Skip to main content
Top
Published in: Cardiovascular Drugs and Therapy 1/2011

01-02-2011

The Role of β-adrenergic Receptors in the Cardioprotective Effects of Beta-Preconditioning (βPC)

Authors: Ruduwaan Salie, Johannes A. Moolman, Amanda Lochner

Published in: Cardiovascular Drugs and Therapy | Issue 1/2011

Login to get access

Abstract

Aim

To determine the mechanism whereby transient stimulation of the β-adrenergic receptor subtypes (β-AR) elicit cardioprotection against subsequent ischaemia.

Methods

Isolated rat hearts were subjected to 35 min regional ischaemia (RI) and reperfusion and infarct size (IS) determined. Hearts were preconditioned with 5 min isoproterenol (β1/β2-AR agonist), denopamine (β1-AR agonist), formoterol hemifumarate (β2-AR agonist) or BRL37344 (β3-AR agonist) and 5 min reperfusion. The roles of the β-ARs, NO, PKA, and PI3-K were explored by using selective antagonists/blockers. Pertussis toxin was administered i.p., 48 h prior to experimentation.

Results

IS of hearts preconditioned with either isoproterenol, denopamine or formoterol (% of area at risk: 23.6 ± 1.26; 24.52 ± 0.89; 20.74 ± 0.85 respectively) were significantly smaller than that of non-preconditioned hearts (41.7 ± 1.65) and associated with improvement in postischaemic mechanical performance. The β3-AR agonist BRL37344 could not reduce IS. The β1- and β2-AR blockers CGP-20712A and ICI-118551 abolished the reduction in IS and improvement in mechanical recovery during reperfusion induced by isoproterenol preconditioning, while the β3-AR blocker SR59230A was without effect. Both Rp-8-CPT-cAMPs and wortmannin significantly increased IS when administered before and during β1/β2-AR preconditioning and reduced mechanical recovery. PTX pretreatment had no significant effect on the reduction in IS induced by β1/β2-AR or β2-AR preconditioning, but reduced mechanical recovery in β2-AR preconditioning.
Similarly the NOS inhibitors L-NAME and LNNA had no effect on IS in β1/β2-AR preconditioning, but depressed mechanical recovery.

