Skip to main content
Top
Published in: Clinical & Experimental Metastasis 1/2012

01-01-2012 | Research Paper

Differential microstructure and physiology of brain and bone metastases in a rat breast cancer model by diffusion and dynamic contrast enhanced MRI

Authors: Matthew D. Budde, Eric Gold, E. Kay Jordan, Joseph A. Frank

Published in: Clinical & Experimental Metastasis | Issue 1/2012

Login to get access

Abstract

Pharmacological approaches to treat breast cancer metastases in the brain have been met with limited success. In part, the impermeability of the blood brain barrier (BBB) has hindered delivery of chemotherapeutic agents to metastatic tumors in the brain. BBB-permeable chemotherapeutic drugs are being developed, and noninvasively assessing the efficacy of these agents will be important in both preclinical and clinical settings. In this regard, dynamic contrast enhanced (DCE) and diffusion weighted imaging (DWI) are magnetic resonance imaging (MRI) techniques to monitor tumor vascular permeability and cellularity, respectively. In a rat model of metastatic breast cancer, we demonstrate that brain and bone metastases develop with distinct physiological characteristics as measured with MRI. Specifically, brain metastases have limited permeability of the BBB as assessed with DCE and an increased apparent diffusion coefficient (ADC) measured with DWI compared to the surrounding brain. Microscopically, brain metastases were highly infiltrative, grew through vessel co-option, and caused extensive edema and injury to the surrounding neurons and their dendrites. By comparison, metastases situated in the leptomenengies or in the bone had high vascular permeability and significantly lower ADC values suggestive of hypercellularity. On histological examination, tumors in the bone and leptomenengies were solid masses with distinct tumor margins. The different characteristics of these tissue sites highlight the influence of the microenvironment on metastatic tumor growth. In light of these results, the suitability of DWI and DCE to evaluate the response of chemotherapeutic and anti-angiogenic agents used to treat co-opted brain metastases, respectively, remains a formidable challenge.
Literature
1.
go back to reference Tkaczuk KH (2009) Review of the contemporary cytotoxic and biologic combinations available for the treatment of metastatic breast cancer. Clin Ther 31(Pt 2):2273–2289PubMedCrossRef Tkaczuk KH (2009) Review of the contemporary cytotoxic and biologic combinations available for the treatment of metastatic breast cancer. Clin Ther 31(Pt 2):2273–2289PubMedCrossRef
2.
go back to reference Gril B et al (2010) Translational research in brain metastasis is identifying molecular pathways that may lead to the development of new therapeutic strategies. Eur J Cancer 46(7):1204–1210PubMedCrossRef Gril B et al (2010) Translational research in brain metastasis is identifying molecular pathways that may lead to the development of new therapeutic strategies. Eur J Cancer 46(7):1204–1210PubMedCrossRef
3.
go back to reference Steeg PS, Theodorescu D (2008) Metastasis: a therapeutic target for cancer. Nat Clin Pract 5(4):206–219CrossRef Steeg PS, Theodorescu D (2008) Metastasis: a therapeutic target for cancer. Nat Clin Pract 5(4):206–219CrossRef
4.
go back to reference Weil RJ et al (2005) Breast cancer metastasis to the central nervous system. Am J Pathol 167(4):913–920PubMedCrossRef Weil RJ et al (2005) Breast cancer metastasis to the central nervous system. Am J Pathol 167(4):913–920PubMedCrossRef
5.
go back to reference Nicolson GL (1988) Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev 7(2):143–188PubMedCrossRef Nicolson GL (1988) Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev 7(2):143–188PubMedCrossRef
6.
go back to reference Palmieri D et al (2007) The biology of metastasis to a sanctuary site. Clin Cancer Res 13(6):1656–1662PubMedCrossRef Palmieri D et al (2007) The biology of metastasis to a sanctuary site. Clin Cancer Res 13(6):1656–1662PubMedCrossRef
7.
go back to reference Carbonell WS et al (2009) The vascular basement membrane as “soil” in brain metastasis. PLoS One 4(6):e5857PubMedCrossRef Carbonell WS et al (2009) The vascular basement membrane as “soil” in brain metastasis. PLoS One 4(6):e5857PubMedCrossRef
