Skip to main content
Top
Published in: Cardiovascular Drugs and Therapy 6/2014

01-12-2014 | ORIGINAL ARTICLE

Angiotensin-(1–7) Modulates Angiotensin II-Induced Vasoconstriction in Human Mammary Artery

Authors: Luís Mendonça, Pedro Mendes-Ferreira, Ana Bento-Leite, Rui Cerqueira, Mário Jorge Amorim, Paulo Pinho, Cármen Brás-Silva, Adelino F. Leite-Moreira, Paulo Castro-Chaves

Published in: Cardiovascular Drugs and Therapy | Issue 6/2014

Login to get access

Abstract

Purpose

The renin-angiotensin system plays a key role in cardiovascular pathophysiology and one of its members, angiotensin-(1–7) (ANG-(1–7)), is now recognized as a peptide with the ability to counter-regulate angiotensin II (ANGII) effects. We sought to investigate ANG-(1–7) actions in human vessels, particularly its effect on ANGII-induced vasoconstriction in human mammary arteries (HMA).

Methods

Samples of HMA from patients submitted to coronary revascularization (22 patients, mean age 67 years) were cut into small rings, mounted in a myograph bath system, normalized and allowed to contract and dilate isometrically. In baseline experiments, the rings were incubated with ANG-(1–7) or vehicle, followed by increasing concentrations of ANGII. This protocol was repeated in the presence of A-779, PD123177, losartan and after mechanical endothelium removal. Western blot analysis and immunofluorescence were also performed in order to verify the presence of Mas receptor in HMA.

Results

ANG-(1–7) significantly attenuated ANGII-induced contraction, producing a maximal inhibition of approximately 65.2 %. This effect was not abolished by A-779, PD123177 or endothelium removal. In the presence of losartan, ANGII response was attenuated and no differences were observed between ANG-(1–7) and vehicle treated rings. Finally, we observed, for the first time, that the Mas receptor is expressed in HMA endothelium.