Conclusion

Protection afforded by β-ARs stimulation, depends on activation of both β1-AR and β2-ARs but not β3-AR. With functional recovery as endpoint, results suggest involvement of NO in β1/β2-AR preconditioning and the Gi protein in β2-AR preconditioning. Both PKA and PI3-K activation were essential for β1/β2-AR cardioprotection.
Literature
1.
go back to reference Murry CE, Jennings RB, Reimer KA. Preconditioning with ischaemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–36.PubMed Murry CE, Jennings RB, Reimer KA. Preconditioning with ischaemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–36.PubMed
3.
go back to reference Gross ER, Gross GJ. Ischemic preconditioning and myocardial infarction. An update and perspective. Drug Discov Today Dis Mech. 2007;43:165–74.CrossRef Gross ER, Gross GJ. Ischemic preconditioning and myocardial infarction. An update and perspective. Drug Discov Today Dis Mech. 2007;43:165–74.CrossRef
4.
go back to reference Asimakis GK, Inners-McBride K, Conti VR, Yang CJ. Transient beta-adrenergic stimulation can precondition the heart against post-ischaemic contractile dysfunction. Cardiovasc Res. 1994;28:1726–34.PubMedCrossRef Asimakis GK, Inners-McBride K, Conti VR, Yang CJ. Transient beta-adrenergic stimulation can precondition the heart against post-ischaemic contractile dysfunction. Cardiovasc Res. 1994;28:1726–34.PubMedCrossRef
5.
go back to reference Lochner A, Genade S, Tromp E, Podzuweit T, Moolman JA. Ischemic preconditioning and the beta-adrenergic signal transduction pathway. Circulation. 1999;100:958–66.PubMed Lochner A, Genade S, Tromp E, Podzuweit T, Moolman JA. Ischemic preconditioning and the beta-adrenergic signal transduction pathway. Circulation. 1999;100:958–66.PubMed
6.
go back to reference Sanada S, Asanuma H, Tsukamoto O, Minamino T, et al. Protein kinase A as another mediator of ischemic preconditioning independent of protein kinase C. Circulation. 2004;110:51–7.PubMedCrossRef Sanada S, Asanuma H, Tsukamoto O, Minamino T, et al. Protein kinase A as another mediator of ischemic preconditioning independent of protein kinase C. Circulation. 2004;110:51–7.PubMedCrossRef
7.
go back to reference Tong H, Bernstein D, Murphy E, Steenbergen C. The role of β-adrenergic receptor signaling in cardioprotection. FASEB J. 2005;19:983–5.PubMed Tong H, Bernstein D, Murphy E, Steenbergen C. The role of β-adrenergic receptor signaling in cardioprotection. FASEB J. 2005;19:983–5.PubMed
8.
go back to reference Miyawaki H, Ashraf M. Isoproterenol mimics calcium preconditioning-induced protein against ischemia. Am J Physiol. 1997;272:H927–936.PubMed Miyawaki H, Ashraf M. Isoproterenol mimics calcium preconditioning-induced protein against ischemia. Am J Physiol. 1997;272:H927–936.PubMed
9.
go back to reference Bristow M, Ginsburg R, Umans V, Fowler M, Minobe W, Rasmussen R, et al. Beta1- and beta2-adrenergic receptor subpopulations in non-failing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta1-receptor down-regulation in heart failure. Circ Res. 1986;59:297–309.PubMed Bristow M, Ginsburg R, Umans V, Fowler M, Minobe W, Rasmussen R, et al. Beta1- and beta2-adrenergic receptor subpopulations in non-failing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta1-receptor down-regulation in heart failure. Circ Res. 1986;59:297–309.PubMed
10.
go back to reference Rosec B, Gauthier C. β3-adrenoceptors in the cardiovascular system: putative roles in human pathologies. Pharmacol Ther. 2006;111:652–73.CrossRef Rosec B, Gauthier C. β3-adrenoceptors in the cardiovascular system: putative roles in human pathologies. Pharmacol Ther. 2006;111:652–73.CrossRef
