the cannabinoid receptor CB2 in the liver. Gastroenterology. 2005;128:742–755.

    Article  CAS  PubMed  Google Scholar 

  142. Murphy G. Tissue inhibitors of metalloproteinases. Genome Biol. 2011;12:233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Benyon RC, Iredale JP, Goddard S, Winwood PJ, Arthur MJ. Expression of tissue inhibitor of metalloproteinases 1 and 2 is increased in fibrotic human liver. Gastroenterology. 1996;110:821–831.

    Article  CAS  PubMed  Google Scholar 

  144. Desmouliere A, Darby I, Costa AM, et al. Extracellular matrix deposition, lysyl oxidase expression, and myofibroblastic differentiation during the initial stages of cholestatic fibrosis in the rat. Lab Invest. 1997;76:765–778.

    CAS  PubMed  Google Scholar 

  145. Arthur MJ, Fibrogenesis II. Metalloproteinases and their inhibitors in liver fibrosis. Am J Physiol Gastrointest Liver Physiol. 2000;279:G245–G249.

    CAS  PubMed  Google Scholar 

  146. Murphy FR, Issa R, Zhou X, et al. Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition: implications for reversibility of liver fibrosis. J Biol Chem. 2002;277:11069–11076.

    Article  CAS  PubMed  Google Scholar 

  147. Grau-Bove X, Ruiz-Trillo I, Rodriguez-Pascual F. Origin and evolution of lysyl oxidases. Sci Rep. 2015;5:10568.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Issa R, Zhou X, Constandinou CM, et al. Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution associated with matrix cross-linking. Gastroenterology. 2004;126:1795–1808.

    Article  CAS  PubMed  Google Scholar 

  149. Barry-Hamilton V, Spangler R, Marshall D, et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med. 2010;16:1009–1017.

    Article  CAS  PubMed  Google Scholar 

  150. Parrelli JM, Meisler N, Cutroneo KR. Identification of a glucocorticoid response element in the human transforming growth factor beta 1 gene promoter. Int J Biochem Cell Biol. 1998;30:623–627.

    Article  CAS  PubMed  Google Scholar 

  151. Shukla A, Meisler N, Cutroneo KR. Perspective article: transforming growth factor-beta: crossroad of glucocorticoid and bleomycin regulation of collagen synthesis in lung fibroblasts. Wound Repair Regen. 1999;7:133–140.

    Article  CAS  PubMed  Google Scholar 

  152. Centrella M, McCarthy TL, Canalis E. Glucocorticoid regulation of transforming growth factor beta 1 activity and binding in osteoblast-enriched cultures from fetal rat bone. Mol Cell Biol. 1991;11:4490–4496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Bolkenius U, Hahn D, Gressner AM, et al. Glucocorticoids decrease the bioavailability of TGF-beta which leads to a reduced TGF-beta signaling in hepatic stellate cells. Biochem Biophys Res Commun. 2004;325:1264–1270.

    Article  CAS  PubMed  Google Scholar 

  154. Czaja AJ. Drug choices in autoimmune hepatitis: Part A - steroids. Expert Rev Gastroenterol Hepatol. 2012;6:603–615.

    Article  CAS  PubMed  Google Scholar 

  155. Almawi WY, Beyhum HN, Rahme AA, Rieder MJ. Regulation of cytokine and cytokine receptor expression by glucocorticoids. J Leukoc Biol. 1996;60:563–572.

    CAS  PubMed  Google Scholar 

  156. Almawi WY. Molecular mechanisms of glucocorticoid effects. Mod Asp Immunobiol. 2001;2:78–82.

    Google Scholar 

  157. Czock D, Keller F, Rasche FM, Haussler U. Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokinet. 2005;44:61–98.

    Article  CAS  PubMed  Google Scholar 

  158. De Bosscher K, Vanden Berghe W, Haegeman G. Mechanisms of anti-inflammatory action and of immunosuppression by glucocorticoids: negative interference of activated glucocorticoid receptor with transcription factors. J Neuroimmunol. 2000;109:16–22.

    Article  PubMed  Google Scholar 

  159. Migita K, Eguchi K, Kawabe Y, et al. Apoptosis induction in human peripheral blood T lymphocytes by high-dose steroid therapy. Transplantation. 1997;63:583–587.

    Article  CAS  PubMed  Google Scholar 

  160. Di Martino V, Weil D, Cervoni JP, Thevenot T. New prognostic markers in liver cirrhosis. World J Hepatol. 2015;7:1244–1250.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Kim SG, Kim YM, Choi JY, et al. Oltipraz therapy in patients with liver fibrosis or cirrhosis: a randomized, double-blind, placebo-controlled phase II trial. J Pharm Pharmacol. 2011;63:627–635.

    Article  CAS  PubMed  Google Scholar 

  162. Bowlus CL, Patel K, Guha IH, et al. Validation of serum fibrosis panels in patients with primary sclerosing cholangitis (PSC) in a randomized trial of Simtuzumab (Abstract). Hepatology. 2015;62:519A.