8.
go back to reference Kienast Y et al (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16(1):116–122PubMedCrossRef Kienast Y et al (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16(1):116–122PubMedCrossRef
9.
go back to reference Lockman PR et al (2010) Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res 16(23):5664–5678PubMedCrossRef Lockman PR et al (2010) Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res 16(23):5664–5678PubMedCrossRef
10.
go back to reference Thomas FC et al (2009) Uptake of ANG1005, a novel paclitaxel derivative, through the blood-brain barrier into brain and experimental brain metastases of breast cancer. Pharm Res 26(11):2486–2494PubMedCrossRef Thomas FC et al (2009) Uptake of ANG1005, a novel paclitaxel derivative, through the blood-brain barrier into brain and experimental brain metastases of breast cancer. Pharm Res 26(11):2486–2494PubMedCrossRef
11.
go back to reference Leenders WP et al (2004) Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option. Clin Cancer Res 10(18 Pt 1):6222–6230PubMedCrossRef Leenders WP et al (2004) Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option. Clin Cancer Res 10(18 Pt 1):6222–6230PubMedCrossRef
12.
go back to reference Lin NU et al (2008) Phase II trial of lapatinib for brain metastases in patients with human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol 26(12):1993–1999PubMedCrossRef Lin NU et al (2008) Phase II trial of lapatinib for brain metastases in patients with human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol 26(12):1993–1999PubMedCrossRef
13.
go back to reference Luu TH et al (2008) A phase II trial of vorinostat (suberoylanilide hydroxamic acid) in metastatic breast cancer: a California Cancer Consortium study. Clin Cancer Res 14(21):7138–7142PubMedCrossRef Luu TH et al (2008) A phase II trial of vorinostat (suberoylanilide hydroxamic acid) in metastatic breast cancer: a California Cancer Consortium study. Clin Cancer Res 14(21):7138–7142PubMedCrossRef
14.
go back to reference Trudeau ME et al (2006) Temozolomide in metastatic breast cancer (MBC): a phase II trial of the National Cancer Institute of Canada—Clinical Trials Group (NCIC-CTG). Ann Oncol 17(6):952–956PubMedCrossRef Trudeau ME et al (2006) Temozolomide in metastatic breast cancer (MBC): a phase II trial of the National Cancer Institute of Canada—Clinical Trials Group (NCIC-CTG). Ann Oncol 17(6):952–956PubMedCrossRef
15.
go back to reference Morris PG, McArthur HL, Hudis CA (2009) Therapeutic options for metastatic breast cancer. Expert Opin Pharmacother 10(6):967–981PubMedCrossRef Morris PG, McArthur HL, Hudis CA (2009) Therapeutic options for metastatic breast cancer. Expert Opin Pharmacother 10(6):967–981PubMedCrossRef
16.
go back to reference Marty M, Pivot X (2008) The potential of anti-vascular endothelial growth factor therapy in metastatic breast cancer: clinical experience with anti-angiogenic agents, focusing on bevacizumab. Eur J Cancer 44(7):912–920PubMedCrossRef Marty M, Pivot X (2008) The potential of anti-vascular endothelial growth factor therapy in metastatic breast cancer: clinical experience with anti-angiogenic agents, focusing on bevacizumab. Eur J Cancer 44(7):912–920PubMedCrossRef
17.
go back to reference Eisenhauer EA et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247PubMedCrossRef Eisenhauer EA et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247PubMedCrossRef
18.
go back to reference Moffat BA et al (2005) Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci USA 102(15):5524–5529PubMedCrossRef Moffat BA et al (2005) Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci USA 102(15):5524–5529PubMedCrossRef
19.
go back to reference Moffat BA et al (2006) The functional diffusion map: an imaging biomarker for the early prediction of cancer treatment outcome. Neoplasia 8(4):259–267PubMedCrossRef Moffat BA et al (2006) The functional diffusion map: an imaging biomarker for the early prediction of cancer treatment outcome. Neoplasia 8(4):259–267PubMedCrossRef
21.
go back to reference Sargent DJ et al (2009) Validation of novel imaging methodologies for use as cancer clinical trial end-points. Eur J Cancer 45(2):290–299PubMedCrossRef Sargent DJ et al (2009) Validation of novel imaging methodologies for use as cancer clinical trial end-points. Eur J Cancer 45(2):290–299PubMedCrossRef