11.
go back to reference Xiao RP. Beta-adrenergic signaling in the heart: dual coupling of the beta2-adrenergic receptor to G(s) and G(i) proteins. Sci STKE RE. 2001;15. Xiao RP. Beta-adrenergic signaling in the heart: dual coupling of the beta2-adrenergic receptor to G(s) and G(i) proteins. Sci STKE RE. 2001;15.
12.
go back to reference Zheng G, Hau QD, Xiao RP. Distinct beta-adrenergic receptor subtype signaling in the heart and their pathophysiological relevance. Sheng Li Xue Bao. 2004;56:1–15.PubMed Zheng G, Hau QD, Xiao RP. Distinct beta-adrenergic receptor subtype signaling in the heart and their pathophysiological relevance. Sheng Li Xue Bao. 2004;56:1–15.PubMed
13.
go back to reference Gauthier C, Tavernier G, Charpentier F, Langin D, Le Marec H. Functional beta3-adrenoceptor in the human heart. J Clin Invest. 1996;98:556–62.PubMedCrossRef Gauthier C, Tavernier G, Charpentier F, Langin D, Le Marec H. Functional beta3-adrenoceptor in the human heart. J Clin Invest. 1996;98:556–62.PubMedCrossRef
14.
go back to reference Gauthier C, Leblais V, Kobzik L, Trochu JN, Khandoudi N, Bril A, et al. The negative inotropic effect of beta3-adreneceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J Clin Invest. 1998;102:1377–84.PubMedCrossRef Gauthier C, Leblais V, Kobzik L, Trochu JN, Khandoudi N, Bril A, et al. The negative inotropic effect of beta3-adreneceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J Clin Invest. 1998;102:1377–84.PubMedCrossRef
15.
go back to reference Frances C, Nazeyrollas P, Prevast A, Moreau P, Pisani J, Davani S, et al. Role of beta1- and beta2-adrenoceptor subtypes in preconditioning against myocardial dysfunction after ischaemia and reperfusion. J Cardiovasc Pharmacol. 2003;41:396–405.PubMedCrossRef Frances C, Nazeyrollas P, Prevast A, Moreau P, Pisani J, Davani S, et al. Role of beta1- and beta2-adrenoceptor subtypes in preconditioning against myocardial dysfunction after ischaemia and reperfusion. J Cardiovasc Pharmacol. 2003;41:396–405.PubMedCrossRef
16.
go back to reference Robinet A, Hoizey G, Millart H. PI3-kinase, protein kinase C and protein kinase A are involved in the trigger phase of beta1-adrenergic preconditioning. Cardiovasc Res. 2005;66:530–42.PubMedCrossRef Robinet A, Hoizey G, Millart H. PI3-kinase, protein kinase C and protein kinase A are involved in the trigger phase of beta1-adrenergic preconditioning. Cardiovasc Res. 2005;66:530–42.PubMedCrossRef
17.
go back to reference Mallet RT, Ryon MG, Williams AG, Howard L, Downey HF. Beta(1)-Adrenergic receptor antagonism abrogates the cardioprotective effects of intermittent hypoxia. Bas Res Cardiol. 2006;101:436–46.CrossRef Mallet RT, Ryon MG, Williams AG, Howard L, Downey HF. Beta(1)-Adrenergic receptor antagonism abrogates the cardioprotective effects of intermittent hypoxia. Bas Res Cardiol. 2006;101:436–46.CrossRef
18.
go back to reference Lange M, Smul TM, Blomeyer CA, Redel A, Klotz KN, Roewer N, et al. Role of the beta1-adrenergic pathway in anesthetic and ischemic preconditioning against myocardial infarction in the rabbit heart in vivo. Anesthesiology. 2006;105:503–10.PubMedCrossRef Lange M, Smul TM, Blomeyer CA, Redel A, Klotz KN, Roewer N, et al. Role of the beta1-adrenergic pathway in anesthetic and ischemic preconditioning against myocardial infarction in the rabbit heart in vivo. Anesthesiology. 2006;105:503–10.PubMedCrossRef
19.
go back to reference Kannengieser GJ, Opie LH, van der Werff TJ. Impaired cardiac work and oxygen uptake after reperfusion of regionally ischemic myocardium. J Mol Cell Cardiol. 1979;11:197–207.CrossRef Kannengieser GJ, Opie LH, van der Werff TJ. Impaired cardiac work and oxygen uptake after reperfusion of regionally ischemic myocardium. J Mol Cell Cardiol. 1979;11:197–207.CrossRef
20.
go back to reference Nasa Y, Yabek, Takeo S. Beta-adrenoceptor stimulation-mediated preconditioning-like cardioprotection in perfused rat hearts. J Cardiovasc Pharmacol. 1997;29:436–43.PubMedCrossRef Nasa Y, Yabek, Takeo S. Beta-adrenoceptor stimulation-mediated preconditioning-like cardioprotection in perfused rat hearts. J Cardiovasc Pharmacol. 1997;29:436–43.PubMedCrossRef
21.
go back to reference Akahane K, Furukawa Y, Karasawa Y, Ren LM, Chiba S. Pharmacological analysis of positive chrono-and inotropic responses to denopamine (TA-064) in dog cross-circulated atrial and ventricular preparations. Jpn J Pharmacol. 1990;52:69–79.PubMedCrossRef Akahane K, Furukawa Y, Karasawa Y, Ren LM, Chiba S. Pharmacological analysis of positive chrono-and inotropic responses to denopamine (TA-064) in dog cross-circulated atrial and ventricular preparations. Jpn J Pharmacol. 1990;52:69–79.PubMedCrossRef
22.
go back to reference Dooley DJ, Bittiger H, Reyman NC. CGP 20712A: a useful tool for quantifying the β1- and β2-adrenoceptors. Eur J Pharmacol. 1986;130:137–9.PubMedCrossRef Dooley DJ, Bittiger H, Reyman NC. CGP 20712A: a useful tool for quantifying the β1- and β2-adrenoceptors. Eur J Pharmacol. 1986;130:137–9.PubMedCrossRef
23.
go back to reference Spear JF, Prabu SK, Galati D, Raza M, et al. Beta1-Adrenoceptor activation contributes to ischemia-reperfusion damage as well as playing a role in ischemic preconditioning. Am J Physiol. 2007;292:H2459–66. Spear JF, Prabu SK, Galati D, Raza M, et al. Beta1-Adrenoceptor activation contributes to ischemia-reperfusion damage as well as playing a role in ischemic preconditioning. Am J Physiol. 2007;292:H2459–66.
24.
go back to reference Wang W, Zhu W, Wang S, Crow MT, Xiao RP, Cheng H. Sustained beta1-adrenergic stimulation modulates cardiac contractility by Ca2+/calmodulin signaling pathway. Circ Res. 2004;95:798–806.PubMedCrossRef Wang W, Zhu W, Wang S, Crow MT, Xiao RP, Cheng H. Sustained beta1-adrenergic stimulation modulates cardiac contractility by Ca2+/calmodulin signaling pathway. Circ Res. 2004;95:798–806.PubMedCrossRef
25.
go back to reference Benter IF, Juggi JS, Khan I, Yousif MH, Canatan H, Akhtar S. Signal transduction mechanisms involved in cardiac preconditioning: role of Ras-GTPase, Ca2+/calmodulin-dependent protein kinase II an epidermal growth factor receptor. Mol Cell Biochem. 2005;268:175–83.PubMedCrossRef Benter IF, Juggi JS, Khan I, Yousif MH, Canatan H, Akhtar S. Signal transduction mechanisms involved in cardiac preconditioning: role of Ras-GTPase, Ca2+/calmodulin-dependent protein kinase II an epidermal growth factor receptor. Mol Cell Biochem. 2005;268:175–83.PubMedCrossRef
26.
go back to reference Lange M, Smul TM, Redel A, Lotz C, Jazbutyte V, Schnupp V, et al. Differential role of calcium/calmodulin-dependent protein kinase II in desflurane-induced preconditioning and cardioprotection by metoprolol; Metoprolol blocks desflurane-induced preconditioning. Anesthesiology. 2008;109:72–8.PubMedCrossRef Lange M, Smul TM, Redel A, Lotz C, Jazbutyte V, Schnupp V, et al. Differential role of calcium/calmodulin-dependent protein kinase II in desflurane-induced preconditioning and cardioprotection by metoprolol; Metoprolol blocks desflurane-induced preconditioning. Anesthesiology. 2008;109:72–8.PubMedCrossRef
27.
go back to reference Communal C, Singh K, Sawyer DB, Colucci WS. Opposing effects of beta(1)- and beta(2)-adrenergic receptors on cardiac myocyte apoptosis: role of a pertussis toxin-sensitive G protein. Circulation. 1999;100:2210–2.PubMed Communal C, Singh K, Sawyer DB, Colucci WS. Opposing effects of beta(1)- and beta(2)-adrenergic receptors on cardiac myocyte apoptosis: role of a pertussis toxin-sensitive G protein. Circulation. 1999;100:2210–2.PubMed
28.
go back to reference Kaumann AJ, Sanders L, Lynham JA, Bartel S, Kuschel M, Karczewski P, et al. Beta-2 adrenoceptor activation by zinterol causes protein phosphorylation, contractile effects and relaxant effects through a cAMP pathway in human atrium. Mol Cell Biochem. 1996;163–164:113–23.PubMedCrossRef Kaumann AJ, Sanders L, Lynham JA, Bartel S, Kuschel M, Karczewski P, et al. Beta-2 adrenoceptor activation by zinterol causes protein phosphorylation, contractile effects and relaxant effects through a cAMP pathway in human atrium. Mol Cell Biochem. 1996;163–164:113–23.PubMedCrossRef
29.
go back to reference Anderson GP. Formoterol: pharmacology, molecular basis of agonism, and mechanism of long duration of a highly potent and selective β2-adrenoceptor agonist bronchodilator. Life Sci. 1993;52:2145–60.PubMedCrossRef Anderson GP. Formoterol: pharmacology, molecular basis of agonism, and mechanism of long duration of a highly potent and selective β2-adrenoceptor agonist bronchodilator. Life Sci. 1993;52:2145–60.PubMedCrossRef
30.
go back to reference Naline E, Zhang Y, Qian Y, Mairon N, Anderson GP, et al. Relaxant effects and durations of action of formoterol and salmeterol on the isolated human bronchus. Eur Respir J. 1994;7:914–20. Naline E, Zhang Y, Qian Y, Mairon N, Anderson GP, et al. Relaxant effects and durations of action of formoterol and salmeterol on the isolated human bronchus. Eur Respir J. 1994;7:914–20.
31.
go back to reference Gauthier C, Tavernier G, Trochu JN, Leblais V, Laurent K, Langin D, et al. Interspecies differences in the cardiac negative inotropic effects of beta(3)-adrenoceptor agonists. J Pharmacol Exp Therapeut. 1999;2:689–93. Gauthier C, Tavernier G, Trochu JN, Leblais V, Laurent K, Langin D, et al. Interspecies differences in the cardiac negative inotropic effects of beta(3)-adrenoceptor agonists. J Pharmacol Exp Therapeut. 1999;2:689–93.
32.
go back to reference Barbier J, Mouas C, Rannou-Bekono F, Carrè F. Existence of beta(3)-adrenoceptors in rat heart: functional implications. Clin Exp Pharmacol Physiol. 2007;34:796–8.PubMedCrossRef Barbier J, Mouas C, Rannou-Bekono F, Carrè F. Existence of beta(3)-adrenoceptors in rat heart: functional implications. Clin Exp Pharmacol Physiol. 2007;34:796–8.PubMedCrossRef
33.
go back to reference Murphy KT, Bundgaard H, Clausen T. Beta3-adrenoceptor agonist stimulation of the Na+, K+-pump in rat skeletal muscle is mediated by beta-2- rather than beta3-adrenoceptors. Br J Pharmacol. 2006;149:635–46.PubMedCrossRef Murphy KT, Bundgaard H, Clausen T. Beta3-adrenoceptor agonist stimulation of the Na+, K+-pump in rat skeletal muscle is mediated by beta-2- rather than beta3-adrenoceptors. Br J Pharmacol. 2006;149:635–46.PubMedCrossRef
34.
go back to reference Daaka Y, Luttrell LM, Lefkowitz R. Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature. 1997;390:88–91.PubMedCrossRef Daaka Y, Luttrell LM, Lefkowitz R. Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature. 1997;390:88–91.PubMedCrossRef
35.
go back to reference Zamah AM, Delahunty M, Luttrell LM, Lefkowitz RJ. Protein kinase A-mediated phosphorylation of the beta2-adrenergic receptor regulates its coupling to Gs and Gi. Demonstration in a reconstituted system. J Biol Chem. 2002;277:31249–56.PubMedCrossRef Zamah AM, Delahunty M, Luttrell LM, Lefkowitz RJ. Protein kinase A-mediated phosphorylation of the beta2-adrenergic receptor regulates its coupling to Gs and Gi. Demonstration in a reconstituted system. J Biol Chem. 2002;277:31249–56.PubMedCrossRef