    Google Scholar 

  163. Li YS, Ni SY, Meng Y, et al. Angiotensin II facilitates fibrogenic effect of TGF-beta1 through enhancing the down-regulation of BAMBI caused by LPS: a new pro-fibrotic mechanism of angiotensin II. PLoS One. 2013;8:e76289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Efe C, Cengiz M, Kahramanoglu-Aksoy E, et al. Angiotensin-converting enzyme for noninvasive assessment of liver fibrosis in autoimmune hepatitis. Eur J Gastroenterol Hepatol. 2015;27:649–654.

    CAS  PubMed  Google Scholar 

  165. Turhan NK, Ilikhan SU, Hamamcioglu AC, et al. Angiotensin-converting enzyme gene polymorphism (insertion/deletion) and liver fibrosis in Turkish patients from the western Black Sea region, Turkey. Genet Mol Res. 2015;14:17079–17090.

    Article  CAS  PubMed  Google Scholar 

  166. Poynard T, Imbert-Bismut F, Ratziu V, et al. Biochemical markers of liver fibrosis in patients infected by hepatitis C virus: longitudinal validation in a randomized trial. J Viral Hepat. 2002;9:128–133.

    Article  CAS  PubMed  Google Scholar 

  167. Wai CT, Greenson JK, Fontana RJ, et al. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology. 2003;38:518–526.

    Article  PubMed  Google Scholar 

  168. Angulo P, Bugianesi E, Bjornsson ES, et al. Simple noninvasive systems predict long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology. 2013;145:782–789.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Sterling RK, Lissen E, Clumeck N, et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology. 2006;43:1317–1325.

    Article  CAS  PubMed  Google Scholar 

  170. Vallet-Pichard A, Mallet V, Nalpas B, et al. FIB-4: an inexpensive and accurate marker of fibrosis in HCV infection. Comparison with liver biopsy and fibrotest. Hepatology. 2007;46:32–36.

    Article  CAS  PubMed  Google Scholar 

  171. Mallet V, Dhalluin-Venier V, Roussin C, et al. The accuracy of the FIB-4 index for the diagnosis of mild fibrosis in chronic hepatitis B. Aliment Pharmacol Ther. 2009;29:409–415.

    Article  CAS  PubMed  Google Scholar 

  172. Shah AG, Lydecker A, Murray K, et al. Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2009;7:1104–1112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Guha IN, Parkes J, Roderick P, et al. Noninvasive markers of fibrosis in nonalcoholic fatty liver disease: validating the European Liver Fibrosis Panel and exploring simple markers. Hepatology. 2008;47:455–460.

    Article  PubMed  Google Scholar 

  174. Parkes J, Roderick P, Harris S, et al. Enhanced liver fibrosis test can predict clinical outcomes in patients with chronic liver disease. Gut. 2010;59:1245–1251.

    Article  CAS  PubMed  Google Scholar 

  175. Parkes J, Guha IN, Roderick P, et al. Enhanced Liver Fibrosis (ELF) test accurately identifies liver fibrosis in patients with chronic hepatitis C. J Viral Hepat. 2011;18:23–31.

    Article  CAS  PubMed  Google Scholar 

  176. Poynard T, Morra R, Ingiliz P, et al. Biomarkers of liver fibrosis. Adv Clin Chem. 2008;46:131–160.

    Article  CAS  PubMed  Google Scholar 

  177. Poynard T, Ngo Y, Munteanu M, Thabut D, Ratziu V. Noninvasive markers of hepatic fibrosis in chronic hepatitis B. Curr Hepat Rep. 2011;10:87–97.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Poynard T, de Ledinghen V, Zarski JP, et al. FibroTest and Fibroscan performances revisited in patients with chronic hepatitis C. Impact of the spectrum effect and the applicability rate. Clin Res Hepatol Gastroenterol. 2011;35:720–730.

    Article  PubMed  Google Scholar 

  179. Poynard T, de Ledinghen V, Zarski JP, et al. Relative performances of FibroTest, Fibroscan, and biopsy for the assessment of the stage of liver fibrosis in patients with chronic hepatitis C: a step toward the truth in the absence of a gold standard. J Hepatol. 2012;56:541–548.

    Article  PubMed  Google Scholar 

  180. Poynard T, Ngo Y, Perazzo H, et al. Prognostic value of liver fibrosis biomarkers: a meta-analysis. Gastroenterol Hepatol (NY). 2011;7:445–454.

    Google Scholar 

  181. Tapper EB, Castera L, Afdhal NH. FibroScan (vibration-controlled transient elastography): where does it stand in the united states practice. Clin Gastroenterol Hepatol. 2015;13:27–36.

    Article  PubMed  Google Scholar 

  182. Boursier J, Zarski JP, de Ledinghen V, et al. Determination of reliability criteria for liver stiffness evaluation by transient elastography. Hepatology. 2013;57:1182–1191.

    Article  PubMed  Google Scholar 

  183. Talwalkar JA, Kurtz DM, Schoenleber SJ, West CP, Montori VM. Ultrasound-based transient elastography for the detection of hepatic fibrosis: systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2007;5:1214–1220.

    Article  PubMed  Google Scholar 

  184. Friedrich-Rust M, Ong MF, Martens S, et al. Performance of transient elastography for the staging of liver fibrosis: a meta-analysis. Gastroenterology. 2008;134:960–974.

    Article  PubMed  Google Scholar 

  185. Stebbing J, Farouk L, Panos G, et al. A meta-analysis of transient elastography for the detection of hepatic fibrosis. J Clin Gastroenterol. 2010;44:214–219.

    Article  PubMed  Google Scholar 

  186. Tsochatzis EA, Gurusamy KS, Ntaoula S, et al. Elastography for the diagnosis of severity of fibrosis in chronic liver disease: a meta-analysis of diagnostic accuracy. J Hepatol. 2011;54:650–659.

    Article  CAS  PubMed  Google Scholar 

  187. Singh S, Fujii LL, Murad MH, et al. Liver stiffness is associated with risk of decompensation, liver cancer, and death in patients with chronic liver diseases: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2013;11:1573–1584.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Sagir A, Erhardt A, Schmitt M, Haussinger D. Transient elastography is unreliable for detection of cirrhosis in patients with acute liver damage. Hepatology. 2008;47:592–595.

    Article  CAS  PubMed  Google Scholar 

  189. Chan HL, Wong GL, Choi PC, et al. Alanine aminotransferase-based algorithms of liver stiffness measurement by transient elastography (Fibroscan) for liver fibrosis in chronic hepatitis B. J Viral Hepat. 2009;16:36–44.

    Article  PubMed  Google Scholar 

  190. Kim SU, do Kim Y, Park JY, et al. How can we enhance the performance of liver stiffness measurement using FibroScan in diagnosing liver cirrhosis in patients with chronic hepatitis B? J Clin Gastroenterol. 2010;44:66–71.

    Article  PubMed  Google Scholar 

  191. Crespo G, Castro-Narro G, Garcia-Juarez I, et al. Usefulness of liver stiffness measurement during acute cellular rejection in liver transplantation. Liver Transpl. 2016;22:298–304.

    Article  PubMed  Google Scholar 

  192. Romanque P, Stickel F, Dufour JF. Disproportionally high results of transient elastography in patients with autoimmune hepatitis. Liver Int. 2008;28:1177–1178.

    Article  PubMed  Google Scholar 

  193. Sporea I, Bota S, Jurchis A, et al. Acoustic radiation force impulse and supersonic shear imaging versus transient elastography for liver fibrosis assessment. Ultrasound Med Biol. 2013;39:1933–1941.

    Article  PubMed  Google Scholar 

  194. Czaja AJ. Safety issues in the management of autoimmune hepatitis. Expert Opin Drug Saf. 2008;7:319–333.

    Article  CAS  PubMed  Google Scholar 

  195. Friedrich-Rust M, Wunder K, Kriener S, et al. Liver fibrosis in viral hepatitis: noninvasive assessment with acoustic radiation force impulse imaging versus transient elastography. Radiology. 2009;252:595–604.

    Article  PubMed  Google Scholar 

  196. Sporea I, Sirli R, Popescu A, Danila M. Acoustic Radiation Force Impulse (ARFI)—a new modality for the evaluation of liver fibrosis. Med Ultrason. 2010;12:26–31.

    PubMed  Google Scholar 

  197. Bota S, Herkner H, Sporea I, et al. Meta-analysis: ARFI elastography versus transient elastography for the evaluation of liver fibrosis. Liver Int. 2013;33:1138–1147.

    Article  PubMed  Google Scholar 

  198. Righi S, Fiorini E, De Molo C, et al. ARFI elastography in patients with chronic autoimmune liver diseases: a preliminary study. J Ultrasound. 2012;15:226–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Efe C, Gungoren MS, Ozaslan E, Akbiyik F, Kav T. Acoustic Radiation Force Impulse (ARFI) for fibrosis staging in patients with autoimmune hepatitis. Hepatogastroenterology. 2015;62:670–672.

    PubMed  Google Scholar 

  200. Bota S, Sporea I, Peck-Radosavljevic M, et al. The influence of aminotransferase levels on liver stiffness assessed by Acoustic Radiation Force Impulse Elastography: a retrospective multicentre study. Dig Liver Dis. 2013;45:762–768.

    Article  CAS  PubMed  Google Scholar 

  201. Bota S, Sporea I, Sirli R, Popescu A, Jurchis A. Factors which influence the accuracy of acoustic radiation force impulse (ARFI) elastography for the diagnosis of liver fibrosis in patients with chronic hepatitis C. Ultrasound Med Biol. 2013;39:407–412.

    Article  PubMed  Google Scholar 

  202. Ebinuma H, Saito H, Komuta M, et al. Evaluation of liver fibrosis by transient elastography using acoustic radiation force impulse: comparison with Fibroscan((R)). J Gastroenterol. 2011;46:1238–1248.