22.
go back to reference Song HT et al (2009) Rat model of metastatic breast cancer monitored by MRI at 3 tesla and bioluminescence imaging with histological correlation. J Transl Med 7:88PubMedCrossRef Song HT et al (2009) Rat model of metastatic breast cancer monitored by MRI at 3 tesla and bioluminescence imaging with histological correlation. J Transl Med 7:88PubMedCrossRef
23.
go back to reference Hasan KM, Parker DL, Alexander AL (2001) Comparison of gradient encoding schemes for diffusion-tensor MRI. J Magn Reson Imaging 13(5):769–780PubMedCrossRef Hasan KM, Parker DL, Alexander AL (2001) Comparison of gradient encoding schemes for diffusion-tensor MRI. J Magn Reson Imaging 13(5):769–780PubMedCrossRef
24.
go back to reference Wang HZ, Riederer SJ, Lee JN (1987) Optimizing the precision in T1 relaxation estimation using limited flip angles. Magn Reson Med 5(5):399–416PubMedCrossRef Wang HZ, Riederer SJ, Lee JN (1987) Optimizing the precision in T1 relaxation estimation using limited flip angles. Magn Reson Med 5(5):399–416PubMedCrossRef
25.
go back to reference Yankeelov TE, Gore JC (2009) Dynamic contrast enhanced magnetic resonance imaging in oncology: theory, data acquisition, analysis, and examples. Curr Med Imaging Rev 3(2):91–107PubMedCrossRef Yankeelov TE, Gore JC (2009) Dynamic contrast enhanced magnetic resonance imaging in oncology: theory, data acquisition, analysis, and examples. Curr Med Imaging Rev 3(2):91–107PubMedCrossRef
26.
go back to reference Parker GJ et al (1997) Probing tumor microvascularity by measurement, analysis and display of contrast agent uptake kinetics. J Magn Reson Imaging 7(3):564–574PubMedCrossRef Parker GJ et al (1997) Probing tumor microvascularity by measurement, analysis and display of contrast agent uptake kinetics. J Magn Reson Imaging 7(3):564–574PubMedCrossRef
27.
go back to reference Noebauer-Huhmann IM et al (2010) Gadolinium-based magnetic resonance contrast agents at 7 Tesla: in vitro T1 relaxivities in human blood plasma. Invest Radiol 45(9):554–558PubMedCrossRef Noebauer-Huhmann IM et al (2010) Gadolinium-based magnetic resonance contrast agents at 7 Tesla: in vitro T1 relaxivities in human blood plasma. Invest Radiol 45(9):554–558PubMedCrossRef
28.
go back to reference Woods RP et al (1998) Automated image registration: II. Intersubject validation of linear and nonlinear models. J Comput Assist Tomogr 22(1):153–165PubMedCrossRef Woods RP et al (1998) Automated image registration: II. Intersubject validation of linear and nonlinear models. J Comput Assist Tomogr 22(1):153–165PubMedCrossRef
29.
go back to reference Hawkins BT, Egleton RD (2006) Fluorescence imaging of blood-brain barrier disruption. J Neurosci Methods 151(2):262–267PubMedCrossRef Hawkins BT, Egleton RD (2006) Fluorescence imaging of blood-brain barrier disruption. J Neurosci Methods 151(2):262–267PubMedCrossRef
30.
go back to reference Bauerle T et al (2010) Drug-induced vessel remodeling in bone metastases as assessed by dynamic contrast enhanced magnetic resonance imaging and vessel size imaging: a longitudinal in vivo study. Clin Cancer Res 16(12):3215–3225PubMedCrossRef Bauerle T et al (2010) Drug-induced vessel remodeling in bone metastases as assessed by dynamic contrast enhanced magnetic resonance imaging and vessel size imaging: a longitudinal in vivo study. Clin Cancer Res 16(12):3215–3225PubMedCrossRef
31.
go back to reference Bauerle T et al (2010) Imaging anti-angiogenic treatment response with DCE-VCT, DCE-MRI and DWI in an animal model of breast cancer bone metastasis. Eur J Radiol 73(2):280–287PubMedCrossRef Bauerle T et al (2010) Imaging anti-angiogenic treatment response with DCE-VCT, DCE-MRI and DWI in an animal model of breast cancer bone metastasis. Eur J Radiol 73(2):280–287PubMedCrossRef
32.
go back to reference Lee KC et al (2007) An imaging biomarker of early treatment response in prostate cancer that has metastasized to the bone. Cancer Res 67(8):3524–3528PubMedCrossRef Lee KC et al (2007) An imaging biomarker of early treatment response in prostate cancer that has metastasized to the bone. Cancer Res 67(8):3524–3528PubMedCrossRef