36.
go back to reference Zhu WZ, Zheng M, Koch WJ, Lefkowitz RJ, Kobilka BK, Xiao RP. Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes. Proc Natl Acad Sci. 2001;98:1607–12.PubMedCrossRef Zhu WZ, Zheng M, Koch WJ, Lefkowitz RJ, Kobilka BK, Xiao RP. Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes. Proc Natl Acad Sci. 2001;98:1607–12.PubMedCrossRef
37.
go back to reference Martin NP, Whalen EJ, Zamah MA, Pierce KL, Lefkowitz RJ. PKA-mediated phosphorylation of the β1-adrenergic receptor promotes Gs/Gi switching. Cell Signal. 2004;16:1397–403.PubMedCrossRef Martin NP, Whalen EJ, Zamah MA, Pierce KL, Lefkowitz RJ. PKA-mediated phosphorylation of the β1-adrenergic receptor promotes Gs/Gi switching. Cell Signal. 2004;16:1397–403.PubMedCrossRef
38.
go back to reference Moolman JA, Hartley S, van Wyk J, Marais E, Lochner A. Inhibition of myocardial apoptosis by ischaemia and beta-adrenergic preconditioning is dependent on p38MAPK. Cardiovasc Drugs Ther. 2006;20:13–25.PubMedCrossRef Moolman JA, Hartley S, van Wyk J, Marais E, Lochner A. Inhibition of myocardial apoptosis by ischaemia and beta-adrenergic preconditioning is dependent on p38MAPK. Cardiovasc Drugs Ther. 2006;20:13–25.PubMedCrossRef
39.
go back to reference Critz SD, Cohen MV, Downey JM. Mechanisms of acetylcholine- and bradykinin-induced preconditioning. Vasc Pharm. 2005;42:201–9.CrossRef Critz SD, Cohen MV, Downey JM. Mechanisms of acetylcholine- and bradykinin-induced preconditioning. Vasc Pharm. 2005;42:201–9.CrossRef
40.
go back to reference Gjertsen BT, Mellgren G, Otten A, et al. Novel (Rp)-cAMPs analogs as tools for inhibition of cAMPkinase in cell culture. Basal cAMPkinase activity modulates interleukin-1beta action. J Biol Chem. 1995;270:20599–607.PubMedCrossRef Gjertsen BT, Mellgren G, Otten A, et al. Novel (Rp)-cAMPs analogs as tools for inhibition of cAMPkinase in cell culture. Basal cAMPkinase activity modulates interleukin-1beta action. J Biol Chem. 1995;270:20599–607.PubMedCrossRef
41.
go back to reference Inserte J, Garcia-Dorado D, Ruiz-Meana M, Agullo L, Pina P, Soler-Soler J. Ischemic preconditioning attenuates calpain-mediated degradation of structural proteins through a protein kinase A-dependent mechanism. Cardiovasc Res. 2004;64:105–14.PubMedCrossRef Inserte J, Garcia-Dorado D, Ruiz-Meana M, Agullo L, Pina P, Soler-Soler J. Ischemic preconditioning attenuates calpain-mediated degradation of structural proteins through a protein kinase A-dependent mechanism. Cardiovasc Res. 2004;64:105–14.PubMedCrossRef
42.
go back to reference Marais E, Genade S, Salie R, Huisamen B, Maritz S, Moolman JA, et al. The temporal relationship between p38MAPK and HSP27 activation in ischaemic and pharmacological preconditioning. Bas Res Cardiol. 2005;100:35–47.CrossRef Marais E, Genade S, Salie R, Huisamen B, Maritz S, Moolman JA, et al. The temporal relationship between p38MAPK and HSP27 activation in ischaemic and pharmacological preconditioning. Bas Res Cardiol. 2005;100:35–47.CrossRef
43.
go back to reference Sichelschmidt OJ, Hahnefeld C, Hohlfeld T, Herberg FW, Schrör K. Trapidil protrects ischemic hearts from reperfusion injury by stimulating PKA II activity. Cardiovasc Res. 2003;58:602–10.PubMedCrossRef Sichelschmidt OJ, Hahnefeld C, Hohlfeld T, Herberg FW, Schrör K. Trapidil protrects ischemic hearts from reperfusion injury by stimulating PKA II activity. Cardiovasc Res. 2003;58:602–10.PubMedCrossRef
44.
go back to reference Dong JM, Leung T, Manser E, Lim L. cAMP-induced morphological changes are counteracted by the activated RhoA small GTPase and Rho kinase ROKalpha. J Biol Chem. 1998;273:22554–62.PubMedCrossRef Dong JM, Leung T, Manser E, Lim L. cAMP-induced morphological changes are counteracted by the activated RhoA small GTPase and Rho kinase ROKalpha. J Biol Chem. 1998;273:22554–62.PubMedCrossRef
45.
go back to reference Hamid SA, Bower HS, Baxter GF. Rho kinase activation plays a major role as mediator of irreversible injury in reperfused myocardium. Am J Physiol. 2007;292:H 2590–2606. Hamid SA, Bower HS, Baxter GF. Rho kinase activation plays a major role as mediator of irreversible injury in reperfused myocardium. Am J Physiol. 2007;292:H 2590–2606.
46.
go back to reference Manganello JM, Huang JS, Kozasa T, Voyno-Yasenetskaya TA, Le Breton GC. Protein kinase A-mediated phosphorylation of the Galpha13 switch I region alters Galphabetagamma13-G protein-coupled receptor complex and inhibits Rho activation. J Biol Chem. 2003;278:124–130.PubMedCrossRef Manganello JM, Huang JS, Kozasa T, Voyno-Yasenetskaya TA, Le Breton GC. Protein kinase A-mediated phosphorylation of the Galpha13 switch I region alters Galphabetagamma13-G protein-coupled receptor complex and inhibits Rho activation. J Biol Chem. 2003;278:124–130.PubMedCrossRef
47.
go back to reference Shimokawa H. Rho-kinase as a novel therapeutic target in treatment of cardiovascular diseases. J Cardiovasc Pharmacol. 2002;39:319–27.PubMedCrossRef Shimokawa H. Rho-kinase as a novel therapeutic target in treatment of cardiovascular diseases. J Cardiovasc Pharmacol. 2002;39:319–27.PubMedCrossRef
48.
go back to reference Juhaszova M, Zorov DB, Kin SH, Pepe S, Fu Q, Fishbein KW, et al. Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest. 2004;113:1535–49.PubMed Juhaszova M, Zorov DB, Kin SH, Pepe S, Fu Q, Fishbein KW, et al. Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest. 2004;113:1535–49.PubMed
49.
go back to reference Lange M, Redel A, Lotz C, Smul TM, Blomeyer C, Frank A, et al. Desflurane–induced postconditioning is mediated by β-adrenergic signaling. Anesthesiology. 2009;110:516–28.PubMedCrossRef Lange M, Redel A, Lotz C, Smul TM, Blomeyer C, Frank A, et al. Desflurane–induced postconditioning is mediated by β-adrenergic signaling. Anesthesiology. 2009;110:516–28.PubMedCrossRef
50.
go back to reference Xiao RP, Zhu W, Zheng M, Chakir K, Bond R, Lakatta EG, et al. Subtype-specific beta-adrenoceptor signaling pathways in the heart and their potential clinical implications. Trends Pharmacol Sci. 2004;25:358–65.PubMedCrossRef Xiao RP, Zhu W, Zheng M, Chakir K, Bond R, Lakatta EG, et al. Subtype-specific beta-adrenoceptor signaling pathways in the heart and their potential clinical implications. Trends Pharmacol Sci. 2004;25:358–65.PubMedCrossRef
51.
go back to reference Slezak J, Buchwalow IB, Schulze W, Karzewski P, Wallukat G, Samoilova VE, et al. Cellular control of nitric oxide synthase expression and activity in rat cardiomyocytes. Antioxid Redox Signal. 2004;6:345–52.PubMedCrossRef Slezak J, Buchwalow IB, Schulze W, Karzewski P, Wallukat G, Samoilova VE, et al. Cellular control of nitric oxide synthase expression and activity in rat cardiomyocytes. Antioxid Redox Signal. 2004;6:345–52.PubMedCrossRef
52.
go back to reference Lochner A, Marais E, Genade S, Moolman JA. Nitric oxide: a trigger for classic preconditioning? Am J Physiol Heart Circ Physiol. 2000;279:H2752–65.PubMed Lochner A, Marais E, Genade S, Moolman JA. Nitric oxide: a trigger for classic preconditioning? Am J Physiol Heart Circ Physiol. 2000;279:H2752–65.PubMed
53.
go back to reference Cohen MV, Yang XM, Downey JM. Nitric oxide is a preconditioning mimetic and cardioprotectant and is the basis of many infarct-sparing strategies. Cardiovasc Res. 2006;70:231–9.PubMedCrossRef Cohen MV, Yang XM, Downey JM. Nitric oxide is a preconditioning mimetic and cardioprotectant and is the basis of many infarct-sparing strategies. Cardiovasc Res. 2006;70:231–9.PubMedCrossRef
54.
go back to reference Balligand J-L. Regulation of cardiac β-adrenergic response by nitric oxide. Cardiovasc Res. 1999;43:607–20.PubMedCrossRef Balligand J-L. Regulation of cardiac β-adrenergic response by nitric oxide. Cardiovasc Res. 1999;43:607–20.PubMedCrossRef
55.
go back to reference Moens AL, Yang R, Watts VL, Barouch LA. Beta 3-adrenoceptor regulation of nitric oxide in the cardiovascular system. J Mol Cell Cardiol. 2010;48:1088–95.PubMedCrossRef Moens AL, Yang R, Watts VL, Barouch LA. Beta 3-adrenoceptor regulation of nitric oxide in the cardiovascular system. J Mol Cell Cardiol. 2010;48:1088–95.PubMedCrossRef
56.
go back to reference Lafontan M. Differential recruitment and differential regulation by physiological amines of fat cell beta-1, beta-2 and beta-3 adrenergic receptors expressed in native fat cells and in transfected cell lines. Cell Signal. 1994;6:363–92.PubMedCrossRef Lafontan M. Differential recruitment and differential regulation by physiological amines of fat cell beta-1, beta-2 and beta-3 adrenergic receptors expressed in native fat cells and in transfected cell lines. Cell Signal. 1994;6:363–92.PubMedCrossRef
57.
go back to reference Cohen MV, Yang X-M, Downey JM. Smaller infarct after preconditioning does not predict extent of early functional improvement of reperfused heart. Am J Physiol. 1999;277:H1754–61.PubMed Cohen MV, Yang X-M, Downey JM. Smaller infarct after preconditioning does not predict extent of early functional improvement of reperfused heart. Am J Physiol. 1999;277:H1754–61.PubMed
58.
go back to reference Jenkins DP, Bugsley WB, Yellon DM. Ischaemic preconditioning in a model of global ischaemia: infarct size limitation, but no reduction of stunning. J Mol Cell Cardiol. 1995;27:1623–32.PubMedCrossRef Jenkins DP, Bugsley WB, Yellon DM. Ischaemic preconditioning in a model of global ischaemia: infarct size limitation, but no reduction of stunning. J Mol Cell Cardiol. 1995;27:1623–32.PubMedCrossRef
59.
go back to reference Lochner A, Genade S, Moolman JA. Ischemic preconditioning: infarct size is a more reliable endpoint than functional recovery. Bas Res Cardiol. 2003;98:337–46.CrossRef Lochner A, Genade S, Moolman JA. Ischemic preconditioning: infarct size is a more reliable endpoint than functional recovery. Bas Res Cardiol. 2003;98:337–46.CrossRef
60.
go back to reference Penna C, Tullio F, Merlino A, Moro F, Raimondo S, Rastaldo R, et al. Postconditioning cardioprotection against infarct size and post-ischemic systolic dysfunction is influenced by gender. Bas Res Cardiol. 2009;104:390–402.CrossRef Penna C, Tullio F, Merlino A, Moro F, Raimondo S, Rastaldo R, et al. Postconditioning cardioprotection against infarct size and post-ischemic systolic dysfunction is influenced by gender. Bas Res Cardiol. 2009;104:390–402.CrossRef
Metadata
Title
The Role of β-adrenergic Receptors in the Cardioprotective Effects of Beta-Preconditioning (βPC)
Authors
Ruduwaan Salie
Johannes A. Moolman
Amanda Lochner
Publication date
01-02-2011
Publisher
Springer US
Published in
Cardiovascular Drugs and Therapy / Issue 1/2011
Print ISSN: 0920-3206
Electronic ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-010-6275-3

Other articles of this Issue 1/2011

Cardiovascular Drugs and Therapy 1/2011 Go to the issue