    Article  PubMed  Google Scholar 

  203. Colombo S, Buonocore M, Del Poggio A, et al. Head-to-head comparison of transient elastography (TE), real-time tissue elastography (RTE), and acoustic radiation force impulse (ARFI) imaging in the diagnosis of liver fibrosis. J Gastroenterol. 2012;47:461–469.

    Article  PubMed  Google Scholar 

  204. Huwart L, Sempoux C, Vicaut E, et al. Magnetic resonance elastography for the noninvasive staging of liver fibrosis. Gastroenterology. 2008;135:32–40.

    Article  PubMed  Google Scholar 

  205. Venkatesh SK, Yin M, Ehman RL. Magnetic resonance elastography of liver: technique, analysis, and clinical applications. J Magn Reson Imaging. 2013;37:544–555.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Venkatesh SK, Yin M, Ehman RL. Magnetic resonance elastography of liver: clinical applications. J Comput Assist Tomogr. 2013;37:887–896.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Talwalkar JA, Yin M, Venkatesh S, et al. Feasibility of in vivo MR elastographic splenic stiffness measurements in the assessment of portal hypertension. Am J Roentgenol. 2009;193:122–127.

    Article  Google Scholar 

  208. Yin M, Talwalkar JA, Glaser KJ, et al. Assessment of hepatic fibrosis with magnetic resonance elastography. Clin Gastroenterol Hepatol. 2007;5:1207–1213 e1202.

  209. Kim BH, Lee JM, Lee YJ, et al. MR elastography for noninvasive assessment of hepatic fibrosis: experience from a tertiary center in Asia. J Magn Reson Imaging. 2011;34:1110–1116.

    Article  PubMed  Google Scholar 

  210. Venkatesh SK, Ehman RL. Magnetic resonance elastography of liver. Magn Reson Imaging Clin N Am. 2014;22:433–446.

    Article  PubMed  Google Scholar 

  211. Loomba R, Wolfson T, Ang B, et al. Magnetic resonance elastography predicts advanced fibrosis in patients with nonalcoholic fatty liver disease: a prospective study. Hepatology. 2014;60:1920–1928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Cui J, Heba E, Hernandez C, et al. Magnetic resonance elastography is superior to acoustic radiation force impulse for the diagnosis of fibrosis in patients with biopsy-proven nonalcoholic fatty liver disease: a prospective study. Hepatology. 2016;63:453–461.

    Article  PubMed  Google Scholar 

  213. Imajo K, Kessoku T, Honda Y, et al. Magnetic resonance imaging more accurately classifies steatosis and fibrosis in patients with nonalcoholic fatty liver disease than transient elastography. Gastroenterology. 2016;150:626–637 e627.

  214. Rockey DC. Translating an understanding of the pathogenesis of hepatic fibrosis to novel therapies. Clin Gastroenterol Hepatol. 2013;11:224–231 e225.

  215. Friedman SL, Sheppard D, Duffield JS, Violette S. Therapy for fibrotic diseases: nearing the starting line. Sci Transl Med. 2013;5:167sr161.

    Article  CAS  Google Scholar 

  216. Galicia-Moreno M, Gutierrez-Reyes G. The role of oxidative stress in the development of alcoholic liver disease. Rev Gastroenterol Mex. 2014;79:135–144.

    CAS  PubMed  Google Scholar 

  217. Louvet A, Mathurin P. Alcoholic liver disease: mechanisms of injury and targeted treatment. Nat Rev Gastroenterol Hepatol. 2015;12:231–242.

    Article  PubMed  Google Scholar 

  218. Koek GH, Liedorp PR, Bast A. The role of oxidative stress in non-alcoholic steatohepatitis. Clin Chim Acta. 2011;412:1297–1305.

    Article  CAS  PubMed  Google Scholar 

  219. Sumida Y, Niki E, Naito Y, Yoshikawa T. Involvement of free radicals and oxidative stress in NAFLD/NASH. Free Radic Res. 2013;47:869–880.

    Article  CAS  PubMed  Google Scholar 

  220. Liu W, Baker SS, Baker RD, Zhu L. Antioxidant mechanisms in nonalcoholic fatty liver disease. Curr Drug Targets. 2015;16:1301–1314.

    Article  CAS  PubMed  Google Scholar 

  221. Ciftci A, Yilmaz B, Koklu S, et al. Serum levels of nitrate, nitrite and advanced oxidation protein products (AOPP) in patients with nonalcoholic fatty liver disease. Acta Gastroenterol Belg. 2015;78:201–205.

    CAS  PubMed  Google Scholar 

  222. Choi J, Ou JH. Mechanisms of liver injury. III. Oxidative stress in the pathogenesis of hepatitis C virus. Am J Physiol Gastrointest Liver Physiol. 2006;290:G847–G851.

    Article  CAS  PubMed  Google Scholar 

  223. Choi J, Corder NL, Koduru B, Wang Y. Oxidative stress and hepatic Nox proteins in chronic hepatitis C and hepatocellular carcinoma. Free Radic Biol Med. 2014;72:267–284.

