Skip to main content
Top
Published in: Digestive Diseases and Sciences 5/2016

01-05-2016 | Review

Role of MicroRNAs in NAFLD/NASH

Authors: Gyongyi Szabo, Timea Csak

Published in: Digestive Diseases and Sciences | Issue 5/2016

Login to get access

Abstract

MicroRNAs (miRNAs) are highly conserved, small, 18–25 nucleotide, non-coding RNAs that regulate gene expression at the post-transcriptional level. Each miRNA can regulate hundreds of target genes, and vice versa each target gene can be regulated by numerous miRNAs, suggesting a very complex network and explaining how miRNAs play pivotal roles in fine-tuning essentially all biological processes in all cell types in the liver. Here, we summarize the current knowledge on the role of miRNAs in the pathogenesis and diagnosis of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) with an outlook to the broader aspects of metabolic syndrome. Furthermore, we discuss the role of miRNAs as potential biomarkers and therapeutic targets in NAFLD/NASH.
Literature
3.
go back to reference Bala S, Marcos M, Kodys K, et al. Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor alpha (TNF{alpha}) production via increased mRNA half-life in alcoholic liver disease. J Biol Chem. 2011;286:1436–1444.PubMedPubMedCentralCrossRef Bala S, Marcos M, Kodys K, et al. Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor alpha (TNF{alpha}) production via increased mRNA half-life in alcoholic liver disease. J Biol Chem. 2011;286:1436–1444.PubMedPubMedCentralCrossRef
4.
go back to reference Orom UA, Nielsen FC, Lund AH. Microrna-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell. 2008;30:460–471.PubMedCrossRef Orom UA, Nielsen FC, Lund AH. Microrna-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell. 2008;30:460–471.PubMedCrossRef
6.
go back to reference Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–854.PubMedCrossRef Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–854.PubMedCrossRef
7.
go back to reference Londin E, Loher P, Telonis AG, et al. Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc Natl Acad Sci USA. 2015;112:E1106–E1115.PubMedPubMedCentralCrossRef Londin E, Loher P, Telonis AG, et al. Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc Natl Acad Sci USA. 2015;112:E1106–E1115.PubMedPubMedCentralCrossRef
9.
go back to reference Maffioletti E, Tardito D, Genarelli M, Bocchio-Chiavetto L. Micro spies from the brain to the periphery: new clues from studies on microRNAs in neuropsychiatric disorders. Front Cell Neurosci. 2014;8:75.PubMedPubMedCentralCrossRef Maffioletti E, Tardito D, Genarelli M, Bocchio-Chiavetto L. Micro spies from the brain to the periphery: new clues from studies on microRNAs in neuropsychiatric disorders. Front Cell Neurosci. 2014;8:75.PubMedPubMedCentralCrossRef
10.
go back to reference Cheung O, Puri I, Eicken C, et al. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology. 2008;48:1810–1820.PubMedPubMedCentralCrossRef Cheung O, Puri I, Eicken C, et al. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology. 2008;48:1810–1820.PubMedPubMedCentralCrossRef
11.
go back to reference Feng YY, Xu XQ, Ji CB, Shi CM, Guo XR, Fu JF. Aberrant hepatic microRNA expression in nonalcoholic fatty liver disease. Cell Physiol Biochem. 2014;34:1983–1997.PubMedCrossRef Feng YY, Xu XQ, Ji CB, Shi CM, Guo XR, Fu JF. Aberrant hepatic microRNA expression in nonalcoholic fatty liver disease. Cell Physiol Biochem. 2014;34:1983–1997.PubMedCrossRef
12.
go back to reference Karere GM, Glenn JP, VandeBerg JL, Cox LA. Differential microRNA response to a high-cholesterol, high-fat diet in livers of low and high LDL-C baboons. BMC Genom. 2012;13:320.CrossRef Karere GM, Glenn JP, VandeBerg JL, Cox LA. Differential microRNA response to a high-cholesterol, high-fat diet in livers of low and high LDL-C baboons. BMC Genom. 2012;13:320.CrossRef
13.
go back to reference Dolganiuc A, Petrasek J, Kodys K, et al. MicroRNA expression profile in Lieber–DeCarli diet-induced alcoholic and methionine choline deficient diet-induced nonalcoholic steatohepatitis models in mice. Alcohol Clin Exp Med. 2009;33:1704–1710.CrossRef Dolganiuc A, Petrasek J, Kodys K, et al. MicroRNA expression profile in Lieber–DeCarli diet-induced alcoholic and methionine choline deficient diet-induced nonalcoholic steatohepatitis models in mice. Alcohol Clin Exp Med. 2009;33:1704–1710.CrossRef
14.
go back to reference Wang B, Majumder S, Nuovo G, et al. Role of microRNA-155 at early stages of hepatocarcinogenesis induced by choline-deficient and amino acid-defined diet in C57BL/6 mice. Hepatology. 2009;50:1152–1161.PubMedPubMedCentralCrossRef Wang B, Majumder S, Nuovo G, et al. Role of microRNA-155 at early stages of hepatocarcinogenesis induced by choline-deficient and amino acid-defined diet in C57BL/6 mice. Hepatology. 2009;50:1152–1161.PubMedPubMedCentralCrossRef
15.
go back to reference Hoekstra M, van der Sluis RJ, Kuiper J, Van Berkel TJ. Nonalcoholic fatty liver disease is associated with an altered hepatocyte microRNA profile in LDL receptor knockout mice. J Nutr Biochem. 2012;23:622–628.PubMedCrossRef Hoekstra M, van der Sluis RJ, Kuiper J, Van Berkel TJ. Nonalcoholic fatty liver disease is associated with an altered hepatocyte microRNA profile in LDL receptor knockout mice. J Nutr Biochem. 2012;23:622–628.PubMedCrossRef
17.