Conclusions

ANG-(1–7) significantly attenuates ANGII-induced vasoconstriction and, although the Mas receptor is expressed in HMA, this effect seems to be independent of its activation. Additionally, AT2 receptor and endothelium are not involved in this mechanism, which suggests a direct effect on smooth muscle cells.
Literature
1.
go back to reference Castro-Chaves P, Cerqueira R, Pintalhao M, Leite-Moreira AF. New pathways of the renin-angiotensin system: the role of ACE2 in cardiovascular pathophysiology and therapy. Expert Opin Ther Targets. 2010;14(5):485–96.PubMedCrossRef Castro-Chaves P, Cerqueira R, Pintalhao M, Leite-Moreira AF. New pathways of the renin-angiotensin system: the role of ACE2 in cardiovascular pathophysiology and therapy. Expert Opin Ther Targets. 2010;14(5):485–96.PubMedCrossRef
3.
go back to reference Carey RM. Newly discovered components and actions of the renin-angiotensin system. Hypertension. 2013;62(5):818–22.PubMedCrossRef Carey RM. Newly discovered components and actions of the renin-angiotensin system. Hypertension. 2013;62(5):818–22.PubMedCrossRef
4.
go back to reference Iwai M, Horiuchi M. Devil and angel in the renin-angiotensin system: ACE-angiotensin II-AT1 receptor axis vs. ACE2-angiotensin-(1–7)-Mas receptor axis. Hypertens Res. 2009;32(7):533–6.PubMedCrossRef Iwai M, Horiuchi M. Devil and angel in the renin-angiotensin system: ACE-angiotensin II-AT1 receptor axis vs. ACE2-angiotensin-(1–7)-Mas receptor axis. Hypertens Res. 2009;32(7):533–6.PubMedCrossRef
5.
go back to reference Strawn WB, Ferrario CM, Tallant EA. Angiotensin-(1–7) reduces smooth muscle growth after vascular injury. Hypertension. 1999;33(1 Pt 2):207–11.PubMedCrossRef Strawn WB, Ferrario CM, Tallant EA. Angiotensin-(1–7) reduces smooth muscle growth after vascular injury. Hypertension. 1999;33(1 Pt 2):207–11.PubMedCrossRef
6.
go back to reference Wang L, Hu X, Zhang W, Tian F. Angiotensin (1–7) ameliorates angiotensin II-induced inflammation by inhibiting LOX-1 expression. Inflamm Res. 2013;62(2):219–28.PubMedCrossRef Wang L, Hu X, Zhang W, Tian F. Angiotensin (1–7) ameliorates angiotensin II-induced inflammation by inhibiting LOX-1 expression. Inflamm Res. 2013;62(2):219–28.PubMedCrossRef
7.
go back to reference Wang Y, Tikellis C, Thomas MC, Golledge J. Angiotensin converting enzyme 2 and atherosclerosis. Atherosclerosis. 2013;226(1):3–8.PubMedCrossRef Wang Y, Tikellis C, Thomas MC, Golledge J. Angiotensin converting enzyme 2 and atherosclerosis. Atherosclerosis. 2013;226(1):3–8.PubMedCrossRef
8.
go back to reference Jawien J, Toton-Zuranska J, Gajda M, Niepsuj A, Gebska A, Kus K, et al. Angiotensin-(1–7) receptor Mas agonist ameliorates progress of atherosclerosis in apoE-knockout mice. J Physiol Pharmacol. 2012;63(1):77–85.PubMed Jawien J, Toton-Zuranska J, Gajda M, Niepsuj A, Gebska A, Kus K, et al. Angiotensin-(1–7) receptor Mas agonist ameliorates progress of atherosclerosis in apoE-knockout mice. J Physiol Pharmacol. 2012;63(1):77–85.PubMed
9.
go back to reference Brosnihan KB, Li P, Ferrario CM. Angiotensin-(1–7) dilates canine coronary arteries through kinins and nitric oxide. Hypertension. 1996;27(3 Pt 2):523–8.PubMedCrossRef Brosnihan KB, Li P, Ferrario CM. Angiotensin-(1–7) dilates canine coronary arteries through kinins and nitric oxide. Hypertension. 1996;27(3 Pt 2):523–8.PubMedCrossRef
10.
go back to reference Gorelik G, Carbini LA, Scicli AG. Angiotensin 1–7 induces bradykinin-mediated relaxation in porcine coronary artery. J Pharmacol Exp Ther. 1998;286(1):403–10.PubMed Gorelik G, Carbini LA, Scicli AG. Angiotensin 1–7 induces bradykinin-mediated relaxation in porcine coronary artery. J Pharmacol Exp Ther. 1998;286(1):403–10.PubMed
11.
go back to reference Brosnihan KB, Li P, Tallant EA, Ferrario CM. Angiotensin-(1–7): a novel vasodilator of the coronary circulation. Biol Res. 1998;31(3):227–34.PubMed Brosnihan KB, Li P, Tallant EA, Ferrario CM. Angiotensin-(1–7): a novel vasodilator of the coronary circulation. Biol Res. 1998;31(3):227–34.PubMed
12.
go back to reference Santos RA, Silva e Simoes AC, Maric C, Silva DM, Machado RP, de Buhr I, et al. Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci U S A. 2003;100(14):8258–63.PubMedCentralPubMedCrossRef Santos RA, Silva e Simoes AC, Maric C, Silva DM, Machado RP, de Buhr I, et al. Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci U S A. 2003;100(14):8258–63.PubMedCentralPubMedCrossRef
13.
go back to reference Santos RA, Ferreira AJ. Angiotensin-(1–7) and the renin-angiotensin system. Curr Opin Nephrol Hypertens. 2007;16(2):122–8.PubMedCrossRef Santos RA, Ferreira AJ. Angiotensin-(1–7) and the renin-angiotensin system. Curr Opin Nephrol Hypertens. 2007;16(2):122–8.PubMedCrossRef
14.
go back to reference Peiro C, Vallejo S, Gembardt F, Azcutia V, Heringer-Walther S, Rodriguez-Manas L, et al. Endothelial dysfunction through genetic deletion or inhibition of the G protein-coupled receptor Mas: a new target to improve endothelial function. J Hypertens. 2007;25(12):2421–5.PubMedCrossRef Peiro C, Vallejo S, Gembardt F, Azcutia V, Heringer-Walther S, Rodriguez-Manas L, et al. Endothelial dysfunction through genetic deletion or inhibition of the G protein-coupled receptor Mas: a new target to improve endothelial function. J Hypertens. 2007;25(12):2421–5.PubMedCrossRef
15.
go back to reference Sampaio WO, Santos dos Souza RA, Faria-Silva R, da Mata Machado LT, Schiffrin EL, Touyz RM. Angiotensin-(1–7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension. 2007;49(1):185–92.PubMedCrossRef Sampaio WO, Santos dos Souza RA, Faria-Silva R, da Mata Machado LT, Schiffrin EL, Touyz RM. Angiotensin-(1–7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension. 2007;49(1):185–92.PubMedCrossRef
16.
go back to reference Chen Z, Tang Y, Yang Z, Liu S, Liu Y, Li Y, et al. Endothelin-1 downregulates Mas receptor expression in human cardiomyocytes. Mol Med. 2013;8(3):871–6. Chen Z, Tang Y, Yang Z, Liu S, Liu Y, Li Y, et al. Endothelin-1 downregulates Mas receptor expression in human cardiomyocytes. Mol Med. 2013;8(3):871–6.
17.
go back to reference Bernardi S, Zennaro C, Palmisano S, Velkoska E, Sabato N, Toffoli B, et al. Characterization and significance of ACE2 and Mas receptor in human colon adenocarcinoma. J Renin-Angiotensin-Aldosterone Syst. 2012;13(1):202–9.PubMedCrossRef Bernardi S, Zennaro C, Palmisano S, Velkoska E, Sabato N, Toffoli B, et al. Characterization and significance of ACE2 and Mas receptor in human colon adenocarcinoma. J Renin-Angiotensin-Aldosterone Syst. 2012;13(1):202–9.PubMedCrossRef
18.
go back to reference Reis AB, Araujo FC, Pereira VM, Dos Reis AM, Santos RA, Reis FM. Angiotensin (1–7) and its receptor Mas are expressed in the human testis: implications for male infertility. J Mol Histol. 2010;41(1):75–80.PubMedCrossRef Reis AB, Araujo FC, Pereira VM, Dos Reis AM, Santos RA, Reis FM. Angiotensin (1–7) and its receptor Mas are expressed in the human testis: implications for male infertility. J Mol Histol. 2010;41(1):75–80.PubMedCrossRef
20.
go back to reference Castro CH, Santos RA, Ferreira AJ, Bader M, Alenina N, Almeida AP. Evidence for a functional interaction of the angiotensin-(1–7) receptor Mas with AT1 and AT2 receptors in the mouse heart. Hypertension. 2005;46(4):937–42.PubMedCrossRef Castro CH, Santos RA, Ferreira AJ, Bader M, Alenina N, Almeida AP. Evidence for a functional interaction of the angiotensin-(1–7) receptor Mas with AT1 and AT2 receptors in the mouse heart. Hypertension. 2005;46(4):937–42.PubMedCrossRef
21.
go back to reference Souza AP, Sobrinho DB, Almeida JF, Alves GM, Macedo LM, Porto JE, et al. Angiotensin II type 1 receptor blockade restores angiotensin-(1–7)-induced coronary vasodilation in hypertrophic rat hearts. Clin Sci (Lond). 2013;125(9):449–59.CrossRef Souza AP, Sobrinho DB, Almeida JF, Alves GM, Macedo LM, Porto JE, et al. Angiotensin II type 1 receptor blockade restores angiotensin-(1–7)-induced coronary vasodilation in hypertrophic rat hearts. Clin Sci (Lond). 2013;125(9):449–59.CrossRef
22.
go back to reference van de Wal RM, van der Harst P, Wagenaar LJ, Wassmann S, Morshuis WJ, Nickenig G, et al. Angiotensin II type 2 receptor vasoactivity in internal mammary arteries of patients with coronary artery disease. J Cardiovasc Pharmacol. 2007;50(4):372–9.PubMedCrossRef van de Wal RM, van der Harst P, Wagenaar LJ, Wassmann S, Morshuis WJ, Nickenig G, et al. Angiotensin II type 2 receptor vasoactivity in internal mammary arteries of patients with coronary artery disease. J Cardiovasc Pharmacol. 2007;50(4):372–9.PubMedCrossRef
23.
go back to reference Clark MA, Diz DI, Tallant EA. Angiotensin-(1–7) downregulates the angiotensin II type 1 receptor in vascular smooth muscle cells. Hypertension. 2001;37(4):1141–6.PubMedCrossRef Clark MA, Diz DI, Tallant EA. Angiotensin-(1–7) downregulates the angiotensin II type 1 receptor in vascular smooth muscle cells. Hypertension. 2001;37(4):1141–6.PubMedCrossRef
24.
go back to reference Ueda S, Masumori-Maemoto S, Ashino K, Nagahara T, Gotoh E, Umemura S, et al. Angiotensin-(1–7) attenuates vasoconstriction evoked by angiotensin II but not by noradrenaline in man. Hypertension. 2000;35(4):998–1001.PubMedCrossRef Ueda S, Masumori-Maemoto S, Ashino K, Nagahara T, Gotoh E, Umemura S, et al. Angiotensin-(1–7) attenuates vasoconstriction evoked by angiotensin II but not by noradrenaline in man. Hypertension. 2000;35(4):998–1001.PubMedCrossRef
25.
go back to reference Roks AJ, van Geel PP, Pinto YM, Buikema H, Henning RH, de Zeeuw D, et al. Angiotensin-(1–7) is a modulator of the human renin-angiotensin system. Hypertension. 1999;34(2):296–301.PubMedCrossRef Roks AJ, van Geel PP, Pinto YM, Buikema H, Henning RH, de Zeeuw D, et al. Angiotensin-(1–7) is a modulator of the human renin-angiotensin system. Hypertension. 1999;34(2):296–301.PubMedCrossRef
26.
go back to reference Grapow MT, Reineke DC, Kern T, Muller-Schweinitzer E, Carrel T, Eckstein FS. Human internal thoracic arteries from diabetic patients are resistant to endothelial dysfunction. Fundam Clin Pharmacol. 2009;23(5):567–72.PubMedCrossRef Grapow MT, Reineke DC, Kern T, Muller-Schweinitzer E, Carrel T, Eckstein FS. Human internal thoracic arteries from diabetic patients are resistant to endothelial dysfunction. Fundam Clin Pharmacol. 2009;23(5):567–72.PubMedCrossRef
27.
go back to reference Nikkari ST, Sisto T, Nikkari T. Ultrastructural, immunochemical and electrophoretic study of smooth muscle cells in internal mammary arteries of patients undergoing coronary bypass surgery. Atherosclerosis. 1989;79(2–3):129–38.PubMedCrossRef Nikkari ST, Sisto T, Nikkari T. Ultrastructural, immunochemical and electrophoretic study of smooth muscle cells in internal mammary arteries of patients undergoing coronary bypass surgery. Atherosclerosis. 1989;79(2–3):129–38.PubMedCrossRef
28.
go back to reference Zulli A, Hare DL, Horrigan M, Buxton BF. The resistance of the IMA to atherosclerosis might be associated with its higher eNOS, ACE and ET-A receptor immunoreactivity. Arterioscler Thromb Vasc Biol. 2003;23(7):1308.PubMedCrossRef Zulli A, Hare DL, Horrigan M, Buxton BF. The resistance of the IMA to atherosclerosis might be associated with its higher eNOS, ACE and ET-A receptor immunoreactivity. Arterioscler Thromb Vasc Biol. 2003;23(7):1308.PubMedCrossRef
29.
go back to reference Buikema H, Grandjean JG, van den Broek S, van Gilst WH, Lie KI, Wesseling H. Differences in vasomotor control between human gastroepiploic and left internal mammary artery. Circulation. 1992;86(5 Suppl):II205–9.PubMed Buikema H, Grandjean JG, van den Broek S, van Gilst WH, Lie KI, Wesseling H. Differences in vasomotor control between human gastroepiploic and left internal mammary artery. Circulation. 1992;86(5 Suppl):II205–9.PubMed
30.
go back to reference Martinez-Revelles S, Jimenez-Altayo F, Caracuel L, Perez-Asensio FJ, Planas AM, Vila E. Endothelial dysfunction in rat mesenteric resistance artery after transient middle cerebral artery occlusion. J Pharmacol Exp Ther. 2008;325(2):363–9.PubMedCrossRef Martinez-Revelles S, Jimenez-Altayo F, Caracuel L, Perez-Asensio FJ, Planas AM, Vila E. Endothelial dysfunction in rat mesenteric resistance artery after transient middle cerebral artery occlusion. J Pharmacol Exp Ther. 2008;325(2):363–9.PubMedCrossRef
31.
go back to reference Mugge A, Barton MR, Cremer J, Frombach R, Lichtlen PR. Different vascular reactivity of human internal mammary and inferior epigastric arteries in vitro. Ann Thorac Surg. 1993;56(5):1085–9.PubMedCrossRef Mugge A, Barton MR, Cremer J, Frombach R, Lichtlen PR. Different vascular reactivity of human internal mammary and inferior epigastric arteries in vitro. Ann Thorac Surg. 1993;56(5):1085–9.PubMedCrossRef
32.
go back to reference Filho AG, Ferreira AJ, Santos SH, Neves SR, Silva Camargos ER, Becker LK, et al. Selective increase of angiotensin (1–7) and its receptor in hearts of spontaneously hypertensive rats subjected to physical training. Exp Physiol. 2008;93(5):589–98.PubMedCrossRef Filho AG, Ferreira AJ, Santos SH, Neves SR, Silva Camargos ER, Becker LK, et al. Selective increase of angiotensin (1–7) and its receptor in hearts of spontaneously hypertensive rats subjected to physical training. Exp Physiol. 2008;93(5):589–98.PubMedCrossRef
33.
go back to reference Silva DM, Gomes-Filho A, Olivon VC, Santos TM, Becker LK, Santos RA, et al. Swimming training improves the vasodilator effect of angiotensin-(1–7) in the aorta of spontaneously hypertensive rat. J Appl Physiol. 2011;111(5):1272–7.PubMedCrossRef Silva DM, Gomes-Filho A, Olivon VC, Santos TM, Becker LK, Santos RA, et al. Swimming training improves the vasodilator effect of angiotensin-(1–7) in the aorta of spontaneously hypertensive rat. J Appl Physiol. 2011;111(5):1272–7.PubMedCrossRef
34.
go back to reference Nematbakhsh M, Safari T. Role of Mas receptor in renal blood flow response to angiotensin (1–7) in male and female rats. General physiology and biophysics. 2014. Nematbakhsh M, Safari T. Role of Mas receptor in renal blood flow response to angiotensin (1–7) in male and female rats. General physiology and biophysics. 2014.
35.
go back to reference Raffai G, Durand MJ, Lombard JH. Acute and chronic angiotensin-(1–7) restores vasodilation and reduces oxidative stress in mesenteric arteries of salt-fed rats. Am J Physiol Heart Circ Physiol. 2011;301(4):H1341–52.PubMedCentralPubMedCrossRef Raffai G, Durand MJ, Lombard JH. Acute and chronic angiotensin-(1–7) restores vasodilation and reduces oxidative stress in mesenteric arteries of salt-fed rats. Am J Physiol Heart Circ Physiol. 2011;301(4):H1341–52.PubMedCentralPubMedCrossRef
36.
go back to reference Durand MJ, Raffai G, Weinberg BD, Lombard JH. Angiotensin-(1–7) and low-dose angiotensin II infusion reverse salt-induced endothelial dysfunction via different mechanisms in rat middle cerebral arteries. Am J Physiol Heart Circ Physiol. 2010;299(4):H1024–33.PubMedCentralPubMedCrossRef Durand MJ, Raffai G, Weinberg BD, Lombard JH. Angiotensin-(1–7) and low-dose angiotensin II infusion reverse salt-induced endothelial dysfunction via different mechanisms in rat middle cerebral arteries. Am J Physiol Heart Circ Physiol. 2010;299(4):H1024–33.PubMedCentralPubMedCrossRef
37.
go back to reference Benter IF, Ferrario CM, Morris M, Diz DI. Antihypertensive actions of angiotensin-(1–7) in spontaneously hypertensive rats. Am J Physiol. 1995;269(1 Pt 2):H313–9.PubMed Benter IF, Ferrario CM, Morris M, Diz DI. Antihypertensive actions of angiotensin-(1–7) in spontaneously hypertensive rats. Am J Physiol. 1995;269(1 Pt 2):H313–9.PubMed
38.
go back to reference Stegbauer J, Oberhauser V, Vonend O, Rump LC. Angiotensin-(1–7) modulates vascular resistance and sympathetic neurotransmission in kidneys of spontaneously hypertensive rats. Cardiovasc Res. 2004;61(2):352–9.PubMedCrossRef Stegbauer J, Oberhauser V, Vonend O, Rump LC. Angiotensin-(1–7) modulates vascular resistance and sympathetic neurotransmission in kidneys of spontaneously hypertensive rats. Cardiovasc Res. 2004;61(2):352–9.PubMedCrossRef
39.
go back to reference Ferrario CM. Angiotension-(1–7) and antihypertensive mechanisms. Am J Nephrol. 1998;11(6):278–83. Ferrario CM. Angiotension-(1–7) and antihypertensive mechanisms. Am J Nephrol. 1998;11(6):278–83.
40.
go back to reference Dora KA, Garland CJ. Properties of smooth muscle hyperpolarization and relaxation to K + in the rat isolated mesenteric artery. Am J Physiol Heart Circ Physiol. 2001;280(6):H2424–9.PubMed Dora KA, Garland CJ. Properties of smooth muscle hyperpolarization and relaxation to K + in the rat isolated mesenteric artery. Am J Physiol Heart Circ Physiol. 2001;280(6):H2424–9.PubMed
41.
go back to reference Lemos VS, Silva DM, Walther T, Alenina N, Bader M, Santos RA. The endothelium-dependent vasodilator effect of the nonpeptide Ang (1–7) mimic AVE 0991 is abolished in the aorta of mas-knockout mice. J Cardiovasc Pharmacol. 2005;46(3):274–9.PubMedCrossRef Lemos VS, Silva DM, Walther T, Alenina N, Bader M, Santos RA. The endothelium-dependent vasodilator effect of the nonpeptide Ang (1–7) mimic AVE 0991 is abolished in the aorta of mas-knockout mice. J Cardiovasc Pharmacol. 2005;46(3):274–9.PubMedCrossRef
42.
go back to reference Santos RA, Ferreira AJ. Pharmacological effects of AVE 0991, a nonpeptide angiotensin-(1–7) receptor agonist. Cardiovasc Drug Rev. 2006;24(3–4):239–46.PubMedCrossRef Santos RA, Ferreira AJ. Pharmacological effects of AVE 0991, a nonpeptide angiotensin-(1–7) receptor agonist. Cardiovasc Drug Rev. 2006;24(3–4):239–46.PubMedCrossRef
43.
go back to reference Gembardt F, Grajewski S, Vahl M, Schultheiss HP, Walther T. Angiotensin metabolites can stimulate receptors of the Mas-related genes family. Mol Cell Biochem. 2008;319(1–2):115–23.PubMedCrossRef Gembardt F, Grajewski S, Vahl M, Schultheiss HP, Walther T. Angiotensin metabolites can stimulate receptors of the Mas-related genes family. Mol Cell Biochem. 2008;319(1–2):115–23.PubMedCrossRef
44.
go back to reference Lautner RQ, Villela DC, Fraga-Silva RA, Silva N, Verano-Braga T, Costa-Fraga F, et al. Discovery and characterization of alamandine: a novel component of the renin-angiotensin system. Circ Res. 2013;112(8):1104–11.PubMedCrossRef Lautner RQ, Villela DC, Fraga-Silva RA, Silva N, Verano-Braga T, Costa-Fraga F, et al. Discovery and characterization of alamandine: a novel component of the renin-angiotensin system. Circ Res. 2013;112(8):1104–11.PubMedCrossRef
45.
go back to reference Silva DM, Vianna HR, Cortes SF, Campagnole-Santos MJ, Santos RA, Lemos VS. Evidence for a new angiotensin-(1–7) receptor subtype in the aorta of Sprague–Dawley rats. Peptides. 2007;28(3):702–7.PubMedCrossRef Silva DM, Vianna HR, Cortes SF, Campagnole-Santos MJ, Santos RA, Lemos VS. Evidence for a new angiotensin-(1–7) receptor subtype in the aorta of Sprague–Dawley rats. Peptides. 2007;28(3):702–7.PubMedCrossRef
46.
go back to reference Herath CB, Mak K, Burrell LM, Angus PW. Angiotensin-(1–7) reduces the portal pressure response to angiotensin II and methoxamine via an endothelial nitric oxide mediated pathway in cirrhotic rat liver. Am J Physiol Gastrointest Liver Physiol. 2012. Herath CB, Mak K, Burrell LM, Angus PW. Angiotensin-(1–7) reduces the portal pressure response to angiotensin II and methoxamine via an endothelial nitric oxide mediated pathway in cirrhotic rat liver. Am J Physiol Gastrointest Liver Physiol. 2012.
47.
go back to reference Hollenberg NK. Implications of species difference for clinical investigation: studies on the renin-angiotensin system. Hypertension. 2000;35(1 Pt 2):150–4.PubMedCrossRef Hollenberg NK. Implications of species difference for clinical investigation: studies on the renin-angiotensin system. Hypertension. 2000;35(1 Pt 2):150–4.PubMedCrossRef
48.
go back to reference Hollenberg NK, Passan DR. Specificity of renal vasodilation with captopril: saralasin prevents the response in the DOCA-treated, salt-loaded rabbit. Life Sci. 1982;31(4):329–34.PubMedCrossRef Hollenberg NK, Passan DR. Specificity of renal vasodilation with captopril: saralasin prevents the response in the DOCA-treated, salt-loaded rabbit. Life Sci. 1982;31(4):329–34.PubMedCrossRef
49.
go back to reference Nakagawa M, Stewart JM, Vavrek RJ, Nasjletti A. Effects of a kinin antagonist on renal function in rats. Am J Physiol. 1990;258(3 Pt 2):F643–8.PubMed Nakagawa M, Stewart JM, Vavrek RJ, Nasjletti A. Effects of a kinin antagonist on renal function in rats. Am J Physiol. 1990;258(3 Pt 2):F643–8.PubMed
50.
go back to reference Mahon JM, Carr RD, Nicol AK, Henderson IW. Angiotensin (1–7) is an antagonist at the type 1 angiotensin II receptor. J Hypertens. 1994;12(12):1377–81.PubMedCrossRef Mahon JM, Carr RD, Nicol AK, Henderson IW. Angiotensin (1–7) is an antagonist at the type 1 angiotensin II receptor. J Hypertens. 1994;12(12):1377–81.PubMedCrossRef
51.
go back to reference Sampaio WO, Nascimento AA, Santos RA. Systemic and regional hemodynamic effects of angiotensin-(1–7) in rats. Am J Physiol Heart Circ Physiol. 2003;284(6):H1985–94.PubMed Sampaio WO, Nascimento AA, Santos RA. Systemic and regional hemodynamic effects of angiotensin-(1–7) in rats. Am J Physiol Heart Circ Physiol. 2003;284(6):H1985–94.PubMed
52.
go back to reference Unger T, Chung O, Csikos T, Culman J, Gallinat S, Gohlke P, et al. Angiotensin receptors. J Hypertens Suppl. 1996;14(5):S95–103.PubMed Unger T, Chung O, Csikos T, Culman J, Gallinat S, Gohlke P, et al. Angiotensin receptors. J Hypertens Suppl. 1996;14(5):S95–103.PubMed
53.
go back to reference Graham RM, Perez DM, Hwa J, Piascik MT. Alpha 1-adrenergic receptor subtypes. Molecular structure, function, and signaling. Circ Res. 1996;78(5):737–49.PubMedCrossRef Graham RM, Perez DM, Hwa J, Piascik MT. Alpha 1-adrenergic receptor subtypes. Molecular structure, function, and signaling. Circ Res. 1996;78(5):737–49.PubMedCrossRef
Metadata
Title
Angiotensin-(1–7) Modulates Angiotensin II-Induced Vasoconstriction in Human Mammary Artery
Authors
Luís Mendonça
Pedro Mendes-Ferreira
Ana Bento-Leite
Rui Cerqueira
Mário Jorge Amorim
Paulo Pinho
Cármen Brás-Silva
Adelino F. Leite-Moreira
Paulo Castro-Chaves
Publication date
01-12-2014
Publisher
Springer US
Published in
Cardiovascular Drugs and Therapy / Issue 6/2014
Print ISSN: 0920-3206
Electronic ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-014-6555-4

Other articles of this Issue 6/2014

Cardiovascular Drugs and Therapy 6/2014 Go to the issue