    Article  CAS  PubMed  Google Scholar 

  224. Pemberton PW, Aboutwerat A, Smith A, et al. Oxidant stress in type I autoimmune hepatitis: the link between necroinflammation and fibrogenesis? Biochim Biophys Acta. 2004;1689:182–189.

    Article  CAS  PubMed  Google Scholar 

  225. Lapierre P, Djilali-Saiah I, Vitozzi S, Alvarez F. A murine model of type 2 autoimmune hepatitis: xenoimmunization with human antigens. Hepatology. 2004;39:1066–1074.

    Article  CAS  PubMed  Google Scholar 

  226. Holdener M, Hintermann E, Bayer M, et al. Breaking tolerance to the natural human liver autoantigen cytochrome P450 2D6 by virus infection. J Exp Med. 2008;205:1409–1422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Czaja AJ. Animal models of autoimmune hepatitis. Expert Rev Gastroenterol Hepatol. 2010;4:429–443.

    Article  CAS  PubMed  Google Scholar 

  228. Mato JM, Camara J, Fernandez de Paz J, et al. S-adenosylmethionine in alcoholic liver cirrhosis: a randomized, placebo-controlled, double-blind, multicenter clinical trial. J Hepatol. 1999;30:1081–1089.

    Article  CAS  PubMed  Google Scholar 

  229. Feld JJ, Modi AA, El-Diwany R, et al. S-adenosyl methionine improves early viral responses and interferon-stimulated gene induction in hepatitis C nonresponders. Gastroenterology. 2011;140:830–839.

    Article  CAS  PubMed  Google Scholar 

  230. Harrison SA, Torgerson S, Hayashi P, Ward J, Schenker S. Vitamin E and vitamin C treatment improves fibrosis in patients with nonalcoholic steatohepatitis. Am J Gastroenterol. 2003;98:2485–2490.

    Article  CAS  PubMed  Google Scholar 

  231. Sanyal AJ, Chalasani N, Kowdley KV, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010;362:1675–1685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Ronis MJ, Butura A, Sampey BP, et al. Effects of N-acetylcysteine on ethanol-induced hepatotoxicity in rats fed via total enteral nutrition. Free Radic Biol Med. 2005;39:619–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Phillips M, Curtis H, Portmann B, et al. Antioxidants versus corticosteroids in the treatment of severe alcoholic hepatitis–a randomised clinical trial. J Hepatol. 2006;44:784–790.

    Article  CAS  PubMed  Google Scholar 

  234. Stewart S, Prince M, Bassendine M, et al. A randomized trial of antioxidant therapy alone or with corticosteroids in acute alcoholic hepatitis. J Hepatol. 2007;47:277–283.

    Article  CAS  PubMed  Google Scholar 

  235. Nguyen-Khac E, Thevenot T, Piquet MA, et al. Glucocorticoids plus N-acetylcysteine in severe alcoholic hepatitis. N Engl J Med. 2011;365:1781–1789.

    Article  CAS  PubMed  Google Scholar 

  236. Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA. 2007;297:842–857.

    Article  CAS  PubMed  Google Scholar 

  237. Bjelakovic G, Gluud LL, Nikolova D, et al. Meta-analysis: antioxidant supplements for liver diseases—the Cochrane Hepato-Biliary Group. Aliment Pharmacol Ther. 2010;32:356–367.

    Article  CAS  PubMed  Google Scholar 

  238. Brown DI, Griendling KK. Nox proteins in signal transduction. Free Radic Biol Med. 2009;47:1239–1253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Jarman ER, Khambata VS, Cope C, et al. An inhibitor of NADPH oxidase-4 attenuates established pulmonary fibrosis in a rodent disease model. Am J Respir Cell Mol Biol. 2014;50:158–169.

    PubMed  Google Scholar 

  240. Jiang JX, Chen X, Serizawa N, et al. Liver fibrosis and hepatocyte apoptosis are attenuated by GKT137831, a novel NOX4/NOX1 inhibitor in vivo. Free Radic Biol Med. 2012;53:289–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Sturrock A, Cahill B, Norman K, et al. Transforming growth factor-beta1 induces Nox4 NAD(P)H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2006;290:L661–L673.

    Article  CAS  PubMed  Google Scholar 

  242. Carmona-Cuenca I, Roncero C, Sancho P, et al. Upregulation of the NADPH oxidase NOX4 by TGF-beta in hepatocytes is required for its pro-apoptotic activity. J Hepatol. 2008;49:965–976.

    Article  CAS  PubMed  Google Scholar 

  243. Laping NJ, Grygielko E, Mathur A, et al. Inhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542. Mol Pharmacol. 2002;62:58–64.

    Article  CAS  PubMed  Google Scholar 

  244. Roberts AB, Tian F, Byfield SD, et al. Smad3 is key to TGF-beta-mediated epithelial-to-mesenchymal transition, fibrosis, tumor suppression and metastasis. Cytokine Growth Factor Rev. 2006;17:19–27.

    Article  CAS  PubMed  Google Scholar 

  245. Babu BR, Griffith OW. Design of isoform-selective inhibitors of nitric oxide synthase. Curr Opin Chem Biol. 1998;2:491–500.

    Article  CAS  PubMed  Google Scholar 

  246. Tinker AC, Wallace AV. Selective inhibitors of inducible nitric oxide synthase: potential agents for the treatment of inflammatory diseases? Curr Top Med Chem. 2006;6:77–92.

    Article  CAS  PubMed  Google Scholar 

  247. Garcin ED, Arvai AS, Rosenfeld RJ, et al. Anchored plasticity opens doors for selective inhibitor design in nitric oxide synthase. Nat Chem Biol. 2008;4:700–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Ji H, Li H, Martasek P, et al. Discovery of highly potent and selective inhibitors of neuronal nitric oxide synthase by fragment hopping. J Med Chem. 2009;52:779–797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Vitecek J, Lojek A, Valacchi G, Kubala L. Arginine-based inhibitors of nitric oxide synthase: therapeutic potential and challenges. Mediators Inflamm. 2012;2012:318087.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  250. Kim J, Cha YN, Surh YJ. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat Res. 2010;690:12–23.

    Article  CAS  PubMed  Google Scholar 

  251. Shimozono R, Asaoka Y, Yoshizawa Y, et al. Nrf2 activators attenuate the progression of nonalcoholic steatohepatitis-related fibrosis in a dietary rat model. Mol Pharmacol. 2013;84:62–70.

    Article  CAS  PubMed  Google Scholar 

  252. Iida K, Itoh K, Kumagai Y, et al. Nrf2 is essential for the chemopreventive efficacy of oltipraz against urinary bladder carcinogenesis. Cancer Res. 2004;64:6424–6431.

    Article  CAS  PubMed  Google Scholar 

  253. Kang KW, Kim YG, Cho MK, et al. Oltipraz regenerates cirrhotic liver through CCAAT/enhancer binding protein-mediated stellate cell inactivation. FASEB J. 2002;16:1988–1990.

    CAS  PubMed  Google Scholar 

  254. Brooks SC 3rd, Brooks JS, Lee WH, Lee MG, Kim SG. Therapeutic potential of dithiolethiones for hepatic diseases. Pharmacol Ther. 2009;124:31–43.

    Article  CAS  PubMed  Google Scholar 

  255. Jia JD, Bauer M, Cho JJ, et al. Antifibrotic effect of silymarin in rat secondary biliary fibrosis is mediated by downregulation of procollagen alpha1(I) and TIMP-1. J Hepatol. 2001;35:392–398.

    Article  CAS  PubMed  Google Scholar 

  256. Ferenci P. Silymarin in the treatment of liver diseases: what is the clinical evidence? Clin Liver Dis. 2016;7:8–10.

    Article  Google Scholar 

  257. Boigk G, Stroedter L, Herbst H, et al. Silymarin retards collagen accumulation in early and advanced biliary fibrosis secondary to complete bile duct obliteration in rats. Hepatology. 1997;26:643–649.

    Article  CAS  PubMed  Google Scholar 

  258. Dehmlow C, Erhard J, de Groot H. Inhibition of Kupffer cell functions as an explanation for the hepatoprotective properties of silibinin. Hepatology. 1996;23:749–754.

    Article  CAS  PubMed  Google Scholar 

  259. Polyak SJ, Morishima C, Shuhart MC, et al. Inhibition of T-cell inflammatory cytokines, hepatocyte NF-kappaB signaling, and HCV infection by standardized Silymarin. Gastroenterology. 2007;132:1925–1936.

    Article  CAS  PubMed  Google Scholar 

  260. Polyak SJ, Morishima C, Lohmann V, et al. Identification of hepatoprotective flavonolignans from silymarin. Proc Natl Acad Sci USA. 2010;107:5995–5999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Ferenci P, Dragosics B, Dittrich H, et al. Randomized controlled trial of silymarin treatment in patients with cirrhosis of the liver. J Hepatol. 1989;9:105–113.

    Article  CAS  PubMed  Google Scholar 

  262. Loguercio C, Andreone P, Brisc C, et al. Silybin combined with phosphatidylcholine and vitamin E in patients with nonalcoholic fatty liver disease: a randomized controlled trial. Free Radic Biol Med. 2012;52:1658–1665.

    Article  CAS  PubMed  Google Scholar 

  263. Pares A, Planas R, Torres M, et al. Effects of silymarin in alcoholic patients with cirrhosis of the liver: results of a controlled, double-blind, randomized and multicenter trial. J Hepatol. 1998;28:615–621.

    Article  CAS  PubMed  Google Scholar 

  264. Lucena MI, Andrade RJ, de la Cruz JP, et al. Effects of silymarin MZ-80 on oxidative stress in patients with alcoholic cirrhosis. Results of a randomized, double-blind, placebo-controlled clinical study. Int J Clin Pharmacol Ther. 2002;40:2–8.

    Article  CAS  PubMed  Google Scholar 

  265. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;115:209–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Jonsson JR, Clouston AD, Ando Y, et al. Angiotensin-converting enzyme inhibition attenuates the progression of rat hepatic fibrosis. Gastroenterology. 2001;121:148–155.

    Article  CAS  PubMed  Google Scholar 

  267. Kurikawa N, Suga M, Kuroda S, Yamada K, Ishikawa H. An angiotensin II type 1 receptor antagonist, olmesartan medoxomil, improves experimental liver fibrosis by suppression of proliferation and collagen synthesis in activated hepatic stellate cells. Br J Pharmacol. 2003;139:1085–1094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Colmenero J, Bataller R, Sancho-Bru P, et al. Effects of losartan on hepatic expression of nonphagocytic NADPH oxidase and fibrogenic genes in patients with chronic hepatitis C. Am J Physiol Gastrointest Liver Physiol. 2009;297:G726–G734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Cai SM, Yang RQ, Li Y, et al. Angiotensin-(1–7) Improves liver fibrosis by regulating the NLRP3 inflammasome via redox balance modulation. Antioxid Redox Signal. 2016;24:795–812.

    Article  CAS  PubMed  Google Scholar 

  270. Moreno M, Gonzalo T, Kok RJ, et al. Reduction of advanced liver fibrosis by short-term targeted delivery of an angiotensin receptor blocker to hepatic stellate cells in rats. Hepatology. 2010;51:942–952.

    Article  CAS  PubMed  Google Scholar 

  271. Corey KE, Shah N, Misdraji J, et al. The effect of angiotensin-blocking agents on liver fibrosis in patients with hepatitis C. Liver Int. 2009;29:748–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Cholongitas E, Vibhakorn S, Lodato F, Burroughs AK. Angiotensin II antagonists in patients with recurrent hepatitis C virus infection after liver transplantation. Liver Int. 2010;30:334–335.

    Article  PubMed  Google Scholar 

  273. Abu Dayyeh BK, Yang M, Dienstag JL, Chung RT. The effects of angiotensin blocking agents on the progression of liver fibrosis in the HALT-C Trial cohort. Dig Dis Sci. 2011;56:564–568.

    Article  CAS  PubMed  Google Scholar 

  274. Tahal AH, Feron-Rigodon M, Madere J, Subramanian GM, Bornstein JD. Simtuzumab, an antifibrotic monoclonal antibody against lysyl-oxidase-like 2 (LOXL2) enzyme, appears safe and well tolerated in patients with liver disease of diverse etiology (Abstract). J Hepatol. 2013;53:S532.

    Article  Google Scholar 

  275. Van Bergen T, Marshall D, Van de Veire S, et al. The role of LOX and LOXL2 in scar formation after glaucoma surgery. Invest Ophthalmol Vis Sci. 2013;54:5788–5796.

    Article  PubMed  CAS  Google Scholar 

  276. Mehal WZ, Iredale J, Friedman SL. Scraping fibrosis: expressway to the core of fibrosis. Nat Med. 2011;17:552–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Halilbasic E, Fuchs C, Hofer H, Paumgartner G, Trauner M. Therapy of primary sclerosing cholangitis—today and tomorrow. Dig Dis. 2015;33:149–163.

    Article  PubMed  Google Scholar 

  278. Menon KV, Stadheim L, Kamath PS, et al. A pilot study of the safety and tolerability of etanercept in patients with alcoholic hepatitis. Am J Gastroenterol. 2004;99:255–260.

    Article  CAS  PubMed  Google Scholar 

  279. Boetticher NC, Peine CJ, Kwo P, et al. A randomized, double-blinded, placebo-controlled multicenter trial of etanercept in the treatment of alcoholic hepatitis. Gastroenterology. 2008;135:1953–1960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Weiler-Normann C, Schramm C, Quaas A, et al. Infliximab as a rescue treatment in difficult-to-treat autoimmune hepatitis. J Hepatol. 2013;58:529–534.

    Article  CAS  PubMed  Google Scholar 

  281. Akriviadis E, Botla R, Briggs W, et al. Pentoxifylline improves short-term survival in severe acute alcoholic hepatitis: a double-blind, placebo-controlled trial. Gastroenterology. 2000;119:1637–1648.

    Article  CAS  PubMed  Google Scholar 

  282. Marques LJ, Zheng L, Poulakis N, Guzman J, Costabel U. Pentoxifylline inhibits TNF-alpha production from human alveolar macrophages. Am J Respir Crit Care Med. 1999;159:508–511.

    Article  CAS  PubMed  Google Scholar 

  283. Deree J, Martins JO, Melbostad H, Loomis WH, Coimbra R. Insights into the regulation of TNF-alpha production in human mononuclear cells: the effects of non-specific phosphodiesterase inhibition. Clinics (Sao Paulo). 2008;63:321–328.

    Article  Google Scholar 

  284. Wang Y, Gao J, Zhang D, et al. New insights into the antifibrotic effects of sorafenib on hepatic stellate cells and liver fibrosis. J Hepatol. 2010;53:132–144.

    Article  CAS  PubMed  Google Scholar 

  285. Liu Y, Wang Z, Kwong SQ, et al. Inhibition of PDGF, TGF-beta, and Abl signaling and reduction of liver fibrosis by the small molecule Bcr-Abl tyrosine kinase antagonist Nilotinib. J Hepatol. 2011;55:612–625.

    Article  CAS  PubMed  Google Scholar 

  286. Gelfand EV, Cannon CP. Rimonabant: a selective blocker of the cannabinoid CB1 receptors for the management of obesity, smoking cessation and cardiometabolic risk factors. Expert Opin Investig Drugs. 2006;15:307–315.

    Article  CAS  PubMed  Google Scholar 

  287. Galli A, Crabb DW, Ceni E, et al. Antidiabetic thiazolidinediones inhibit collagen synthesis and hepatic stellate cell activation in vivo and in vitro. Gastroenterology. 2002;122:1924–1940.

    Article  CAS  PubMed  Google Scholar 

  288. Pilz S, Putz-Bankuti C, Gaksch M, et al. Effects of vitamin D supplementation on serum 25-hydroxyvitamin D concentrations in cirrhotic patients: a randomized controlled trial. Nutrients. 2016. doi:10.3390/nu8050278.

    PubMed  PubMed Central  Google Scholar 

  289. Baba M, Takashima K, Miyake H, et al. TAK-652 inhibits CCR5-mediated human immunodeficiency virus type 1 infection in vitro and has favorable pharmacokinetics in humans. Antimicrob Agents Chemother. 2005;49:4584–4591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Thompson M, Chang W, Jenkins H, et al. Improvements in APRI and FIB-4 fibrosis scores correlate with decreases in sCD14 in HIV-1 infected adults receiving cenicriviroc over 48 weeks (Abstract). Hepatology. 2014;60:424A.

    Article  Google Scholar 

  291. McHutchison J, Goodman Z, Patel K, et al. Farglitazar lacks antifibrotic activity in patients with chronic hepatitis C infection. Gastroenterology. 2010;138:1365–1373.

    Article  PubMed  Google Scholar 

  292. Zein CO, Yerian LM, Gogate P, et al. Pentoxifylline improves nonalcoholic steatohepatitis: a randomized placebo-controlled trial. Hepatology. 2011;54:1610–1619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Van Wagner LB, Koppe SW, Brunt EM, et al. Pentoxifylline for the treatment of non-alcoholic steatohepatitis: a randomized controlled trial. Ann Hepatol. 2011;10:277–286.

    PubMed  Google Scholar 

  294. Ghabril M, Bonkovsky HL, Kum C, et al. Liver injury from tumor necrosis factor-alpha antagonists: analysis of thirty-four cases. Clin Gastroenterol Hepatol. 2013;11:558–564 e553.

  295. Hiatt WR, Kaul S, Smith RJ. The cardiovascular safety of diabetes drugs—insights from the rosiglitazone experience. N Engl J Med. 2013;369:1285–1287.

    Article  CAS  PubMed  Google Scholar 

  296. Bjornsson ES, Gunnarsson BI, Grondal G, et al. Risk of drug-induced liver injury from tumor necrosis factor antagonists. Clin Gastroenterol Hepatol. 2015;13:602–608.

    Article  CAS  PubMed  Google Scholar 

  297. Czaja AJ, Rakela J, Ludwig J. Features reflective of early prognosis in corticosteroid-treated severe autoimmune chronic active hepatitis. Gastroenterology. 1988;95:448–453.

    Article  CAS  PubMed  Google Scholar 

  298. Yeoman AD, Westbrook RH, Zen Y, et al. Early predictors of corticosteroid treatment failure in icteric presentations of autoimmune hepatitis. Hepatology. 2011;53:926–934.

    Article  PubMed  Google Scholar 

  299. Selvarajah V, Montano-Loza AJ, Czaja AJ. Systematic review: managing suboptimal treatment responses in autoimmune hepatitis with conventional and nonstandard drugs. Aliment Pharmacol Ther. 2012;36:691–707.

    Article  CAS  PubMed  Google Scholar 

  300. Czaja AJ. Diagnosis and management of autoimmune hepatitis: current status and future directions. Gut Liver. 2016;10:177–203.

    Article  PubMed  PubMed Central  Google Scholar 

  301. Wang XW, Heegaard NH, Orum H. MicroRNAs in liver disease. Gastroenterology. 2012;142:1431–1443.

    Article  CAS  PubMed  Google Scholar 

  302. Li W, Zheng L, Sheng C, et al. Systematic review on the treatment of pentoxifylline in patients with nonalcoholic fatty liver disease. Lipids Health Dis. 2011;10:49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert J. Czaja.

Ethics declarations

Conflict of interest

This review did not receive financial support from a funding agency or institution, and the authors have no conflict of interests to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montano-Loza, A.J., Thandassery, R.B. & Czaja, A.J. Targeting Hepatic Fibrosis in Autoimmune Hepatitis. Dig Dis Sci 61, 3118–3139 (2016). https://doi.org/10.1007/s10620-016-4254-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-016-4254-7

Keywords

Navigation