18.
go back to reference Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997–1006.PubMedCrossRef Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997–1006.PubMedCrossRef
19.
go back to reference Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008;105:10513–10518.PubMedPubMedCentralCrossRef Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008;105:10513–10518.PubMedPubMedCentralCrossRef
20.
go back to reference Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56:1733–1741.PubMedCrossRef Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56:1733–1741.PubMedCrossRef
21.
go back to reference Arrojo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA. 2011;108:5003–5008.CrossRef Arrojo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA. 2011;108:5003–5008.CrossRef
22.
go back to reference Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13:423–433.PubMedPubMedCentralCrossRef Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13:423–433.PubMedPubMedCentralCrossRef
23.
go back to reference Lee Y, El Andaloussi S, Wood MJ. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet. 2012;21:R125–R134.PubMedCrossRef Lee Y, El Andaloussi S, Wood MJ. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet. 2012;21:R125–R134.PubMedCrossRef
25.
go back to reference Bala S, Petrasek J, Mundkur S, et al. Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology. 2012;56:1946–1957.PubMedPubMedCentralCrossRef Bala S, Petrasek J, Mundkur S, et al. Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology. 2012;56:1946–1957.PubMedPubMedCentralCrossRef
26.
go back to reference Pirola CJ, Fernandez-Gianotti T, Castano GO, et al. Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis. Gut. 2015;64:800–812.PubMedPubMedCentralCrossRef Pirola CJ, Fernandez-Gianotti T, Castano GO, et al. Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis. Gut. 2015;64:800–812.PubMedPubMedCentralCrossRef
27.
go back to reference Yamada H, Suzuki K, Ichino N, et al. Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver. Clin Chim Acta. 2013;424:99–103.PubMedCrossRef Yamada H, Suzuki K, Ichino N, et al. Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver. Clin Chim Acta. 2013;424:99–103.PubMedCrossRef
28.
go back to reference Csak T, Bala S, Lippai D, et al. microRNA-122 regulates hypoxia-inducible factor-1 and vimentin in hepatocytes and correlates with fibrosis in diet-induced steatohepatitis. Liver Int.. 2015;35:532–541.PubMedPubMedCentralCrossRef Csak T, Bala S, Lippai D, et al. microRNA-122 regulates hypoxia-inducible factor-1 and vimentin in hepatocytes and correlates with fibrosis in diet-induced steatohepatitis. Liver Int.. 2015;35:532–541.PubMedPubMedCentralCrossRef
29.
go back to reference Tan Y, Ge G, Pan T, Wen D, Gan J. A pilot study of serum microRNAs panel as potential biomarkers for diagnosis of nonalcoholic fatty liver disease. PLoS ONE. 2014;9:e105192.PubMedPubMedCentralCrossRef Tan Y, Ge G, Pan T, Wen D, Gan J. A pilot study of serum microRNAs panel as potential biomarkers for diagnosis of nonalcoholic fatty liver disease. PLoS ONE. 2014;9:e105192.PubMedPubMedCentralCrossRef
30.
go back to reference Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–659.PubMedCrossRef Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–659.PubMedCrossRef
32.
go back to reference Arner P, Kulyte A. MicroRNA regulatory networks in human adipose tissue and obesity. Nat Rev Endocrinol. 2015;11:276–288.PubMedCrossRef Arner P, Kulyte A. MicroRNA regulatory networks in human adipose tissue and obesity. Nat Rev Endocrinol. 2015;11:276–288.PubMedCrossRef
33.
go back to reference Ge Q, Brichard S, Yi X, Li Q. microRNA as a new mechanism regulating adipose tissue inflammation in obesity and as a novel therapeutic strategy in the metabolic syndrome. J Immunol Res. 2014; ID: 987285. Ge Q, Brichard S, Yi X, Li Q. microRNA as a new mechanism regulating adipose tissue inflammation in obesity and as a novel therapeutic strategy in the metabolic syndrome. J Immunol Res. 2014; ID: 987285.
35.
go back to reference Schneeberger M, Gomez-Valades AG, Ramirez S, Gomis R, Claret M. Hypothalamic miRNAs: emerging roles in energy balance control. Front Neurosci. 2015;9:41.PubMedPubMedCentral Schneeberger M, Gomez-Valades AG, Ramirez S, Gomis R, Claret M. Hypothalamic miRNAs: emerging roles in energy balance control. Front Neurosci. 2015;9:41.PubMedPubMedCentral
36.
go back to reference Chen H, Lan HY, Roukos DH, Cho WC. Application of mircroRNAs in diabetes mellitus. J Endocrinol. 2014;222:R1–R10.PubMedCrossRef Chen H, Lan HY, Roukos DH, Cho WC. Application of mircroRNAs in diabetes mellitus. J Endocrinol. 2014;222:R1–R10.PubMedCrossRef
37.
go back to reference Chakraborty C, Doss CGP, Bandyopadhyay S, Agoramoorthy G. Influence of miRNA in insulin signaling pathway and insulin resistance: micro-molecules with major role in type-2 diabetes. WIREs RNA. 2014;5:697–712.PubMed Chakraborty C, Doss CGP, Bandyopadhyay S, Agoramoorthy G. Influence of miRNA in insulin signaling pathway and insulin resistance: micro-molecules with major role in type-2 diabetes. WIREs RNA. 2014;5:697–712.PubMed
38.
go back to reference Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology. 2010;52:1836–1846.PubMedCrossRef Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology. 2010;52:1836–1846.PubMedCrossRef
39.
go back to reference Than NN, Newsome PN. A concise review of non-alcoholic fatty liver disease. Atherosclerosis. 2015;239:192–202.PubMedCrossRef Than NN, Newsome PN. A concise review of non-alcoholic fatty liver disease. Atherosclerosis. 2015;239:192–202.PubMedCrossRef
40.
go back to reference Estep M, Armistead D, Hossain N, et al. Differential expression of miRNAs in the visceral adipose tissue of patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2010;32:487–497.PubMedCrossRef Estep M, Armistead D, Hossain N, et al. Differential expression of miRNAs in the visceral adipose tissue of patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2010;32:487–497.PubMedCrossRef
41.
go back to reference Sharma H, Estep M, Birerdinc A, et al. Expression of genes for microRNA-processing enzymes is altered in advanced non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2013;28:1410–1415.PubMedCrossRef Sharma H, Estep M, Birerdinc A, et al. Expression of genes for microRNA-processing enzymes is altered in advanced non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2013;28:1410–1415.PubMedCrossRef
42.