33.
go back to reference Lee KC et al (2007) A feasibility study evaluating the functional diffusion map as a predictive imaging biomarker for detection of treatment response in a patient with metastatic prostate cancer to the bone. Neoplasia 9(12):1003–1011PubMedCrossRef Lee KC et al (2007) A feasibility study evaluating the functional diffusion map as a predictive imaging biomarker for detection of treatment response in a patient with metastatic prostate cancer to the bone. Neoplasia 9(12):1003–1011PubMedCrossRef
34.
go back to reference Blasberg RG et al (1984) Local blood-to-tissue transport in Walker 256 metastatic brain tumors. J Neurooncol 2(3):205–218PubMed Blasberg RG et al (1984) Local blood-to-tissue transport in Walker 256 metastatic brain tumors. J Neurooncol 2(3):205–218PubMed
35.
go back to reference Zhang RD et al (1992) Differential permeability of the blood-brain barrier in experimental brain metastases produced by human neoplasms implanted into nude mice. Am J Pathol 141(5):1115–1124PubMed Zhang RD et al (1992) Differential permeability of the blood-brain barrier in experimental brain metastases produced by human neoplasms implanted into nude mice. Am J Pathol 141(5):1115–1124PubMed
36.
go back to reference Duygulu G et al (2010) Intracerebral metastasis showing restricted diffusion: correlation with histopathologic findings. Eur J Radiol 74(1):117–120PubMedCrossRef Duygulu G et al (2010) Intracerebral metastasis showing restricted diffusion: correlation with histopathologic findings. Eur J Radiol 74(1):117–120PubMedCrossRef
37.
go back to reference Krabbe K et al (1997) MR diffusion imaging of human intracranial tumours. Neuroradiology 39(7):483–489PubMedCrossRef Krabbe K et al (1997) MR diffusion imaging of human intracranial tumours. Neuroradiology 39(7):483–489PubMedCrossRef
38.
go back to reference Yoneda T et al (2001) A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res 16(8):1486–1495PubMedCrossRef Yoneda T et al (2001) A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res 16(8):1486–1495PubMedCrossRef
39.
go back to reference Song HT et al. (2010) Quantitative T(2)* imaging of metastatic human breast cancer to brain in the nude rat at 3 T. NMR Biomed 24:325–334 Song HT et al. (2010) Quantitative T(2)* imaging of metastatic human breast cancer to brain in the nude rat at 3 T. NMR Biomed 24:325–334
40.
go back to reference Palmieri D et al (2007) Her-2 overexpression increases the metastatic outgrowth of breast cancer cells in the brain. Cancer Res 67(9):4190–4198PubMedCrossRef Palmieri D et al (2007) Her-2 overexpression increases the metastatic outgrowth of breast cancer cells in the brain. Cancer Res 67(9):4190–4198PubMedCrossRef
41.
go back to reference Charles N, Holland EC (2010) The perivascular niche microenvironment in brain tumor progression. Cell Cycle 9(15):3012–3021PubMedCrossRef Charles N, Holland EC (2010) The perivascular niche microenvironment in brain tumor progression. Cell Cycle 9(15):3012–3021PubMedCrossRef
42.
go back to reference Fitzgerald DP et al (2008) Reactive glia are recruited by highly proliferative brain metastases of breast cancer and promote tumor cell colonization. Clin Exp Metastasis 25(7):799–810PubMedCrossRef Fitzgerald DP et al (2008) Reactive glia are recruited by highly proliferative brain metastases of breast cancer and promote tumor cell colonization. Clin Exp Metastasis 25(7):799–810PubMedCrossRef
43.
go back to reference Park JS, Bateman MC, Goldberg MP (1996) Rapid alterations in dendrite morphology during sublethal hypoxia or glutamate receptor activation. Neurobiol Dis 3(3):215–227PubMedCrossRef Park JS, Bateman MC, Goldberg MP (1996) Rapid alterations in dendrite morphology during sublethal hypoxia or glutamate receptor activation. Neurobiol Dis 3(3):215–227PubMedCrossRef
44.
go back to reference Rzeski W, Turski L, Ikonomidou C (2001) Glutamate antagonists limit tumor growth. Proc Natl Acad Sci USA 98(11):6372–6377PubMedCrossRef Rzeski W, Turski L, Ikonomidou C (2001) Glutamate antagonists limit tumor growth. Proc Natl Acad Sci USA 98(11):6372–6377PubMedCrossRef
45.
