Skip to main content
Top
Published in: Digestive Diseases and Sciences 5/2016

01-05-2016 | Review

Innate Immunity and Inflammation in NAFLD/NASH

Authors: Marco Arrese, Daniel Cabrera, Alexis M. Kalergis, Ariel E. Feldstein

Published in: Digestive Diseases and Sciences | Issue 5/2016

Login to get access

Abstract

Inflammation and hepatocyte injury and death are the hallmarks of nonalcoholic steatohepatitis (NASH), the progressive form of nonalcoholic fatty liver disease (NAFLD), which is a currently burgeoning public health problem. Innate immune activation is a key factor in triggering and amplifying hepatic inflammation in NAFLD/NASH. Thus, identification of the underlying mechanisms by which immune cells in the liver recognize cell damage signals or the presence of pathogens or pathogen-derived factors that activate them is relevant from a therapeutic perspective. In this review, we present new insights into the factors promoting the inflammatory response in NASH including sterile cell death processes resulting from lipotoxicity in hepatocytes as well as into the altered gut-liver axis function, which involves translocation of bacterial products into portal circulation as a result of gut leakiness. We further delineate the key immune cell types involved and how they recognize both damage-associated molecular patterns or pathogen-associated molecular patterns through binding of surface-expressed pattern recognition receptors, which initiate signaling cascades leading to injury amplification. The relevance of modulating these inflammatory signaling pathways as potential novel therapeutic strategies for the treatment of NASH is summarized.
Literature
1.
go back to reference Sayiner M, Koenig A, Henry L, Younossi ZM. Epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in the United States and the rest of the world. Clin Liver Dis. (Epub ahead of print). doi:10.1016/j.cld.2015.10.001. Sayiner M, Koenig A, Henry L, Younossi ZM. Epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in the United States and the rest of the world. Clin Liver Dis. (Epub ahead of print). doi:10.​1016/​j.​cld.​2015.​10.​001.
2.
go back to reference Satapathy SK, Sanyal AJ. Epidemiology and natural history of nonalcoholic fatty liver disease. Semin Liver Dis. 2015;35:221–235.CrossRefPubMed Satapathy SK, Sanyal AJ. Epidemiology and natural history of nonalcoholic fatty liver disease. Semin Liver Dis. 2015;35:221–235.CrossRefPubMed
3.
go back to reference Yeh MM, Brunt EM. Pathological features of fatty liver disease. Gastroenterology. 2014;147:754–764.CrossRefPubMed Yeh MM, Brunt EM. Pathological features of fatty liver disease. Gastroenterology. 2014;147:754–764.CrossRefPubMed
4.
go back to reference Burt AD, Lackner C, Tiniakos DG. Diagnosis and assessment of NAFLD: definitions and histopathological classification. Semin Liver Dis. 2015;35:207–220.CrossRefPubMed Burt AD, Lackner C, Tiniakos DG. Diagnosis and assessment of NAFLD: definitions and histopathological classification. Semin Liver Dis. 2015;35:207–220.CrossRefPubMed
6.
go back to reference Angulo P, Kleiner DE, Dam-Larsen S, et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology. 2015;149:389–397.CrossRefPubMed Angulo P, Kleiner DE, Dam-Larsen S, et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology. 2015;149:389–397.CrossRefPubMed
7.
go back to reference Charlton MR, Burns JM, Pedersen RA, Watt KD, Heimbach JK, Dierkhising RA. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology. 2011;141:1249–1253.CrossRefPubMed Charlton MR, Burns JM, Pedersen RA, Watt KD, Heimbach JK, Dierkhising RA. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology. 2011;141:1249–1253.CrossRefPubMed
9.
go back to reference Feldstein AE. Novel insights into the pathophysiology of nonalcoholic fatty liver disease. Semin Liver Dis. 2010;30:391–401.CrossRefPubMed Feldstein AE. Novel insights into the pathophysiology of nonalcoholic fatty liver disease. Semin Liver Dis. 2010;30:391–401.CrossRefPubMed
10.
go back to reference de la Higuera-Tijera F, Servin-Caamano AI. Pathophysiological mechanisms involved in nonalcoholic steatohepatitis and novel potential therapeutic targets. World J Hepatol. 2015;7:1297–1301.CrossRef de la Higuera-Tijera F, Servin-Caamano AI. Pathophysiological mechanisms involved in nonalcoholic steatohepatitis and novel potential therapeutic targets. World J Hepatol. 2015;7:1297–1301.CrossRef
11.
12.
go back to reference Hirsova P, Gores GJ. Death receptor-mediated cell death and proinflammatory signaling in nonalcoholic steatohepatitis. Cell Mol Gastroenterol Hepatol. 2015;1:17–27.CrossRefPubMedPubMedCentral Hirsova P, Gores GJ. Death receptor-mediated cell death and proinflammatory signaling in nonalcoholic steatohepatitis. Cell Mol Gastroenterol Hepatol. 2015;1:17–27.CrossRefPubMedPubMedCentral
13.
go back to reference Trauner M, Arrese M, Wagner M. Fatty liver and lipotoxicity. Biochim Biophys Acta. 2010;1801:299–310.CrossRefPubMed Trauner M, Arrese M, Wagner M. Fatty liver and lipotoxicity. Biochim Biophys Acta. 2010;1801:299–310.CrossRefPubMed
14.
15.
go back to reference Zambo V, Simon-Szabo L, Szelenyi P, Kereszturi E, Banhegyi G, Csala M. Lipotoxicity in the liver. World J Hepatol. 2013;5:550–557.PubMedPubMedCentral Zambo V, Simon-Szabo L, Szelenyi P, Kereszturi E, Banhegyi G, Csala M. Lipotoxicity in the liver. World J Hepatol. 2013;5:550–557.PubMedPubMedCentral
16.
go back to reference Arguello G, Balboa E, Arrese M, Zanlungo S. Recent insights on the role of cholesterol in nonalcoholic fatty liver disease. Biochim Biophys Acta. 2015;1852:1765–1778.CrossRefPubMed Arguello G, Balboa E, Arrese M, Zanlungo S. Recent insights on the role of cholesterol in nonalcoholic fatty liver disease. Biochim Biophys Acta. 2015;1852:1765–1778.CrossRefPubMed
18.
go back to reference Feldstein AE, Canbay A, Angulo P, et al. Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology. 2003;125:437–443.CrossRefPubMed Feldstein AE, Canbay A, Angulo P, et al. Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology. 2003;125:437–443.CrossRefPubMed
19.
go back to reference Luedde T, Kaplowitz N, Schwabe RF. Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology. 2014;147:765–783. (e764).CrossRefPubMedPubMedCentral Luedde T, Kaplowitz N, Schwabe RF. Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology. 2014;147:765–783. (e764).CrossRefPubMedPubMedCentral
20.
go back to reference Wree A, Eguchi A, McGeough MD, et al. NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice. Hepatology. 2014;59:898–910.CrossRefPubMedPubMedCentral Wree A, Eguchi A, McGeough MD, et al. NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice. Hepatology. 2014;59:898–910.CrossRefPubMedPubMedCentral
21.
go back to reference Afonso MB, Rodrigues PM, Carvalho T, et al. Necroptosis is a key pathogenic event in human and experimental murine models of nonalcoholic steatohepatitis. Clin Sci (Lond). 2015;129:721–739.CrossRef Afonso MB, Rodrigues PM, Carvalho T, et al. Necroptosis is a key pathogenic event in human and experimental murine models of nonalcoholic steatohepatitis. Clin Sci (Lond). 2015;129:721–739.CrossRef
22.
go back to reference Alkhouri N, Carter-Kent C, Feldstein AE. Apoptosis in nonalcoholic fatty liver disease: diagnostic and therapeutic implications. Expert Rev Gastroenterol Hepatol. 2011;5:201–212.CrossRefPubMedPubMedCentral Alkhouri N, Carter-Kent C, Feldstein AE. Apoptosis in nonalcoholic fatty liver disease: diagnostic and therapeutic implications. Expert Rev Gastroenterol Hepatol. 2011;5:201–212.CrossRefPubMedPubMedCentral
24.
go back to reference Mehal WZ. The inflammasome in liver injury and nonalcoholic fatty liver disease. Dig Dis. 2014;32:507–515.CrossRefPubMed Mehal WZ. The inflammasome in liver injury and nonalcoholic fatty liver disease. Dig Dis. 2014;32:507–515.CrossRefPubMed
25.
go back to reference Szabo G, Petrasek J. Inflammasome activation and function in liver disease. Nat Rev Gastroenterol Hepatol. 2015;12:387–400.CrossRefPubMed Szabo G, Petrasek J. Inflammasome activation and function in liver disease. Nat Rev Gastroenterol Hepatol. 2015;12:387–400.CrossRefPubMed
27.
go back to reference Jindal A, Bruzzi S, Sutti S, et al. Fat-laden macrophages modulate lobular inflammation in nonalcoholic steatohepatitis (NASH). Exp Mol Pathol. 2015;99:155–162.CrossRefPubMed Jindal A, Bruzzi S, Sutti S, et al. Fat-laden macrophages modulate lobular inflammation in nonalcoholic steatohepatitis (NASH). Exp Mol Pathol. 2015;99:155–162.CrossRefPubMed
29.
30.
go back to reference Miura K, Yang L, van Rooijen N, Brenner DA, Ohnishi H, Seki E. Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology. 2013;57:577–589.CrossRefPubMedPubMedCentral Miura K, Yang L, van Rooijen N, Brenner DA, Ohnishi H, Seki E. Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology. 2013;57:577–589.CrossRefPubMedPubMedCentral
31.
go back to reference Garcia-Martinez I, Shaker ME, Mehal WZ. Therapeutic opportunities in damage-associated molecular pattern-driven metabolic diseases. Antioxid Redox Signal. 2015;23:1305–1315.CrossRefPubMedPubMedCentral Garcia-Martinez I, Shaker ME, Mehal WZ. Therapeutic opportunities in damage-associated molecular pattern-driven metabolic diseases. Antioxid Redox Signal. 2015;23:1305–1315.CrossRefPubMedPubMedCentral
32.
go back to reference Uchida K. Natural antibodies as a sensor of electronegative damage-associated molecular patterns (DAMPs). Free Radical Biol Med. 2014;72:156–161.CrossRef Uchida K. Natural antibodies as a sensor of electronegative damage-associated molecular patterns (DAMPs). Free Radical Biol Med. 2014;72:156–161.CrossRef
33.
go back to reference Huebener P, Pradere JP, Hernandez C, et al. The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis. J Clin Invest. 2015;125:539–550.CrossRefPubMedPubMedCentral Huebener P, Pradere JP, Hernandez C, et al. The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis. J Clin Invest. 2015;125:539–550.CrossRefPubMedPubMedCentral
34.
go back to reference Seki E, Brenner DA. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology. 2008;48:322–335.CrossRefPubMed Seki E, Brenner DA. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology. 2008;48:322–335.CrossRefPubMed
36.
go back to reference Petrasek J, Csak T, Szabo G. Toll-like receptors in liver disease. Adv Clin Chem. 2013;59:155–201.CrossRefPubMed Petrasek J, Csak T, Szabo G. Toll-like receptors in liver disease. Adv Clin Chem. 2013;59:155–201.CrossRefPubMed
37.
go back to reference Bieghs V, Trautwein C. Innate immune signaling and gut-liver interactions in nonalcoholic fatty liver disease. Hepatobiliary Surg Nutr. 2014;3:377–385.PubMedPubMedCentral Bieghs V, Trautwein C. Innate immune signaling and gut-liver interactions in nonalcoholic fatty liver disease. Hepatobiliary Surg Nutr. 2014;3:377–385.PubMedPubMedCentral
38.
go back to reference Netea MG, van der Meer JW. Immunodeficiency and genetic defects of pattern-recognition receptors. N Eng J Med. 2011;364:60–70.CrossRef Netea MG, van der Meer JW. Immunodeficiency and genetic defects of pattern-recognition receptors. N Eng J Med. 2011;364:60–70.CrossRef
39.
40.
go back to reference Miura K, Kodama Y, Inokuchi S, et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology. 2010;139:323–334. (e327).CrossRefPubMedPubMedCentral Miura K, Kodama Y, Inokuchi S, et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology. 2010;139:323–334. (e327).CrossRefPubMedPubMedCentral
41.
go back to reference Ehses JA, Meier DT, Wueest S, et al. Toll-like receptor 2-deficient mice are protected from insulin resistance and beta cell dysfunction induced by a high-fat diet. Diabetologia. 2010;53:1795–1806.CrossRefPubMed Ehses JA, Meier DT, Wueest S, et al. Toll-like receptor 2-deficient mice are protected from insulin resistance and beta cell dysfunction induced by a high-fat diet. Diabetologia. 2010;53:1795–1806.CrossRefPubMed
42.
go back to reference Szabo G, Petrasek J. Inflammasome activation and function in liver disease. Nat Rev Gastroenterol Hepatol. 2015;1247:387–400.CrossRef Szabo G, Petrasek J. Inflammasome activation and function in liver disease. Nat Rev Gastroenterol Hepatol. 2015;1247:387–400.CrossRef
43.
go back to reference Wree A, McGeough MD, Pena CA, et al. NLRP3 inflammasome activation is required for fibrosis development in NAFLD. J Mol Med (Berl). 2014;92:1069–1082.CrossRef Wree A, McGeough MD, Pena CA, et al. NLRP3 inflammasome activation is required for fibrosis development in NAFLD. J Mol Med (Berl). 2014;92:1069–1082.CrossRef
44.
45.
go back to reference Duarte N, Coelho IC, Patarrao RS, Almeida JI, Penha-Goncalves C, Macedo MP. How inflammation impinges on NAFLD: a role for Kupffer cells. Biomed Res Int. 2015;2015:984578.CrossRefPubMedPubMedCentral Duarte N, Coelho IC, Patarrao RS, Almeida JI, Penha-Goncalves C, Macedo MP. How inflammation impinges on NAFLD: a role for Kupffer cells. Biomed Res Int. 2015;2015:984578.CrossRefPubMedPubMedCentral
46.
go back to reference Lanthier N. Targeting Kupffer cells in nonalcoholic fatty liver disease/nonalcoholic steatohepatitis: why and how? World J Hepatol. 2015;7:2184–2188.CrossRefPubMedPubMedCentral Lanthier N. Targeting Kupffer cells in nonalcoholic fatty liver disease/nonalcoholic steatohepatitis: why and how? World J Hepatol. 2015;7:2184–2188.CrossRefPubMedPubMedCentral
47.
go back to reference Gadd VL, Skoien R, Powell EE, et al. The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease. Hepatology. 2014;59:1393–1405.CrossRefPubMed Gadd VL, Skoien R, Powell EE, et al. The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease. Hepatology. 2014;59:1393–1405.CrossRefPubMed
48.
go back to reference Tacke F, Zimmermann HW. Macrophage heterogeneity in liver injury and fibrosis. J Hepatol. 2014;60:1090–1096.CrossRefPubMed Tacke F, Zimmermann HW. Macrophage heterogeneity in liver injury and fibrosis. J Hepatol. 2014;60:1090–1096.CrossRefPubMed
49.
go back to reference Marra F, Tacke F. Roles for chemokines in liver disease. Gastroenterology. 2014;147:577–594. (e571).CrossRefPubMed Marra F, Tacke F. Roles for chemokines in liver disease. Gastroenterology. 2014;147:577–594. (e571).CrossRefPubMed
50.
go back to reference Leroux A, Ferrere G, Godie V, et al. Toxic lipids stored by Kupffer cells correlates with their pro-inflammatory phenotype at an early stage of steatohepatitis. J Hepatol. 2012;57:141–149.CrossRefPubMed Leroux A, Ferrere G, Godie V, et al. Toxic lipids stored by Kupffer cells correlates with their pro-inflammatory phenotype at an early stage of steatohepatitis. J Hepatol. 2012;57:141–149.CrossRefPubMed
51.
go back to reference Sawada K, Ohtake T, Hasebe T, et al. Augmented hepatic Toll-like receptors by fatty acids trigger the pro-inflammatory state of nonalcoholic fatty liver disease in mice. Hepatol Res. 2014;44:920–934.CrossRefPubMed Sawada K, Ohtake T, Hasebe T, et al. Augmented hepatic Toll-like receptors by fatty acids trigger the pro-inflammatory state of nonalcoholic fatty liver disease in mice. Hepatol Res. 2014;44:920–934.CrossRefPubMed
52.
go back to reference Fallowfield JA, Mizuno M, Kendall TJ, et al. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J Immunol. 2007;178:5288–5295.CrossRefPubMed Fallowfield JA, Mizuno M, Kendall TJ, et al. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J Immunol. 2007;178:5288–5295.CrossRefPubMed
53.
54.
go back to reference Tacke F, Yoneyama H. From NAFLD to NASH to fibrosis to HCC: role of dendritic cell populations in the liver. Hepatology. 2013;58:494–496.CrossRefPubMed Tacke F, Yoneyama H. From NAFLD to NASH to fibrosis to HCC: role of dendritic cell populations in the liver. Hepatology. 2013;58:494–496.CrossRefPubMed
55.
go back to reference Lukacs-Kornek V, Schuppan D. Dendritic cells in liver injury and fibrosis: shortcomings and promises. J Hepatol. 2013;59:1124–1126.CrossRefPubMed Lukacs-Kornek V, Schuppan D. Dendritic cells in liver injury and fibrosis: shortcomings and promises. J Hepatol. 2013;59:1124–1126.CrossRefPubMed
56.
go back to reference Henning JR, Graffeo CS, Rehman A, et al. Dendritic cells limit fibroinflammatory injury in nonalcoholic steatohepatitis in mice. Hepatology. 2013;58:589–602.CrossRefPubMedPubMedCentral Henning JR, Graffeo CS, Rehman A, et al. Dendritic cells limit fibroinflammatory injury in nonalcoholic steatohepatitis in mice. Hepatology. 2013;58:589–602.CrossRefPubMedPubMedCentral
57.
go back to reference Sutti S, Locatelli I, Bruzzi S, et al. CX3CR1-expressing inflammatory dendritic cells contribute to the progression of steatohepatitis. Clin Sci (Lond). 2015;129:797–808.CrossRef Sutti S, Locatelli I, Bruzzi S, et al. CX3CR1-expressing inflammatory dendritic cells contribute to the progression of steatohepatitis. Clin Sci (Lond). 2015;129:797–808.CrossRef
60.
go back to reference Rensen SS, Bieghs V, Xanthoulea S, et al. Neutrophil-derived myeloperoxidase aggravates nonalcoholic steatohepatitis in low-density lipoprotein receptor-deficient mice. PLoS One. 2012;7:e52411.CrossRefPubMedPubMedCentral Rensen SS, Bieghs V, Xanthoulea S, et al. Neutrophil-derived myeloperoxidase aggravates nonalcoholic steatohepatitis in low-density lipoprotein receptor-deficient mice. PLoS One. 2012;7:e52411.CrossRefPubMedPubMedCentral
61.
go back to reference Ibusuki R, Uto H, Arima S, et al. Transgenic expression of human neutrophil peptide-1 enhances hepatic fibrosis in mice fed a choline-deficient, L-amino acid-defined diet. Liver Int. 2013;33:1549–1556.PubMed Ibusuki R, Uto H, Arima S, et al. Transgenic expression of human neutrophil peptide-1 enhances hepatic fibrosis in mice fed a choline-deficient, L-amino acid-defined diet. Liver Int. 2013;33:1549–1556.PubMed
62.
go back to reference Talukdar S, da Oh Y, Bandyopadhyay G, et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med. 2012;18:1407–1412.CrossRefPubMedPubMedCentral Talukdar S, da Oh Y, Bandyopadhyay G, et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med. 2012;18:1407–1412.CrossRefPubMedPubMedCentral
64.
go back to reference Geissmann F, Cameron TO, Sidobre S, et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol. 2005;3:e113.CrossRefPubMedPubMedCentral Geissmann F, Cameron TO, Sidobre S, et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol. 2005;3:e113.CrossRefPubMedPubMedCentral
66.
go back to reference Martin-Murphy BV, You Q, Wang H, et al. Mice lacking natural killer T cells are more susceptible to metabolic alterations following high fat diet feeding. PLoS One. 2014;9:e80949.CrossRefPubMedPubMedCentral Martin-Murphy BV, You Q, Wang H, et al. Mice lacking natural killer T cells are more susceptible to metabolic alterations following high fat diet feeding. PLoS One. 2014;9:e80949.CrossRefPubMedPubMedCentral
67.
go back to reference Elinav E, Pappo O, Sklair-Levy M, et al. Adoptive transfer of regulatory NKT lymphocytes ameliorates nonalcoholic steatohepatitis and glucose intolerance in ob/ob mice and is associated with intrahepatic CD8 trapping. J Pathol. 2006;209:121–128.CrossRefPubMed Elinav E, Pappo O, Sklair-Levy M, et al. Adoptive transfer of regulatory NKT lymphocytes ameliorates nonalcoholic steatohepatitis and glucose intolerance in ob/ob mice and is associated with intrahepatic CD8 trapping. J Pathol. 2006;209:121–128.CrossRefPubMed
68.
go back to reference Kremer M, Thomas E, Milton RJ, et al. Kupffer cell and interleukin-12-dependent loss of natural killer T cells in hepatosteatosis. Hepatology. 2010;51:130–141.CrossRefPubMedPubMedCentral Kremer M, Thomas E, Milton RJ, et al. Kupffer cell and interleukin-12-dependent loss of natural killer T cells in hepatosteatosis. Hepatology. 2010;51:130–141.CrossRefPubMedPubMedCentral
69.
go back to reference Tajiri K, Shimizu Y, Tsuneyama K, Sugiyama T. Role of liver-infiltrating CD3+CD56+ natural killer T cells in the pathogenesis of nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol. 2009;21:673–680.CrossRefPubMed Tajiri K, Shimizu Y, Tsuneyama K, Sugiyama T. Role of liver-infiltrating CD3+CD56+ natural killer T cells in the pathogenesis of nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol. 2009;21:673–680.CrossRefPubMed
70.
go back to reference Syn WK, Oo YH, Pereira TA, et al. Accumulation of natural killer T cells in progressive nonalcoholic fatty liver disease. Hepatology. 2010;51:1998–2007.CrossRefPubMedPubMedCentral Syn WK, Oo YH, Pereira TA, et al. Accumulation of natural killer T cells in progressive nonalcoholic fatty liver disease. Hepatology. 2010;51:1998–2007.CrossRefPubMedPubMedCentral
72.
go back to reference Kirpich IA, Marsano LS, McClain CJ. Gut-liver axis, nutrition, and nonalcoholic fatty liver disease. Clin Biochem. 2015;48:923–930.CrossRefPubMed Kirpich IA, Marsano LS, McClain CJ. Gut-liver axis, nutrition, and nonalcoholic fatty liver disease. Clin Biochem. 2015;48:923–930.CrossRefPubMed
73.
go back to reference Vajro P, Paolella G, Fasano A. Microbiota and gut-liver axis: their influences on obesity and obesity-related liver disease. J Pediatr Gastroenterol Nutr. 2013;56:461–468.CrossRefPubMedPubMedCentral Vajro P, Paolella G, Fasano A. Microbiota and gut-liver axis: their influences on obesity and obesity-related liver disease. J Pediatr Gastroenterol Nutr. 2013;56:461–468.CrossRefPubMedPubMedCentral
74.
go back to reference Federico A, Dallio M, Godos J, Loguercio C, Salomone F. Targeting gut-liver axis for the treatment of nonalcoholic steatohepatitis: translational and clinical evidence. Transl Res (Epub ahead of print). doi:10.1016/j.trsl.2015.08.002. Federico A, Dallio M, Godos J, Loguercio C, Salomone F. Targeting gut-liver axis for the treatment of nonalcoholic steatohepatitis: translational and clinical evidence. Transl Res (Epub ahead of print). doi:10.​1016/​j.​trsl.​2015.​08.​002.
75.
go back to reference Kuipers F, Bloks VW, Groen AK. Beyond intestinal soap–bile acids in metabolic control. Nat Rev Endocrinol. 2014;10:488–498.CrossRefPubMed Kuipers F, Bloks VW, Groen AK. Beyond intestinal soap–bile acids in metabolic control. Nat Rev Endocrinol. 2014;10:488–498.CrossRefPubMed
76.
go back to reference Liu HX, Keane R, Sheng L, Wan YY. Implications of microbiota and bile acid in liver injury and regeneration. J Hepatol. 2015;63:1502–1510.CrossRefPubMed Liu HX, Keane R, Sheng L, Wan YY. Implications of microbiota and bile acid in liver injury and regeneration. J Hepatol. 2015;63:1502–1510.CrossRefPubMed
77.
78.
go back to reference Giorgio V, Miele L, Principessa L, et al. Intestinal permeability is increased in children with nonalcoholic fatty liver disease, and correlates with liver disease severity. Dig Liver Dis. 2014;46:556–560.CrossRefPubMed Giorgio V, Miele L, Principessa L, et al. Intestinal permeability is increased in children with nonalcoholic fatty liver disease, and correlates with liver disease severity. Dig Liver Dis. 2014;46:556–560.CrossRefPubMed
79.
go back to reference Luther J, Garber JJ, Khalili H, et al. Hepatic injury in nonalcoholic steatohepatitis contributes to altered intestinal permeability. Cell Mol Gastroenterol Hepatol. 2015;1:222–232.CrossRefPubMedPubMedCentral Luther J, Garber JJ, Khalili H, et al. Hepatic injury in nonalcoholic steatohepatitis contributes to altered intestinal permeability. Cell Mol Gastroenterol Hepatol. 2015;1:222–232.CrossRefPubMedPubMedCentral
80.
go back to reference Teixeira TF, Collado MC, Ferreira CL, Bressan J, Peluzio Mdo C. Potential mechanisms for the emerging link between obesity and increased intestinal permeability. Nutr Res. 2012;32:637–647.CrossRefPubMed Teixeira TF, Collado MC, Ferreira CL, Bressan J, Peluzio Mdo C. Potential mechanisms for the emerging link between obesity and increased intestinal permeability. Nutr Res. 2012;32:637–647.CrossRefPubMed
81.
go back to reference Miele L, Valenza V, La Torre G, et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology. 2009;49:1877–1887.CrossRefPubMed Miele L, Valenza V, La Torre G, et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology. 2009;49:1877–1887.CrossRefPubMed
82.
go back to reference Schneider KM, Bieghs V, Heymann F, et al. CX3CR1 is a gatekeeper for intestinal barrier integrity in mice: limiting steatohepatitis by maintaining intestinal homeostasis. Hepatology. 2015;62:1405–1416.CrossRefPubMed Schneider KM, Bieghs V, Heymann F, et al. CX3CR1 is a gatekeeper for intestinal barrier integrity in mice: limiting steatohepatitis by maintaining intestinal homeostasis. Hepatology. 2015;62:1405–1416.CrossRefPubMed
83.
go back to reference Vonghia L, Francque S. Cross talk of the immune system in the adipose tissue and the liver in nonalcoholic steatohepatitis: pathology and beyond. World J Hepatol. 2015;7:1905–1912.CrossRefPubMedPubMedCentral Vonghia L, Francque S. Cross talk of the immune system in the adipose tissue and the liver in nonalcoholic steatohepatitis: pathology and beyond. World J Hepatol. 2015;7:1905–1912.CrossRefPubMedPubMedCentral
84.
go back to reference Ramadori P, Kroy D, Streetz KL. Immunoregulation by lipids during the development of nonalcoholic steatohepatitis. Hepatobiliary Surg Nutr. 2015;4:11–23.PubMedPubMedCentral Ramadori P, Kroy D, Streetz KL. Immunoregulation by lipids during the development of nonalcoholic steatohepatitis. Hepatobiliary Surg Nutr. 2015;4:11–23.PubMedPubMedCentral
85.
go back to reference Moschen AR, Wieser V, Tilg H. Adiponectin: key player in the adipose tissue-liver crosstalk. Curr Med Chem. 2012;19:5467–5473.CrossRefPubMed Moschen AR, Wieser V, Tilg H. Adiponectin: key player in the adipose tissue-liver crosstalk. Curr Med Chem. 2012;19:5467–5473.CrossRefPubMed
86.
go back to reference Wan J, Benkdane M, Teixeira-Clerc F, et al. M2 Kupffer cells promote M1 Kupffer cell apoptosis: a protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology. 2014;59:130–142.CrossRefPubMed Wan J, Benkdane M, Teixeira-Clerc F, et al. M2 Kupffer cells promote M1 Kupffer cell apoptosis: a protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology. 2014;59:130–142.CrossRefPubMed
87.
go back to reference Arrese M, Cabrera D, Barrera F. Obeticholic acid: expanding the therapeutic landscape of NASH. Ann Hepatol. 2015;14:430–432.PubMed Arrese M, Cabrera D, Barrera F. Obeticholic acid: expanding the therapeutic landscape of NASH. Ann Hepatol. 2015;14:430–432.PubMed
88.
go back to reference Cariou B, Staels B. GFT505 for the treatment of nonalcoholic steatohepatitis and type 2 diabetes. Expert Opin Invest Drugs. 2014;23:1441–1448.CrossRef Cariou B, Staels B. GFT505 for the treatment of nonalcoholic steatohepatitis and type 2 diabetes. Expert Opin Invest Drugs. 2014;23:1441–1448.CrossRef
Metadata
Title
Innate Immunity and Inflammation in NAFLD/NASH
Authors
Marco Arrese
Daniel Cabrera
Alexis M. Kalergis
Ariel E. Feldstein
Publication date
01-05-2016
Publisher
Springer US
Published in
Digestive Diseases and Sciences / Issue 5/2016
Print ISSN: 0163-2116
Electronic ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-016-4049-x

Other articles of this Issue 5/2016

Digestive Diseases and Sciences 5/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.