go back to reference Li S, Chen X, Zhang H, et al. Differential expression of microRNAs in mouse liver under aberrant energy metabolic status. J Lipid Res. 2009;50:1756–1765.PubMedPubMedCentralCrossRef Li S, Chen X, Zhang H, et al. Differential expression of microRNAs in mouse liver under aberrant energy metabolic status. J Lipid Res. 2009;50:1756–1765.PubMedPubMedCentralCrossRef
43.
go back to reference Katsura A, Morishita A, Iwama H, et al. MicroRNA profiles following metformin treatment in a mouse model of non-alcoholic steatohepatitis. Int J Mol Med. 2015;35:877–884.PubMedPubMedCentral Katsura A, Morishita A, Iwama H, et al. MicroRNA profiles following metformin treatment in a mouse model of non-alcoholic steatohepatitis. Int J Mol Med. 2015;35:877–884.PubMedPubMedCentral
44.
go back to reference Kita Y, Takamura T, Misu H, et al. Metformin prevents and reverses inflammation in a non-diabetic mouse model of nonalcoholic steatohepatitis. PLoS ONE. 2012;7:e43056.PubMedPubMedCentralCrossRef Kita Y, Takamura T, Misu H, et al. Metformin prevents and reverses inflammation in a non-diabetic mouse model of nonalcoholic steatohepatitis. PLoS ONE. 2012;7:e43056.PubMedPubMedCentralCrossRef
45.
go back to reference Esau C, Davis S, Murray SF, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006;3:87–98.PubMedCrossRef Esau C, Davis S, Murray SF, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006;3:87–98.PubMedCrossRef
46.
go back to reference Elmen J, Lindow M, Schutz S, et al. LNA-mediated microRNA silencing in nonhuman primates. Nature. 2008;452:896–899.PubMedCrossRef Elmen J, Lindow M, Schutz S, et al. LNA-mediated microRNA silencing in nonhuman primates. Nature. 2008;452:896–899.PubMedCrossRef
47.
go back to reference Bandiera S, Pfeffer S, Baumert TF, Zeisel MB. miR-122—a key factor and therapeutic target in liver disease. J Hepatol. 2015;2:448–457.CrossRef Bandiera S, Pfeffer S, Baumert TF, Zeisel MB. miR-122—a key factor and therapeutic target in liver disease. J Hepatol. 2015;2:448–457.CrossRef
48.
go back to reference Wilson JA, Sagan SM. Hepatitis C virus and human miR-122: insights from the bench to the clinic. Curr Opin Virol. 2014;7:11–18.PubMedCrossRef Wilson JA, Sagan SM. Hepatitis C virus and human miR-122: insights from the bench to the clinic. Curr Opin Virol. 2014;7:11–18.PubMedCrossRef
49.
50.
go back to reference Hsu SH, Wang B, Kota J, et al. Essential metabolic, antiinflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest. 2012;122:2871–2883.PubMedPubMedCentralCrossRef Hsu SH, Wang B, Kota J, et al. Essential metabolic, antiinflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest. 2012;122:2871–2883.PubMedPubMedCentralCrossRef
51.
go back to reference Csak T, Bala S, Lippai D, et al. MicroRNA-155 deficiency attenuates liver steatosis and fibrosis without reducing inflammation in a mouse model of steatohepatitis. PLoS ONE. 2015;10:e0129251.PubMedPubMedCentralCrossRef Csak T, Bala S, Lippai D, et al. MicroRNA-155 deficiency attenuates liver steatosis and fibrosis without reducing inflammation in a mouse model of steatohepatitis. PLoS ONE. 2015;10:e0129251.PubMedPubMedCentralCrossRef
52.
go back to reference Miller AM, Gilchrist DS, Nijjar J, et al. MiR-155 has a protective role in the development of non-alcoholic hepatosteatosis in mice. PLoS ONE. 2013;8:e72324.PubMedPubMedCentralCrossRef Miller AM, Gilchrist DS, Nijjar J, et al. MiR-155 has a protective role in the development of non-alcoholic hepatosteatosis in mice. PLoS ONE. 2013;8:e72324.PubMedPubMedCentralCrossRef
53.
go back to reference Sun C, Huang F, Liu X, et al. miR-21 regulates triglyceride and cholesterol metabolism in non-alcoholic fatty liver disease by targeting HMGCR. Int J Mol Med. 2015;35:847–853.PubMed Sun C, Huang F, Liu X, et al. miR-21 regulates triglyceride and cholesterol metabolism in non-alcoholic fatty liver disease by targeting HMGCR. Int J Mol Med. 2015;35:847–853.PubMed
54.
go back to reference Ahn J, Lee H, Jung CH, Ha T. Lycopene inhibits hepatic steatosis via microRNA-21-induced downregulation of fatty acid-binding protein 7 in mice fed a high-fat diet. Mol Nutr Food Res. 2012;56:1665–1674.PubMedCrossRef Ahn J, Lee H, Jung CH, Ha T. Lycopene inhibits hepatic steatosis via microRNA-21-induced downregulation of fatty acid-binding protein 7 in mice fed a high-fat diet. Mol Nutr Food Res. 2012;56:1665–1674.PubMedCrossRef
55.
go back to reference Loyer X, Paradis V, Henique C, et al. Liver microRNA-21 is overexpressed in non-alcoholic steatohepatitis and contributes to the disease in experimental models by inhibiting PPARα expression. Gut. 2015. doi:10.1136/gutjnl-2014-308883.PubMed Loyer X, Paradis V, Henique C, et al. Liver microRNA-21 is overexpressed in non-alcoholic steatohepatitis and contributes to the disease in experimental models by inhibiting PPARα expression. Gut. 2015. doi:10.​1136/​gutjnl-2014-308883.PubMed
56.
go back to reference Najafi-Shoushtari SH, Kristo F, Li Y, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science. 2010;28:1566–1569.CrossRef Najafi-Shoushtari SH, Kristo F, Li Y, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science. 2010;28:1566–1569.CrossRef
57.
go back to reference Allen RM, Marquart TJ, Albert CJ, et al. miR-33 controls the expression of biliary transporters, and mediates statin- and diet-induced hepatotoxicity. EMBO Mol Med. 2012;4:882–895.PubMedPubMedCentralCrossRef Allen RM, Marquart TJ, Albert CJ, et al. miR-33 controls the expression of biliary transporters, and mediates statin- and diet-induced hepatotoxicity. EMBO Mol Med. 2012;4:882–895.PubMedPubMedCentralCrossRef
58.
go back to reference Li T, Francl JM, Boehme S, Chiang JYL. Regulation of cholesterol and bile acid homeostasis by the CYP7A1/SREBP2/miR-33a axis. Hepatology. 2013;58:1111–1121.PubMedPubMedCentralCrossRef Li T, Francl JM, Boehme S, Chiang JYL. Regulation of cholesterol and bile acid homeostasis by the CYP7A1/SREBP2/miR-33a axis. Hepatology. 2013;58:1111–1121.PubMedPubMedCentralCrossRef
59.
60.
go back to reference Lee J, Padhye A, Sharma A, et al. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. J Biol Chem. 2010;285:12604–12611.PubMedPubMedCentralCrossRef Lee J, Padhye A, Sharma A, et al. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. J Biol Chem. 2010;285:12604–12611.PubMedPubMedCentralCrossRef
62.
go back to reference Cermelli S, Ruggieri A, Marrero JA, Ioannou GN, Beretta L. Circulating MicroRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS ONE. 2011;6:e23937.PubMedPubMedCentralCrossRef Cermelli S, Ruggieri A, Marrero JA, Ioannou GN, Beretta L. Circulating MicroRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS ONE. 2011;6:e23937.PubMedPubMedCentralCrossRef
63.
go back to reference Ng R, Wu H, Xiao H, et al. Inhibition of microRNA-24 expression in liver prevents hepatic lipid accumulation and hyperlipidemia. Hepatology. 2014;60:554–564.PubMedPubMedCentralCrossRef Ng R, Wu H, Xiao H, et al. Inhibition of microRNA-24 expression in liver prevents hepatic lipid accumulation and hyperlipidemia. Hepatology. 2014;60:554–564.PubMedPubMedCentralCrossRef
64.
go back to reference Vincent R, Sanyal A. Recent advances in understanding of NASH: microRNAs as both biochemical markers and players. Curr Pathibiol Rep. 2014;2:109–115.CrossRef Vincent R, Sanyal A. Recent advances in understanding of NASH: microRNAs as both biochemical markers and players. Curr Pathibiol Rep. 2014;2:109–115.CrossRef
66.
go back to reference Tili E, Michaille JJ, Costinean S, Corce CM. MicroRNAs, the immune system and rheumatic disease. Nat Clin Pract Rheumatol. 2008;4:534–541.PubMedCrossRef Tili E, Michaille JJ, Costinean S, Corce CM. MicroRNAs, the immune system and rheumatic disease. Nat Clin Pract Rheumatol. 2008;4:534–541.PubMedCrossRef
67.
go back to reference Du J, Niu X, Wang Y, et al. MiR-146a-5p suppresses activation and proliferation of hepatic stellate cells in nonalcoholic fibrosing steatohepatitis through directly targeting Wnt1 and Wnt5a. Sci Rep. 2015;5:16163.PubMedPubMedCentralCrossRef Du J, Niu X, Wang Y, et al. MiR-146a-5p suppresses activation and proliferation of hepatic stellate cells in nonalcoholic fibrosing steatohepatitis through directly targeting Wnt1 and Wnt5a. Sci Rep. 2015;5:16163.PubMedPubMedCentralCrossRef
68.
go back to reference Hur W, Lee JH, Kim SW, et al. Downregulation of microRNA-451 in non-alcoholic steatohepatitis inhibits fatty acid-induced proinflammatory cytokine production through the AMPK/Akt pathway. Int J Biochem Cell Biol. 2015;64:265–276.PubMedCrossRef Hur W, Lee JH, Kim SW, et al. Downregulation of microRNA-451 in non-alcoholic steatohepatitis inhibits fatty acid-induced proinflammatory cytokine production through the AMPK/Akt pathway. Int J Biochem Cell Biol. 2015;64:265–276.PubMedCrossRef
69.
go back to reference Baffy G, Brunt EM, Caldwell SH. Hepatocellular carcinoma in non-alcoholic fatty liver disease: an emerging menace. J Hepatol. 2012;56:1384–1391.PubMedCrossRef Baffy G, Brunt EM, Caldwell SH. Hepatocellular carcinoma in non-alcoholic fatty liver disease: an emerging menace. J Hepatol. 2012;56:1384–1391.PubMedCrossRef
70.
go back to reference Wu H, Ng R, Chen X, Steer CJ, Song G. MicroRNA-21 is a potential link between non-alcoholic fatty liver disease and hepatocellular carcinoma via modulation of the HBP1-p53-Srebp1c pathway. Gut. 2015. doi:10.1136/gutjnl-2014-308430. Wu H, Ng R, Chen X, Steer CJ, Song G. MicroRNA-21 is a potential link between non-alcoholic fatty liver disease and hepatocellular carcinoma via modulation of the HBP1-p53-Srebp1c pathway. Gut. 2015. doi:10.​1136/​gutjnl-2014-308430.
71.
go back to reference Zhang J, Jiao J, Cermelli S, et al. miR-21 inhibition reduces liver fibrosis and prevents tumor development by inducing apoptosis of CD24 + progenitor cells. Cancer Res. 2015;75:1859–1867.PubMedCrossRef Zhang J, Jiao J, Cermelli S, et al. miR-21 inhibition reduces liver fibrosis and prevents tumor development by inducing apoptosis of CD24 + progenitor cells. Cancer Res. 2015;75:1859–1867.PubMedCrossRef
72.
go back to reference Zhao J, Tang N, Wu K, et al. MiR-21 simultaneously regulates ERK1 signaling in HSC activation and hepatocyte EMT in hepatic fibrosis. PLoS ONE. 2014;9:e108005.PubMedPubMedCentralCrossRef Zhao J, Tang N, Wu K, et al. MiR-21 simultaneously regulates ERK1 signaling in HSC activation and hepatocyte EMT in hepatic fibrosis. PLoS ONE. 2014;9:e108005.PubMedPubMedCentralCrossRef
73.
74.
go back to reference Corey KE, Misdraji J, Gelrud L, et al. Obstructive sleep apnea is associated with nonalcoholic steatohepatitis and advanced live histology. Dig Dis Sci. 2015;60:2523–2528.PubMedCrossRef Corey KE, Misdraji J, Gelrud L, et al. Obstructive sleep apnea is associated with nonalcoholic steatohepatitis and advanced live histology. Dig Dis Sci. 2015;60:2523–2528.PubMedCrossRef
75.
76.
go back to reference Momen-Heravi F, Saha B, Kodys K, Catalano D, Satishchandran A, Szabo G. Increased number of circulating exosomes and their microRNA cargos are potential novel biomarkers in alcoholic hepatitis. J Transl Med. 2015;13:261.PubMedPubMedCentralCrossRef Momen-Heravi F, Saha B, Kodys K, Catalano D, Satishchandran A, Szabo G. Increased number of circulating exosomes and their microRNA cargos are potential novel biomarkers in alcoholic hepatitis. J Transl Med. 2015;13:261.PubMedPubMedCentralCrossRef
77.
go back to reference Schutte K, Schultz C, Link A, Malfertheiner P. Current biomarkers for hepatocellular carcinome: surveillance, diagnosis and prediction of prognosis. World J Gastroenterol. 2015;7:139–149. Schutte K, Schultz C, Link A, Malfertheiner P. Current biomarkers for hepatocellular carcinome: surveillance, diagnosis and prediction of prognosis. World J Gastroenterol. 2015;7:139–149.
78.
go back to reference Gori M, Arciello M, Balsano C. MicroRNAs in nonalcoholic fatty liver disease: novel biomarkers and prognostic tools during the transition from steatosis to hepatocarcinoma. Biomed Res Int. 2014;2014:741465.PubMedPubMedCentralCrossRef Gori M, Arciello M, Balsano C. MicroRNAs in nonalcoholic fatty liver disease: novel biomarkers and prognostic tools during the transition from steatosis to hepatocarcinoma. Biomed Res Int. 2014;2014:741465.PubMedPubMedCentralCrossRef
79.
go back to reference Nakao K, Miyaaki H, Ichikawa T. Antitumor function of microRNA-122 against hepatocellular carcinoma. J Gastroenterol. 2014;49:589–593.PubMedCrossRef Nakao K, Miyaaki H, Ichikawa T. Antitumor function of microRNA-122 against hepatocellular carcinoma. J Gastroenterol. 2014;49:589–593.PubMedCrossRef
80.
go back to reference Callegari E, Gramantieri L, Domenicali M, D’Abundo L, Sabbioni S, Negrini M. MicroRNAs in liver cancer: a model for investigating pathogenesis and novel therapeutic approaches. Cell Death Differ. 2015;22:46–57.PubMedPubMedCentralCrossRef Callegari E, Gramantieri L, Domenicali M, D’Abundo L, Sabbioni S, Negrini M. MicroRNAs in liver cancer: a model for investigating pathogenesis and novel therapeutic approaches. Cell Death Differ. 2015;22:46–57.PubMedPubMedCentralCrossRef
81.
go back to reference Chartoumpekis DV, Zaravinos A, Ziros PG, et al. Differential expression of microRNAs in adipose tissue after long-term high fat diet-induced obesity in mice. PLoS ONE 2012;7. ID: e34872. Chartoumpekis DV, Zaravinos A, Ziros PG, et al. Differential expression of microRNAs in adipose tissue after long-term high fat diet-induced obesity in mice. PLoS ONE 2012;7. ID: e34872.
82.
go back to reference Ortega FJ, Moreno-Navarrete JM, Pardo G, et al. MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS ONE 2010;5. ID: e9022. Ortega FJ, Moreno-Navarrete JM, Pardo G, et al. MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS ONE 2010;5. ID: e9022.
83.
go back to reference Kloting N, Berthold S, Kovacs P, et al. MicroRNA expression in human omental and subcutaneous adipose tissue. PloS ONE 2009;4. ID e4699. Kloting N, Berthold S, Kovacs P, et al. MicroRNA expression in human omental and subcutaneous adipose tissue. PloS ONE 2009;4. ID e4699.
84.
go back to reference Heneghan HM, Miller N, McAnenea OJ, O’Brian T, Kerin MJ. Differential miRNA expression in omental adipose and in the circulation of obese patients identifies novel metabolic biomarkers. J Clin Endocrin Metab. 2011;96:E846–E850.CrossRef Heneghan HM, Miller N, McAnenea OJ, O’Brian T, Kerin MJ. Differential miRNA expression in omental adipose and in the circulation of obese patients identifies novel metabolic biomarkers. J Clin Endocrin Metab. 2011;96:E846–E850.CrossRef
85.
go back to reference Son YH, Ka S, Kim AY, Kim JB. Regulation of adipocyte differentiation via mircoRNAs. Endocrinol Metab (Seoul). 2014;29:122–135.CrossRef Son YH, Ka S, Kim AY, Kim JB. Regulation of adipocyte differentiation via mircoRNAs. Endocrinol Metab (Seoul). 2014;29:122–135.CrossRef
86.
go back to reference Strum JC, Johnson JH, Ward J, et al. MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1. Mol Endocrinol. 2009;23:1876–1884.PubMedCrossRef Strum JC, Johnson JH, Ward J, et al. MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1. Mol Endocrinol. 2009;23:1876–1884.PubMedCrossRef
87.
go back to reference Parra P, Serra E, Palou A, et al. Expression of adipose MicroRNA is sensitive to dietary conjugated linoleic acid treatment in mice. PLoS ONE 2010;5. ID: e13005. Parra P, Serra E, Palou A, et al. Expression of adipose MicroRNA is sensitive to dietary conjugated linoleic acid treatment in mice. PLoS ONE 2010;5. ID: e13005.
88.