go back to reference Takano T et al (2001) Glutamate release promotes growth of malignant gliomas. Nat Med 7(9):1010–1015PubMedCrossRef Takano T et al (2001) Glutamate release promotes growth of malignant gliomas. Nat Med 7(9):1010–1015PubMedCrossRef
46.
go back to reference Seidlitz EP et al (2009) Cancer cell lines release glutamate into the extracellular environment. Clin Exp Metastasis 26(7):781–787PubMedCrossRef Seidlitz EP et al (2009) Cancer cell lines release glutamate into the extracellular environment. Clin Exp Metastasis 26(7):781–787PubMedCrossRef
47.
go back to reference Ye ZC, Sontheimer H (1999) Glioma cells release excitotoxic concentrations of glutamate. Cancer Res 59(17):4383–4391PubMed Ye ZC, Sontheimer H (1999) Glioma cells release excitotoxic concentrations of glutamate. Cancer Res 59(17):4383–4391PubMed
48.
go back to reference Brat DJ, Van Meir EG (2004) Vaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in glioblastoma. Lab Invest 84(4):397–405PubMedCrossRef Brat DJ, Van Meir EG (2004) Vaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in glioblastoma. Lab Invest 84(4):397–405PubMedCrossRef
49.
go back to reference Dome B et al (2007) Alternative vascularization mechanisms in cancer: pathology and therapeutic implications. Am J Pathol 170(1):1–15PubMedCrossRef Dome B et al (2007) Alternative vascularization mechanisms in cancer: pathology and therapeutic implications. Am J Pathol 170(1):1–15PubMedCrossRef
50.
go back to reference Indelicato M et al (2010) Role of hypoxia and autophagy in MDA-MB-231 invasiveness. J Cell Physiol 223(2):359–368PubMed Indelicato M et al (2010) Role of hypoxia and autophagy in MDA-MB-231 invasiveness. J Cell Physiol 223(2):359–368PubMed
51.
go back to reference Hayashida Y et al (2006) Diffusion-weighted imaging of metastatic brain tumors: comparison with histologic type and tumor cellularity. AJNR Am J Neuroradiol 27(7):1419–1425PubMed Hayashida Y et al (2006) Diffusion-weighted imaging of metastatic brain tumors: comparison with histologic type and tumor cellularity. AJNR Am J Neuroradiol 27(7):1419–1425PubMed
52.
go back to reference Sugahara T et al (1999) Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9(1):53–60PubMedCrossRef Sugahara T et al (1999) Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9(1):53–60PubMedCrossRef
53.
go back to reference Prasad SR et al (2003) Radiological measurement of breast cancer metastases to lung and liver: comparison between WHO (bidimensional) and RECIST (unidimensional) guidelines. J Comput Assist Tomogr 27(3):380–384PubMedCrossRef Prasad SR et al (2003) Radiological measurement of breast cancer metastases to lung and liver: comparison between WHO (bidimensional) and RECIST (unidimensional) guidelines. J Comput Assist Tomogr 27(3):380–384PubMedCrossRef
54.
go back to reference Shelton LM et al (2010) A novel pre-clinical in vivo mouse model for malignant brain tumor growth and invasion. J Neurooncol 99(2):165–176PubMedCrossRef Shelton LM et al (2010) A novel pre-clinical in vivo mouse model for malignant brain tumor growth and invasion. J Neurooncol 99(2):165–176PubMedCrossRef
55.
go back to reference Heyn C et al (2006) In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn Reson Med 56(5):1001–1010PubMedCrossRef Heyn C et al (2006) In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn Reson Med 56(5):1001–1010PubMedCrossRef
56.
go back to reference Leenders W et al (2003) Vascular endothelial growth factor-A determines detectability of experimental melanoma brain metastasis in GD-DTPA-enhanced MRI. Int J Cancer 105(4):437–443PubMedCrossRef Leenders W et al (2003) Vascular endothelial growth factor-A determines detectability of experimental melanoma brain metastasis in GD-DTPA-enhanced MRI. Int J Cancer 105(4):437–443PubMedCrossRef
Metadata
Title
Differential microstructure and physiology of brain and bone metastases in a rat breast cancer model by diffusion and dynamic contrast enhanced MRI
Authors
Matthew D. Budde
Eric Gold
E. Kay Jordan
Joseph A. Frank
Publication date
01-01-2012
Publisher
Springer Netherlands
Published in
Clinical & Experimental Metastasis / Issue 1/2012
Print ISSN: 0262-0898
Electronic ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-011-9428-2

Other articles of this Issue 1/2012

Clinical & Experimental Metastasis 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine