Skip to main content
Top
Published in: Digestive Diseases and Sciences 10/2019

01-10-2019 | PARADIGM SHIFTS IN PERSPECTIVE

Control of Intestinal Epithelial Proliferation and Differentiation: The Microbiome, Enteroendocrine L Cells, Telocytes, Enteric Nerves, and GLP, Too

Authors: Jonathan D. Kaunitz, Yasutada Akiba

Published in: Digestive Diseases and Sciences | Issue 10/2019

Login to get access

Excerpt

“A story has no beginning or end: arbitrarily one chooses that moment of experience from which to look back or from which to look ahead.”
Graham Greene, The End of the Affair
Literature
1.
go back to reference Mah AT, Kuo CJ. Home sweet home: a Foxl1(+) mesenchymal niche for intestinal stem cells. Cell Mol Gastroenterol Hepatol. 2016;2:116–117.PubMedPubMedCentral Mah AT, Kuo CJ. Home sweet home: a Foxl1(+) mesenchymal niche for intestinal stem cells. Cell Mol Gastroenterol Hepatol. 2016;2:116–117.PubMedPubMedCentral
2.
go back to reference Haegebarth A, Clevers H. Wnt signaling, lgr5, and stem cells in the intestine and skin. Am J Pathol. 2009;174:715–721.PubMedPubMedCentral Haegebarth A, Clevers H. Wnt signaling, lgr5, and stem cells in the intestine and skin. Am J Pathol. 2009;174:715–721.PubMedPubMedCentral
4.
go back to reference Yen TH, Wright NA. The gastrointestinal tract stem cell niche. Stem Cell Rev. 2006;2:203–212.PubMed Yen TH, Wright NA. The gastrointestinal tract stem cell niche. Stem Cell Rev. 2006;2:203–212.PubMed
6.
go back to reference Whitall JDIX. Extensive removals of intestine: report of a case of recovery after resection of ten feet eight inches of the ileum. Ann Surg. 1911;54:669–672.PubMedPubMedCentral Whitall JDIX. Extensive removals of intestine: report of a case of recovery after resection of ten feet eight inches of the ileum. Ann Surg. 1911;54:669–672.PubMedPubMedCentral
7.
go back to reference Althausen TL, Doig RK, Uyeyama K, et al. Digestion and absorption after massive resection of the small intestine. II. Recovery of the absorptive function as shown by intestinal absorption tests in two patients and a consideration of compensatory mechanisms. Gastroenterology. 1950;16:126–139.PubMed Althausen TL, Doig RK, Uyeyama K, et al. Digestion and absorption after massive resection of the small intestine. II. Recovery of the absorptive function as shown by intestinal absorption tests in two patients and a consideration of compensatory mechanisms. Gastroenterology. 1950;16:126–139.PubMed
8.
go back to reference Clatworthy HW Jr, Saleeby R, Lovingood C. Extensive small bowel resection in young dogs; its effect on growth and development; an experimental study. Surgery. 1952;32:341–351.PubMed Clatworthy HW Jr, Saleeby R, Lovingood C. Extensive small bowel resection in young dogs; its effect on growth and development; an experimental study. Surgery. 1952;32:341–351.PubMed
9.
go back to reference Weser E. Intestinal adaptation to small bowel resection. Am J Clin Nutr. 1971;24:133–135.PubMed Weser E. Intestinal adaptation to small bowel resection. Am J Clin Nutr. 1971;24:133–135.PubMed
10.
go back to reference Loran MR, Crocker TT. Population dynamics of intestinal epithelia in the rat two months after partial resection of the ileum. J Cell Biol. 1963;19:285–291.PubMedPubMedCentral Loran MR, Crocker TT. Population dynamics of intestinal epithelia in the rat two months after partial resection of the ileum. J Cell Biol. 1963;19:285–291.PubMedPubMedCentral
11.
go back to reference Sutherland Ead C. Origin and distribution of hyperglycemic-glycogenolytic factor of the pancreas. J Biol Chem. 1948;175:663–674. Sutherland Ead C. Origin and distribution of hyperglycemic-glycogenolytic factor of the pancreas. J Biol Chem. 1948;175:663–674.
12.
go back to reference Makman MH, Sutherland EW. Use of liver adenyl cyclase for assay of glucagon in human gastro-intestinal tract and pancreas. Endocrinology. 1964;75:127–134.PubMed Makman MH, Sutherland EW. Use of liver adenyl cyclase for assay of glucagon in human gastro-intestinal tract and pancreas. Endocrinology. 1964;75:127–134.PubMed
13.
go back to reference Makman MH, Makman RS, Sutherland EW. Presence of a glucagon-like material in blood of man and dog. J Biol Chem. 1958;233:894–899.PubMed Makman MH, Makman RS, Sutherland EW. Presence of a glucagon-like material in blood of man and dog. J Biol Chem. 1958;233:894–899.PubMed
14.
go back to reference Unger RH, Ketterer H, Eisentraut AM. Distribution of immunoassayable glucagon in gastrointestinal tissues. Metabolism. 1966;15:865–867.PubMed Unger RH, Ketterer H, Eisentraut AM. Distribution of immunoassayable glucagon in gastrointestinal tissues. Metabolism. 1966;15:865–867.PubMed
15.
go back to reference Bloom SR, Polak JM. The hormonal pattern of intestinal adaptation. A major role for enteroglucagon. Scand J Gastroenterol Suppl. 1982;74:93–103.PubMed Bloom SR, Polak JM. The hormonal pattern of intestinal adaptation. A major role for enteroglucagon. Scand J Gastroenterol Suppl. 1982;74:93–103.PubMed
16.
go back to reference Gleeson MH, Bloom SR, Polak JM, et al. An endocrine tumour in kidney affecting small bowel structure, motility, and function. Gut. 1970;11:1060.PubMed Gleeson MH, Bloom SR, Polak JM, et al. An endocrine tumour in kidney affecting small bowel structure, motility, and function. Gut. 1970;11:1060.PubMed
17.
go back to reference Dowling RH. Glucagon-like peptide-2 and intestinal adaptation: an historical and clinical perspective. J Nutr. 2003;133:3703–3707.PubMed Dowling RH. Glucagon-like peptide-2 and intestinal adaptation: an historical and clinical perspective. J Nutr. 2003;133:3703–3707.PubMed
18.
go back to reference Orskov C, Holst JJ, Knuhtsen S, et al. Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas. Endocrinology. 1986;119:1467–1475.PubMed Orskov C, Holst JJ, Knuhtsen S, et al. Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas. Endocrinology. 1986;119:1467–1475.PubMed
19.
go back to reference Drucker DJ, Erlich P, Asa SL, et al. Induction of intestinal epithelial proliferation by glucagon-like peptide 2. Proc Natl Acad Sci U S A. 1996;93:7911–7916.PubMedPubMedCentral Drucker DJ, Erlich P, Asa SL, et al. Induction of intestinal epithelial proliferation by glucagon-like peptide 2. Proc Natl Acad Sci U S A. 1996;93:7911–7916.PubMedPubMedCentral
20.
go back to reference Helander HF, Fandriks L. The enteroendocrine “letter cells”—time for a new nomenclature? Scand J Gastroenterol. 2012;47:3–12.PubMed Helander HF, Fandriks L. The enteroendocrine “letter cells”—time for a new nomenclature? Scand J Gastroenterol. 2012;47:3–12.PubMed
21.
go back to reference Addis T. Hypertrophy of the gastro-intestinal tract and high residue diets. Am J Physiol. 1932;99:417–423. Addis T. Hypertrophy of the gastro-intestinal tract and high residue diets. Am J Physiol. 1932;99:417–423.
22.
go back to reference Jacobs LR. Effects of dietary fiber on mucosal growth and cell proliferation in the small intestine of the rat: a comparison of oat bran, pectin, and guar with total fiber deprivation. Am J Clin Nutr. 1983;37:954–960.PubMed Jacobs LR. Effects of dietary fiber on mucosal growth and cell proliferation in the small intestine of the rat: a comparison of oat bran, pectin, and guar with total fiber deprivation. Am J Clin Nutr. 1983;37:954–960.PubMed
23.
24.
go back to reference Sakata T, Von EW. Stimulatory effect of short chain fatty acids on the epithelial cell proliferation in rat large intestine. Comp Biochem Physiol A Comp Physiol. 1983;74:459–462.PubMed Sakata T, Von EW. Stimulatory effect of short chain fatty acids on the epithelial cell proliferation in rat large intestine. Comp Biochem Physiol A Comp Physiol. 1983;74:459–462.PubMed
25.
go back to reference Tonelli F, Dolara P, Batignani G, et al. Effects of short chain fatty acids on mucosal proliferation and inflammation of ileal pouches in patients with ulcerative colitis and familial polyposis. Dis Colon Rectum. 1995;38:974–978.PubMed Tonelli F, Dolara P, Batignani G, et al. Effects of short chain fatty acids on mucosal proliferation and inflammation of ileal pouches in patients with ulcerative colitis and familial polyposis. Dis Colon Rectum. 1995;38:974–978.PubMed
26.
go back to reference Tappenden KA, Albin DM, Bartholome AL, et al. Glucagon-like peptide-2 and short-chain fatty acids: a new twist to an old story. J Nutr. 2003;133:3717–3720.PubMed Tappenden KA, Albin DM, Bartholome AL, et al. Glucagon-like peptide-2 and short-chain fatty acids: a new twist to an old story. J Nutr. 2003;133:3717–3720.PubMed
28.
go back to reference Kaji I, Karaki S, Kuwahara A. Short-chain fatty acid receptor and its contribution to glucagon-like peptide-1 release. Digestion. 2014;89:31–36.PubMed Kaji I, Karaki S, Kuwahara A. Short-chain fatty acid receptor and its contribution to glucagon-like peptide-1 release. Digestion. 2014;89:31–36.PubMed
29.
go back to reference Grobstein C. Inductive epitheliomesenchymal interaction in cultured organ rudiments of the mouse. Science. 1953;118:52–55.PubMed Grobstein C. Inductive epitheliomesenchymal interaction in cultured organ rudiments of the mouse. Science. 1953;118:52–55.PubMed
30.
go back to reference Okada TS. Epithelio-mesenchymal relationships in the regional differentiation of the digestive tract in the amphibian embryo. Wilhelm Roux Arch Entwickl Mech Org. 1960;152:1–21.PubMed Okada TS. Epithelio-mesenchymal relationships in the regional differentiation of the digestive tract in the amphibian embryo. Wilhelm Roux Arch Entwickl Mech Org. 1960;152:1–21.PubMed
31.
go back to reference Shoshkes-Carmel M, Wang YJ, Wangensteen KJ, et al. Subepithelial telocytes are an important source of Wnts that supports intestinal crypts. Nature. 2018;557:242–246.PubMedPubMedCentral Shoshkes-Carmel M, Wang YJ, Wangensteen KJ, et al. Subepithelial telocytes are an important source of Wnts that supports intestinal crypts. Nature. 2018;557:242–246.PubMedPubMedCentral
32.
go back to reference Feng R, Aihara E, Kenny S, et al. Indian Hedgehog mediates gastrin-induced proliferation in stomach of adult mice. Gastroenterology. 2014;147(655–666):e9. Feng R, Aihara E, Kenny S, et al. Indian Hedgehog mediates gastrin-induced proliferation in stomach of adult mice. Gastroenterology. 2014;147(655–666):e9.
33.
go back to reference Kurahashi M, Nakano Y, Peri LE, et al. A novel population of subepithelial platelet-derived growth factor receptor alpha-positive cells in the mouse and human colon. Am J Physiol Gastrointest Liver Physiol. 2013;304:G823–G834.PubMedPubMedCentral Kurahashi M, Nakano Y, Peri LE, et al. A novel population of subepithelial platelet-derived growth factor receptor alpha-positive cells in the mouse and human colon. Am J Physiol Gastrointest Liver Physiol. 2013;304:G823–G834.PubMedPubMedCentral
34.
go back to reference Orskov C, Hartmann B, Poulsen SS, et al. GLP-2 stimulates colonic growth via KGF, released by subepithelial myofibroblasts with GLP-2 receptors. Regul Pept. 2005;124:105–112.PubMed Orskov C, Hartmann B, Poulsen SS, et al. GLP-2 stimulates colonic growth via KGF, released by subepithelial myofibroblasts with GLP-2 receptors. Regul Pept. 2005;124:105–112.PubMed
35.
go back to reference Furuya S, Furuya K. Subepithelial fibroblasts in intestinal villi: roles in intercellular communication. Int Rev Cytol. 2007;264:165–223.PubMed Furuya S, Furuya K. Subepithelial fibroblasts in intestinal villi: roles in intercellular communication. Int Rev Cytol. 2007;264:165–223.PubMed
36.
go back to reference Powell DW, Mifflin RC, Valentich JD, et al. Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol. 1999;277:C1–C9.PubMed Powell DW, Mifflin RC, Valentich JD, et al. Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol. 1999;277:C1–C9.PubMed
37.
go back to reference Roulis M, Flavell RA. Fibroblasts and myofibroblasts of the intestinal lamina propria in physiology and disease. Differentiation. 2016;92:116–131.PubMed Roulis M, Flavell RA. Fibroblasts and myofibroblasts of the intestinal lamina propria in physiology and disease. Differentiation. 2016;92:116–131.PubMed
38.
go back to reference Powell DW, Pinchuk IV, Saada JI, et al. Mesenchymal cells of the intestinal lamina propria. Annu Rev Physiol. 2011;73:213–237.PubMedPubMedCentral Powell DW, Pinchuk IV, Saada JI, et al. Mesenchymal cells of the intestinal lamina propria. Annu Rev Physiol. 2011;73:213–237.PubMedPubMedCentral
39.
go back to reference Hosoyamada Y, Sakai T. Structural and mechanical architecture of the intestinal villi and crypts in the rat intestine: integrative reevaluation from ultrastructural analysis. Anat Embryol (Berl). 2005;210:1–12. Hosoyamada Y, Sakai T. Structural and mechanical architecture of the intestinal villi and crypts in the rat intestine: integrative reevaluation from ultrastructural analysis. Anat Embryol (Berl). 2005;210:1–12.
40.
go back to reference Marsh MN, Trier JS. Morphology and cell proliferation of subepithelial fibroblasts in adult mouse jejunum. I. Structural features. Gastroenterology. 1974;67:622–635.PubMed Marsh MN, Trier JS. Morphology and cell proliferation of subepithelial fibroblasts in adult mouse jejunum. I. Structural features. Gastroenterology. 1974;67:622–635.PubMed
41.
go back to reference Kaye GI, Lane N, Pascal RR. Colonic pericryptal fibroblast sheath: replication, migration, and cytodifferentiation of a mesenchymal cell system in adult tissue. II. Fine structural aspects of normal rabbit and human colon. Gastroenterology. 1968;54:852–865.PubMed Kaye GI, Lane N, Pascal RR. Colonic pericryptal fibroblast sheath: replication, migration, and cytodifferentiation of a mesenchymal cell system in adult tissue. II. Fine structural aspects of normal rabbit and human colon. Gastroenterology. 1968;54:852–865.PubMed
42.
go back to reference Eyden B, Curry A, Wang G. Stromal cells in the human gut show ultrastructural features of fibroblasts and smooth muscle cells but not myofibroblasts. J Cell Mol Med. 2011;15:1483–1491.PubMed Eyden B, Curry A, Wang G. Stromal cells in the human gut show ultrastructural features of fibroblasts and smooth muscle cells but not myofibroblasts. J Cell Mol Med. 2011;15:1483–1491.PubMed
43.
go back to reference Furuya S, Furuya K. Roles of substance P and ATP in the subepithelial fibroblasts of rat intestinal villi. Int Rev Cell Mol Biol. 2013;304:133–189.PubMed Furuya S, Furuya K. Roles of substance P and ATP in the subepithelial fibroblasts of rat intestinal villi. Int Rev Cell Mol Biol. 2013;304:133–189.PubMed
44.
go back to reference Desaki J, Shimizu M. A re-examination of the cellular reticulum of fibroblast-like cells in the rat small intestine by scanning electron microscopy. J Electron Microsc (Tokyo). 2000;49:203–208. Desaki J, Shimizu M. A re-examination of the cellular reticulum of fibroblast-like cells in the rat small intestine by scanning electron microscopy. J Electron Microsc (Tokyo). 2000;49:203–208.
45.
go back to reference Desaki J, Fujiwara T, Komuro T. A cellular reticulum of fibroblast-like cells in the rat intestine: scanning and transmission electron microscopy. Arch Histol Jpn. 1984;47:179–186.PubMed Desaki J, Fujiwara T, Komuro T. A cellular reticulum of fibroblast-like cells in the rat intestine: scanning and transmission electron microscopy. Arch Histol Jpn. 1984;47:179–186.PubMed
46.
go back to reference Deane HW. Some electron microscopic observations on the lamina propria of the gut, with comments on the close association of macrophages, plasma cells and eosinophils. Anat Rec. 1964;149:453–473.PubMed Deane HW. Some electron microscopic observations on the lamina propria of the gut, with comments on the close association of macrophages, plasma cells and eosinophils. Anat Rec. 1964;149:453–473.PubMed
47.
go back to reference Takahashi-Iwanaga H, Fujita T. Lamina propria of intestinal mucosa as a typical reticular tissue. A scanning electron-microscopic study of the rat jejunum. Cell Tissue Res. 1985;242:57–66.PubMed Takahashi-Iwanaga H, Fujita T. Lamina propria of intestinal mucosa as a typical reticular tissue. A scanning electron-microscopic study of the rat jejunum. Cell Tissue Res. 1985;242:57–66.PubMed
48.
go back to reference Toyoda H, Ina K, Kitamura H, et al. Organization of the lamina propria mucosae of rat intestinal mucosa, with special reference to the subepithelial connective tissue. Acta Anat (Basel). 1997;158:172–184. Toyoda H, Ina K, Kitamura H, et al. Organization of the lamina propria mucosae of rat intestinal mucosa, with special reference to the subepithelial connective tissue. Acta Anat (Basel). 1997;158:172–184.
49.
go back to reference Komuro T, Hashimoto Y. Three-dimensional structure of the rat intestinal wall (mucosa and submucosa). Arch Histol Cytol. 1990;53:1–21.PubMed Komuro T, Hashimoto Y. Three-dimensional structure of the rat intestinal wall (mucosa and submucosa). Arch Histol Cytol. 1990;53:1–21.PubMed
50.
go back to reference Popescu LM, Faussone-Pellegrini MS. TELOCYTES - a case of serendipity: the winding way from Interstitial Cells of Cajal (ICC), via Interstitial Cajal-Like Cells (ICLC) to TELOCYTES. J Cell Mol Med. Volume 14. England, 2010:729-40. Popescu LM, Faussone-Pellegrini MS. TELOCYTES - a case of serendipity: the winding way from Interstitial Cells of Cajal (ICC), via Interstitial Cajal-Like Cells (ICLC) to TELOCYTES. J Cell Mol Med. Volume 14. England, 2010:729-40.
51.
go back to reference Greicius G, Kabiri Z, Sigmundsson K, et al. PDGFRalpha(+) pericryptal stromal cells are the critical source of Wnts and RSPO3 for murine intestinal stem cells in vivo. Proc Natl Acad Sci U S A. 2018;115:e3173–e3181.PubMedPubMedCentral Greicius G, Kabiri Z, Sigmundsson K, et al. PDGFRalpha(+) pericryptal stromal cells are the critical source of Wnts and RSPO3 for murine intestinal stem cells in vivo. Proc Natl Acad Sci U S A. 2018;115:e3173–e3181.PubMedPubMedCentral
52.
go back to reference El Maadawi ZM. A tale of two cells: telocyte and stem cell unique relationship. Adv Exp Med Biol. 2016;913:359–376.PubMed El Maadawi ZM. A tale of two cells: telocyte and stem cell unique relationship. Adv Exp Med Biol. 2016;913:359–376.PubMed
53.
go back to reference Marini M, Ibba-Manneschi L, Manetti M. Cardiac telocyte-derived exosomes and their possible implications in cardiovascular pathophysiology. Adv Exp Med Biol. 2017;998:237–254.PubMed Marini M, Ibba-Manneschi L, Manetti M. Cardiac telocyte-derived exosomes and their possible implications in cardiovascular pathophysiology. Adv Exp Med Biol. 2017;998:237–254.PubMed
54.
go back to reference Diaz-Flores L, Gutierrez R, Garcia MP, et al. Human resident CD34+ stromal cells/telocytes have progenitor capacity and are a source of alphaSMA+ cells during repair. Histol Histopathol. 2015;30:615–627.PubMed Diaz-Flores L, Gutierrez R, Garcia MP, et al. Human resident CD34+ stromal cells/telocytes have progenitor capacity and are a source of alphaSMA+ cells during repair. Histol Histopathol. 2015;30:615–627.PubMed
55.
go back to reference Yusta B, Huang L, Munroe D, et al. Enteroendocrine localization of GLP-2 receptor expression in humans and rodents. Gastroenterology. 2000;119:744–755.PubMed Yusta B, Huang L, Munroe D, et al. Enteroendocrine localization of GLP-2 receptor expression in humans and rodents. Gastroenterology. 2000;119:744–755.PubMed
56.
go back to reference Rowland KJ, Brubaker PL. The “cryptic” mechanism of action of glucagon-like peptide-2. Am J Physiol Gastrointest Liver Physiol. 2011;301:G1–G8.PubMed Rowland KJ, Brubaker PL. The “cryptic” mechanism of action of glucagon-like peptide-2. Am J Physiol Gastrointest Liver Physiol. 2011;301:G1–G8.PubMed
57.
go back to reference Parker FG, Barnes EN, Kaye GI. The pericryptal fibroblast sheath. IV. Replication, migration, and differentiation of the subepithelial fibroblasts of the crypt and villus of the rabbit jejunum. Gastroenterology. 1974;67:607–621.PubMed Parker FG, Barnes EN, Kaye GI. The pericryptal fibroblast sheath. IV. Replication, migration, and differentiation of the subepithelial fibroblasts of the crypt and villus of the rabbit jejunum. Gastroenterology. 1974;67:607–621.PubMed
58.
go back to reference Marsh MN, Trier JS. Morphology and cell proliferation of subepithelial fibroblasts in adult mouse jejunum. II. Radioautographic studies. Gastroenterology. 1974;67:636–645.PubMed Marsh MN, Trier JS. Morphology and cell proliferation of subepithelial fibroblasts in adult mouse jejunum. II. Radioautographic studies. Gastroenterology. 1974;67:636–645.PubMed
59.
go back to reference Brittan M, Hunt T, Jeffery R, et al. Bone marrow derivation of pericryptal myofibroblasts in the mouse and human small intestine and colon. Gut. 2002;50:752–757.PubMedPubMedCentral Brittan M, Hunt T, Jeffery R, et al. Bone marrow derivation of pericryptal myofibroblasts in the mouse and human small intestine and colon. Gut. 2002;50:752–757.PubMedPubMedCentral
60.
go back to reference Neal JV, Potten CS. Description and basic cell kinetics of the murine pericryptal fibroblast sheath. Gut. 1981;22:19–24.PubMedPubMedCentral Neal JV, Potten CS. Description and basic cell kinetics of the murine pericryptal fibroblast sheath. Gut. 1981;22:19–24.PubMedPubMedCentral
61.
go back to reference Pinchuk I, Powell D. Immunosuppression by intestinal stem cells. Adv Exp Med Biol. 2018; 1060. Pinchuk I, Powell D. Immunosuppression by intestinal stem cells. Adv Exp Med Biol. 2018; 1060.
62.
go back to reference Austin K, Imam NA, Pintar JE, et al. IGF binding protein-4 is required for the growth effects of glucagon-like peptide-2 in murine intestine. Endocrinology. 2015;156:429–436.PubMed Austin K, Imam NA, Pintar JE, et al. IGF binding protein-4 is required for the growth effects of glucagon-like peptide-2 in murine intestine. Endocrinology. 2015;156:429–436.PubMed
63.
go back to reference Nelson DW, Murali SG, Liu X, et al. Insulin-like growth factor I and glucagon-like peptide-2 responses to fasting followed by controlled or ad libitum refeeding in rats. Am J Physiol Regul Integr Comp Physiol 2008;294:R1175-R1184.PubMed Nelson DW, Murali SG, Liu X, et al. Insulin-like growth factor I and glucagon-like peptide-2 responses to fasting followed by controlled or ad libitum refeeding in rats. Am J Physiol Regul Integr Comp Physiol 2008;294:R1175-R1184.PubMed
64.
go back to reference Wiren M, Adrian TE, Arnelo U, et al. An increase in mucosal insulin-like growth factor II content in postresectional rat intestine suggests autocrine or paracrine growth stimulation. Scand J Gastroenterol. 1998;33:1080–1086.PubMed Wiren M, Adrian TE, Arnelo U, et al. An increase in mucosal insulin-like growth factor II content in postresectional rat intestine suggests autocrine or paracrine growth stimulation. Scand J Gastroenterol. 1998;33:1080–1086.PubMed
65.
go back to reference Aoki R, Shoshkes-Carmel M, Gao N, et al. Foxl1-expressing mesenchymal cells constitute the intestinal stem cell niche. Cell Mol Gastroenterol Hepatol. 2016;2:175–188.PubMed Aoki R, Shoshkes-Carmel M, Gao N, et al. Foxl1-expressing mesenchymal cells constitute the intestinal stem cell niche. Cell Mol Gastroenterol Hepatol. 2016;2:175–188.PubMed
66.
go back to reference Lei NY, Jabaji Z, Wang J, et al. Intestinal subepithelial myofibroblasts support the growth of intestinal epithelial stem cells. PLoS One. 2014;9:e84651.PubMedPubMedCentral Lei NY, Jabaji Z, Wang J, et al. Intestinal subepithelial myofibroblasts support the growth of intestinal epithelial stem cells. PLoS One. 2014;9:e84651.PubMedPubMedCentral
67.
go back to reference Yan KS, Janda CY, Chang J, et al. Non-equivalence of Wnt and R-spondin ligands during Lgr5. Nature. 2017;545:238–242.PubMedPubMedCentral Yan KS, Janda CY, Chang J, et al. Non-equivalence of Wnt and R-spondin ligands during Lgr5. Nature. 2017;545:238–242.PubMedPubMedCentral
68.
go back to reference Foulke-Abel J, In J, Yin J, et al. Human enteroids as a model of upper small intestinal ion transport physiology and pathophysiology. Gastroenterology 2016;150:638-649.PubMed Foulke-Abel J, In J, Yin J, et al. Human enteroids as a model of upper small intestinal ion transport physiology and pathophysiology. Gastroenterology 2016;150:638-649.PubMed
69.
go back to reference Leen JL, Izzo A, Upadhyay C, et al. Mechanism of action of glucagon-like peptide-2 to increase IGF-I mRNA in intestinal subepithelial fibroblasts. Endocrinology. 2011;152:436–446.PubMed Leen JL, Izzo A, Upadhyay C, et al. Mechanism of action of glucagon-like peptide-2 to increase IGF-I mRNA in intestinal subepithelial fibroblasts. Endocrinology. 2011;152:436–446.PubMed
70.
go back to reference Bulut K, Pennartz C, Felderbauer P, et al. Glucagon like peptide-2 induces intestinal restitution through VEGF release from subepithelial myofibroblasts. Eur J Pharmacol. 2008;578:279–285.PubMed Bulut K, Pennartz C, Felderbauer P, et al. Glucagon like peptide-2 induces intestinal restitution through VEGF release from subepithelial myofibroblasts. Eur J Pharmacol. 2008;578:279–285.PubMed
71.
go back to reference Cinci L, Faussone-Pellegrini MS, Rotondo A, et al. GLP-2 receptor expression in excitatory and inhibitory enteric neurons and its role in mouse duodenum contractility. Neurogastroenterol Motil. 2011;23:e383–e392.PubMed Cinci L, Faussone-Pellegrini MS, Rotondo A, et al. GLP-2 receptor expression in excitatory and inhibitory enteric neurons and its role in mouse duodenum contractility. Neurogastroenterol Motil. 2011;23:e383–e392.PubMed
72.
go back to reference Nelson DW, Sharp JW, Brownfield MS, et al. Localization and activation of glucagon-like peptide-2 receptors on vagal afferents in the rat. Endocrinology. 2007;148:1954–1962.PubMed Nelson DW, Sharp JW, Brownfield MS, et al. Localization and activation of glucagon-like peptide-2 receptors on vagal afferents in the rat. Endocrinology. 2007;148:1954–1962.PubMed
73.
go back to reference Drucker DJ, Yusta B. Physiology and pharmacology of the enteroendocrine hormone glucagon-like peptide-2. Annu Rev Physiol. 2014;76:561–583.PubMed Drucker DJ, Yusta B. Physiology and pharmacology of the enteroendocrine hormone glucagon-like peptide-2. Annu Rev Physiol. 2014;76:561–583.PubMed
74.
go back to reference Kaji I, Akiba Y, Kaunitz JD. Digestive physiology of the pig symposium: involvement of gut chemosensing in the regulation of mucosal barrier function and defense mechanisms. J Anim Sci. 2013;91:1957–1962.PubMedPubMedCentral Kaji I, Akiba Y, Kaunitz JD. Digestive physiology of the pig symposium: involvement of gut chemosensing in the regulation of mucosal barrier function and defense mechanisms. J Anim Sci. 2013;91:1957–1962.PubMedPubMedCentral
75.
go back to reference Sigalet DL, Wallace L, de HE, et al. The effects of glucagon-like peptide 2 on enteric neurons in intestinal inflammation. Neurogastroenterol Motil. 2010;22:1318.PubMed Sigalet DL, Wallace L, de HE, et al. The effects of glucagon-like peptide 2 on enteric neurons in intestinal inflammation. Neurogastroenterol Motil. 2010;22:1318.PubMed
76.
go back to reference Amato A, Baldassano S, Serio R, et al. Glucagon-like peptide-2 relaxes mouse stomach through vasoactive intestinal peptide release. Am J Physiol Gastrointest Liver Physiol. 2009;296:G678–G684.PubMed Amato A, Baldassano S, Serio R, et al. Glucagon-like peptide-2 relaxes mouse stomach through vasoactive intestinal peptide release. Am J Physiol Gastrointest Liver Physiol. 2009;296:G678–G684.PubMed
77.
go back to reference Yusta B, Holland D, Waschek JA, Drucker DJ. Intestinotrophic glucagon-like peptide-2 (GLP-2) activates intestinal gene expression and growth factor-dependent pathways independent of the vasoactive intestinal peptide gene in mice. Endocrinology. 2012;153:2623–2632.PubMedPubMedCentral Yusta B, Holland D, Waschek JA, Drucker DJ. Intestinotrophic glucagon-like peptide-2 (GLP-2) activates intestinal gene expression and growth factor-dependent pathways independent of the vasoactive intestinal peptide gene in mice. Endocrinology. 2012;153:2623–2632.PubMedPubMedCentral
78.
go back to reference Hapangama DK, Kamal AM, Bulmer JN. Estrogen receptor β: the guardian of the endometrium. Hum Reprod Update. 2015;21:174–193.PubMed Hapangama DK, Kamal AM, Bulmer JN. Estrogen receptor β: the guardian of the endometrium. Hum Reprod Update. 2015;21:174–193.PubMed
79.
go back to reference Inui S, Itami S. Androgen actions on the human hair follicle: perspectives. Exp Dermatol. 2013;22:168–171.PubMed Inui S, Itami S. Androgen actions on the human hair follicle: perspectives. Exp Dermatol. 2013;22:168–171.PubMed
81.
go back to reference Vipperla K, O’Keefe SJ. Study of teduglutide effectiveness in parenteral nutrition-dependent short-bowel syndrome subjects. Expert Rev Gastroenterol Hepatol. 2013;7:683–687.PubMed Vipperla K, O’Keefe SJ. Study of teduglutide effectiveness in parenteral nutrition-dependent short-bowel syndrome subjects. Expert Rev Gastroenterol Hepatol. 2013;7:683–687.PubMed
82.
go back to reference Jeppesen PB, Pertkiewicz M, Messing B, et al. Teduglutide reduces need for parenteral support among patients with short bowel syndrome with intestinal failure. Gastroenterology. 2012;143:1473–1481.PubMed Jeppesen PB, Pertkiewicz M, Messing B, et al. Teduglutide reduces need for parenteral support among patients with short bowel syndrome with intestinal failure. Gastroenterology. 2012;143:1473–1481.PubMed
Metadata
Title
Control of Intestinal Epithelial Proliferation and Differentiation: The Microbiome, Enteroendocrine L Cells, Telocytes, Enteric Nerves, and GLP, Too
Authors
Jonathan D. Kaunitz
Yasutada Akiba
Publication date
01-10-2019
Publisher
Springer US
Published in
Digestive Diseases and Sciences / Issue 10/2019
Print ISSN: 0163-2116
Electronic ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-019-05778-1

Other articles of this Issue 10/2019

Digestive Diseases and Sciences 10/2019 Go to the issue