89.
go back to reference Zhuang G, Meng C, Guo X, et al. A novel regulator of macrophage activation: miR-223 in obesity associated adipose tissue inflammation. Circulation. 2012;125:2892–2903.PubMedCrossRef Zhuang G, Meng C, Guo X, et al. A novel regulator of macrophage activation: miR-223 in obesity associated adipose tissue inflammation. Circulation. 2012;125:2892–2903.PubMedCrossRef
90.
go back to reference Ge Q, Gerard J, Noel L, Scroyen I, Brichard SM. MicroRNAs regulated by adiponectin as novel targets for controlling adipose tissue inflammation. Endocrinology. 2012;153:5285–5296.PubMedCrossRef Ge Q, Gerard J, Noel L, Scroyen I, Brichard SM. MicroRNAs regulated by adiponectin as novel targets for controlling adipose tissue inflammation. Endocrinology. 2012;153:5285–5296.PubMedCrossRef
91.
go back to reference Ogawa R, Tanaka C, Sato M, et al. Adipocyte-derived microvesicles contain RNA that is transported into macrophages and might be secreted into blood circulation. BBRC. 2010;398:723–729.PubMed Ogawa R, Tanaka C, Sato M, et al. Adipocyte-derived microvesicles contain RNA that is transported into macrophages and might be secreted into blood circulation. BBRC. 2010;398:723–729.PubMed
92.
94.
go back to reference Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–1031.PubMedCrossRef Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–1031.PubMedCrossRef
95.
go back to reference Henao-Mejia J, Elinav E, Jin C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482:179–185.PubMedPubMedCentral Henao-Mejia J, Elinav E, Jin C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482:179–185.PubMedPubMedCentral
96.
go back to reference Henao-Mejia J, Elinav E, Thaiss CA, Flavell RA. The intestinal microbiota in chronic liver diseases. Adv Immunol. 2013;117:73–97.PubMedCrossRef Henao-Mejia J, Elinav E, Thaiss CA, Flavell RA. The intestinal microbiota in chronic liver diseases. Adv Immunol. 2013;117:73–97.PubMedCrossRef
97.
go back to reference Agel B, DiBaise JK. Role of gut microbiome in nonalcoholic fatty liver disease. Nutr Clin Pract. 2015;30:780–786.CrossRef Agel B, DiBaise JK. Role of gut microbiome in nonalcoholic fatty liver disease. Nutr Clin Pract. 2015;30:780–786.CrossRef
98.
go back to reference Quigley EM, Monsour HP. The gut microbiota and nonalcoholic fatty liver disease. Semin Liver Dis. 2015;35:262–269.PubMedCrossRef Quigley EM, Monsour HP. The gut microbiota and nonalcoholic fatty liver disease. Semin Liver Dis. 2015;35:262–269.PubMedCrossRef
99.
go back to reference Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–1772.PubMedCrossRef Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–1772.PubMedCrossRef
100.
go back to reference Miele L, Valenza V, La Torre G, et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology. 2009;49:1877–1887.PubMedCrossRef Miele L, Valenza V, La Torre G, et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology. 2009;49:1877–1887.PubMedCrossRef
101.
go back to reference Vijay-Kumat M, Aitken JD, Carvalho FA, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328:228–231.CrossRef Vijay-Kumat M, Aitken JD, Carvalho FA, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328:228–231.CrossRef
102.
go back to reference Li Z, Yang S, Lin H, et al. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology. 2003;37:343–350.PubMedCrossRef Li Z, Yang S, Lin H, et al. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology. 2003;37:343–350.PubMedCrossRef
103.
go back to reference Velayudham A, Dolagniuc A, Ellis M, et al. VSL#3 probiotic treatment attenuates fibrosis without changes in steatohepatitis in a diet-induced nonalcoholic steatohepatitis model in mice. Hepatology. 2009;49:989–997.PubMedPubMedCentralCrossRef Velayudham A, Dolagniuc A, Ellis M, et al. VSL#3 probiotic treatment attenuates fibrosis without changes in steatohepatitis in a diet-induced nonalcoholic steatohepatitis model in mice. Hepatology. 2009;49:989–997.PubMedPubMedCentralCrossRef
104.
go back to reference Runtsch MC, Round JL, O’Connell RM. MicroRNAs and the regulation of intestinal homeostasis. Front Genet. 2014;5. ID: 347. Runtsch MC, Round JL, O’Connell RM. MicroRNAs and the regulation of intestinal homeostasis. Front Genet. 2014;5. ID: 347.
105.
go back to reference Biton M, Levin A, Slyper M, et al. Epithelial microRNAs regulate gut mucosal immunity via epithelium-T cell crosstalk. Nat Immunol. 1994;12:239–246.CrossRef Biton M, Levin A, Slyper M, et al. Epithelial microRNAs regulate gut mucosal immunity via epithelium-T cell crosstalk. Nat Immunol. 1994;12:239–246.CrossRef
106.
go back to reference Ye D, Guo S, Al-Sadi R, Ma TY. MicroRNA regulation of intestinal epithelial tight junction permeability. Gastroenterology. 2011;141:132–1333.CrossRef Ye D, Guo S, Al-Sadi R, Ma TY. MicroRNA regulation of intestinal epithelial tight junction permeability. Gastroenterology. 2011;141:132–1333.CrossRef
107.
go back to reference Clare S, John V, Walker AW, et al. Enhanced susceptibility to Citrobacter rodentium infection in mircroRNA-155-deficient mice. Infect Immun. 2013;81:723–732.PubMedPubMedCentralCrossRef Clare S, John V, Walker AW, et al. Enhanced susceptibility to Citrobacter rodentium infection in mircroRNA-155-deficient mice. Infect Immun. 2013;81:723–732.PubMedPubMedCentralCrossRef
108.
go back to reference Lippai D, Bala S, Catalano D, Kodys K, Szabo G. Micro-RNA-155 deficiency prevents alcohol-induced serum endotoxin increase and small bowel inflammation in mice. Alcohol Clin Exp Res. 2014;38:2217–2224.PubMedPubMedCentralCrossRef Lippai D, Bala S, Catalano D, Kodys K, Szabo G. Micro-RNA-155 deficiency prevents alcohol-induced serum endotoxin increase and small bowel inflammation in mice. Alcohol Clin Exp Res. 2014;38:2217–2224.PubMedPubMedCentralCrossRef
109.
go back to reference Das LM, Torres-Castillo MDLA, Gill T, Levine AD. TGFβ conditions intestinal T cells to express increased levels of miR-155, associated with downregulation of IL-2 and itk mRNA. Mucosal Immunol. 2013;6:167–176.PubMedPubMedCentralCrossRef Das LM, Torres-Castillo MDLA, Gill T, Levine AD. TGFβ conditions intestinal T cells to express increased levels of miR-155, associated with downregulation of IL-2 and itk mRNA. Mucosal Immunol. 2013;6:167–176.PubMedPubMedCentralCrossRef
110.
go back to reference Brain O, Owens BMJ, Pichulik T, et al. The intracellular sensor NOD2 induces microRNA-29 expression in human dendritic cells to limit IL-23 release. Immunity. 2013;39:521–536.PubMedCrossRef Brain O, Owens BMJ, Pichulik T, et al. The intracellular sensor NOD2 induces microRNA-29 expression in human dendritic cells to limit IL-23 release. Immunity. 2013;39:521–536.PubMedCrossRef
111.
go back to reference Giles DA, Moreno-Fernandez ME, Divanovic S. IL-17 axis driven inflammation in non-alcoholic fatty liver disease progression. Curr Drug Targets. 2015;16:1315–1323.PubMedCrossRef Giles DA, Moreno-Fernandez ME, Divanovic S. IL-17 axis driven inflammation in non-alcoholic fatty liver disease progression. Curr Drug Targets. 2015;16:1315–1323.PubMedCrossRef
112.
go back to reference Takahashi H, Kanno T, Nakayamada S, et al. TGFβ and retinoic acid induce the microRNA miR-10a, which targets bcl-6 and constrains the plasticity of helper T cells. Nat Immunol. 2012;13:587–595.PubMedPubMedCentralCrossRef Takahashi H, Kanno T, Nakayamada S, et al. TGFβ and retinoic acid induce the microRNA miR-10a, which targets bcl-6 and constrains the plasticity of helper T cells. Nat Immunol. 2012;13:587–595.PubMedPubMedCentralCrossRef
113.
go back to reference Reavan GM. Banting lecture 1988: role of insulin resistance in human disease. Diabetes. 1998;37:1595–1607. Reavan GM. Banting lecture 1988: role of insulin resistance in human disease. Diabetes. 1998;37:1595–1607.
114.
go back to reference Grundy SM, Brewer HB Jr, Cleeman JI, et al. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004;109:433–438.PubMedCrossRef Grundy SM, Brewer HB Jr, Cleeman JI, et al. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004;109:433–438.PubMedCrossRef
115.
116.
go back to reference Serafino-Agrusa L, Spatafora M, Scichilone N. Asthma and metabolic syndrome: current knowledge and future perspectives. World J Clin Cases. 2015;3:285–292.PubMedPubMedCentralCrossRef Serafino-Agrusa L, Spatafora M, Scichilone N. Asthma and metabolic syndrome: current knowledge and future perspectives. World J Clin Cases. 2015;3:285–292.PubMedPubMedCentralCrossRef
117.
go back to reference Seetho IW, Wilding JP. Sleep-disordered breathing, type 2 diabetes and the metabolic syndrome. Chron Respir Dis. 2014;11:257–275.PubMedCrossRef Seetho IW, Wilding JP. Sleep-disordered breathing, type 2 diabetes and the metabolic syndrome. Chron Respir Dis. 2014;11:257–275.PubMedCrossRef
118.
go back to reference Baldani DP, Skrgatic L, Ouquaq R. Polycystic ovary syndrome: important underrecognized cardiometabolic risk factor in reproductive-age women. Int J Endocrinol. 2015;2015:786362.PubMedPubMedCentralCrossRef Baldani DP, Skrgatic L, Ouquaq R. Polycystic ovary syndrome: important underrecognized cardiometabolic risk factor in reproductive-age women. Int J Endocrinol. 2015;2015:786362.PubMedPubMedCentralCrossRef
119.
go back to reference Kaya E, Sikka SC, Gur S. A comprehensive review of metabolic syndrome affecting erectile dysfunction. J Sex Med. 2015;12:856–875.PubMedCrossRef Kaya E, Sikka SC, Gur S. A comprehensive review of metabolic syndrome affecting erectile dysfunction. J Sex Med. 2015;12:856–875.PubMedCrossRef
120.
go back to reference Voiculescu VM, Lupu M, Papagheorghe L, Giurcaneanu C, Micu E. Psoriasis and metabolic syndrome—scientific evidence and therapeutic implications. J Med Life. 2014;7:468–471.PubMedPubMedCentral Voiculescu VM, Lupu M, Papagheorghe L, Giurcaneanu C, Micu E. Psoriasis and metabolic syndrome—scientific evidence and therapeutic implications. J Med Life. 2014;7:468–471.PubMedPubMedCentral
121.
123.
go back to reference Legakis I, Syrigos K. Obesity modulation—the role in carcinogenesis. Anticancer Agents Med Chem. 2010;10:481–490.PubMedCrossRef Legakis I, Syrigos K. Obesity modulation—the role in carcinogenesis. Anticancer Agents Med Chem. 2010;10:481–490.PubMedCrossRef
124.
go back to reference Nishiguchi T, Imanishi T, Akasaka T. MicroRNAs and cardiovascular diseases. BioMed Res Int 2015; ID: 682857. Nishiguchi T, Imanishi T, Akasaka T. MicroRNAs and cardiovascular diseases. BioMed Res Int 2015; ID: 682857.
125.
go back to reference Pua HH, Ansel KM. MicroRNA regulation of allergic inflammation and asthma. Curr Opin Immunol. 2015;36:101–108.PubMedCrossRef Pua HH, Ansel KM. MicroRNA regulation of allergic inflammation and asthma. Curr Opin Immunol. 2015;36:101–108.PubMedCrossRef
126.
go back to reference Ebrahimi A, Sadroddiny E. MicroRNAs in lung diseases: recent findings and their pathophysiological implications. Pulm Pharmacol Ther. 2015;34:55–63.PubMedCrossRef Ebrahimi A, Sadroddiny E. MicroRNAs in lung diseases: recent findings and their pathophysiological implications. Pulm Pharmacol Ther. 2015;34:55–63.PubMedCrossRef
127.
go back to reference Sorensen AE, Wissing ML, Salo S, Englund AL, Dalgaard LT. MicroRNAs related to polycystic ovary syndrome (PCOS). Genes (Basel). 2014;5:684–708. Sorensen AE, Wissing ML, Salo S, Englund AL, Dalgaard LT. MicroRNAs related to polycystic ovary syndrome (PCOS). Genes (Basel). 2014;5:684–708.
129.
go back to reference Trionfini P, Benigni A, Remuzzi G. MicroRNAs in kidney physiology and disease. Nat Rev Nephrol. 2015;11:23–33.PubMedCrossRef Trionfini P, Benigni A, Remuzzi G. MicroRNAs in kidney physiology and disease. Nat Rev Nephrol. 2015;11:23–33.PubMedCrossRef
130.
go back to reference Iracheta-Vellve A, Petrasek J, Satishchandran A, et al. Inhibition of sterile danger signals, uric acid and ATP, prevents inflammasome activation and protects from alcoholic steatohepatitis in mice. J Hepatol. 2015;63:1147–1155.PubMedCrossRef Iracheta-Vellve A, Petrasek J, Satishchandran A, et al. Inhibition of sterile danger signals, uric acid and ATP, prevents inflammasome activation and protects from alcoholic steatohepatitis in mice. J Hepatol. 2015;63:1147–1155.PubMedCrossRef
131.
go back to reference Petrasek J, Iracheta-Vellve A, Saha B, et al. Metabolic danger signals, uric acid and ATP, mediate inflammatory cross-talk between hepatocytes and immune cells on alcoholic liver disease. J Leukoc Biol. 2015;98:249–256.PubMedCrossRef Petrasek J, Iracheta-Vellve A, Saha B, et al. Metabolic danger signals, uric acid and ATP, mediate inflammatory cross-talk between hepatocytes and immune cells on alcoholic liver disease. J Leukoc Biol. 2015;98:249–256.PubMedCrossRef
133.
go back to reference Szabo G, Petrasek J. Inflammasome activation and function in liver disease. Nat Rev Gastroenterol Hepatol. 2015;12:387–400.PubMedCrossRef Szabo G, Petrasek J. Inflammasome activation and function in liver disease. Nat Rev Gastroenterol Hepatol. 2015;12:387–400.PubMedCrossRef
134.
go back to reference Baldwin W, McRahe S, Marek G, et al. Hyperuricaemia as a mediator of the proinflammatory endocrine imbalance in the adipose tissue in a murine model of the metabolic syndrome. Diabetes. 2011;60:1258–1269.PubMedPubMedCentralCrossRef Baldwin W, McRahe S, Marek G, et al. Hyperuricaemia as a mediator of the proinflammatory endocrine imbalance in the adipose tissue in a murine model of the metabolic syndrome. Diabetes. 2011;60:1258–1269.PubMedPubMedCentralCrossRef
135.
136.
go back to reference Sun DQ, Wu SJ, Liu WY, et al. Serum uric acid: a new therapeutic target for nonalcoholic fatty liver disease. Expert Opin Ther Targets. 2015;30:1–13. Sun DQ, Wu SJ, Liu WY, et al. Serum uric acid: a new therapeutic target for nonalcoholic fatty liver disease. Expert Opin Ther Targets. 2015;30:1–13.
137.
go back to reference Lin H, Li Q, Liu X, et al. Liver fat content is associated with elevated serum uric acid in the Chinese middle-aged and elderly populations: Shanghai Changfeng Study. PLoS ONE. 2015;10:e40379. Lin H, Li Q, Liu X, et al. Liver fat content is associated with elevated serum uric acid in the Chinese middle-aged and elderly populations: Shanghai Changfeng Study. PLoS ONE. 2015;10:e40379.
138.
go back to reference Dalbeth N, Pool B, Shaw OM, et al. Role of miR-146a in regulation of the acute inflammatory response to monosodium urate crystals. Ann Rheum Dis. 2015;74:786–790.PubMedCrossRef Dalbeth N, Pool B, Shaw OM, et al. Role of miR-146a in regulation of the acute inflammatory response to monosodium urate crystals. Ann Rheum Dis. 2015;74:786–790.PubMedCrossRef
139.
go back to reference Yu S, Hong Q, Wang Y, et al. High concentrations of uric acid inhibit angiogenesis via regulation of the Kruppel-Like-Factor 2-Vascular Endothelial Growth Factor-A axis by miR-92a. Circ J. 2015; PMID: 26299712. Yu S, Hong Q, Wang Y, et al. High concentrations of uric acid inhibit angiogenesis via regulation of the Kruppel-Like-Factor 2-Vascular Endothelial Growth Factor-A axis by miR-92a. Circ J. 2015; PMID: 26299712.
140.
go back to reference Hong Q, Yu S, Geng X, et al. High concentrations of uric acid inhibit endothelial cell migration via miR-663 which regulates phosphatase and tensin homolog by targeting transforming growth factor-β1. Microcirculation. 2015;22:306–314.PubMedCrossRef Hong Q, Yu S, Geng X, et al. High concentrations of uric acid inhibit endothelial cell migration via miR-663 which regulates phosphatase and tensin homolog by targeting transforming growth factor-β1. Microcirculation. 2015;22:306–314.PubMedCrossRef
141.
go back to reference Ciupinska-Kajor M, Hartleb M, Kajor M, et al. Hepatic angiogenesis and fibrosis are common features in morbidly obese patients. Hepatol Int. 2013;7:233–240.PubMedPubMedCentralCrossRef Ciupinska-Kajor M, Hartleb M, Kajor M, et al. Hepatic angiogenesis and fibrosis are common features in morbidly obese patients. Hepatol Int. 2013;7:233–240.PubMedPubMedCentralCrossRef
Metadata
Title
Role of MicroRNAs in NAFLD/NASH
Authors
Gyongyi Szabo
Timea Csak
Publication date
01-05-2016
Publisher
Springer US
Published in
Digestive Diseases and Sciences / Issue 5/2016
Print ISSN: 0163-2116
Electronic ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-015-4002-4

Other articles of this Issue 5/2016

Digestive Diseases and Sciences 5/2016 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.