Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1/2021

01-03-2021 | Metastasis | Non-Thematic Review

Targeting the cytoskeleton against metastatic dissemination

Authors: Carmen Ruggiero, Enzo Lalli

Published in: Cancer and Metastasis Reviews | Issue 1/2021

Login to get access

Abstract

Cancer is a pathology characterized by a loss or a perturbation of a number of typical features of normal cell behaviour. Indeed, the acquisition of an inappropriate migratory and invasive phenotype has been reported to be one of the hallmarks of cancer. The cytoskeleton is a complex dynamic network of highly ordered interlinking filaments playing a key role in the control of fundamental cellular processes, like cell shape maintenance, motility, division and intracellular transport. Moreover, deregulation of this complex machinery contributes to cancer progression and malignancy, enabling cells to acquire an invasive and metastatic phenotype. Metastasis accounts for 90% of death from patients affected by solid tumours, while an efficient prevention and suppression of metastatic disease still remains elusive. This results in the lack of effective therapeutic options currently available for patients with advanced disease. In this context, the cytoskeleton with its regulatory and structural proteins emerges as a novel and highly effective target to be exploited for a substantial therapeutic effort toward the development of specific anti-metastatic drugs. Here we provide an overview of the role of cytoskeleton components and interacting proteins in cancer metastasis with a special focus on small molecule compounds interfering with the actin cytoskeleton organization and function. The emerging involvement of microtubules and intermediate filaments in cancer metastasis is also reviewed.
Literature
1.
go back to reference Gupta, G. P., & Massagué, J. (2006). Cancer metastasis: building a framework. Cell, 127(4), 679–695.PubMedCrossRef Gupta, G. P., & Massagué, J. (2006). Cancer metastasis: building a framework. Cell, 127(4), 679–695.PubMedCrossRef
2.
go back to reference Sahai, E. (2005). Mechanisms of cancer cell invasion. Current Opinion in Genetics & Development, 15(1), 87–96.CrossRef Sahai, E. (2005). Mechanisms of cancer cell invasion. Current Opinion in Genetics & Development, 15(1), 87–96.CrossRef
3.
go back to reference Wang, W., Goswami, S., Lapidus, K., Wells, A. L., Wyckoff, J. B., Sahai, E., et al. (2004). Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Research, 64(23), 8585–8594.PubMedCrossRef Wang, W., Goswami, S., Lapidus, K., Wells, A. L., Wyckoff, J. B., Sahai, E., et al. (2004). Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Research, 64(23), 8585–8594.PubMedCrossRef
4.
go back to reference Wickstead, B., & Gull, K. (2011). The evolution of the cytoskeleton. Journal of CellBiology, 194(4), 513–525.CrossRef Wickstead, B., & Gull, K. (2011). The evolution of the cytoskeleton. Journal of CellBiology, 194(4), 513–525.CrossRef
7.
go back to reference Dent, E. W., & Gertler, F. B. (2003). Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron, 40(2), 209–227.PubMedCrossRef Dent, E. W., & Gertler, F. B. (2003). Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron, 40(2), 209–227.PubMedCrossRef
8.
go back to reference Wittmann, T., Hyman, A., & Desai, A. (2001). The spindle: a dynamic assembly of microtubules and motors. Nature Cell Biol, 3(1), E28–E34.PubMedCrossRef Wittmann, T., Hyman, A., & Desai, A. (2001). The spindle: a dynamic assembly of microtubules and motors. Nature Cell Biol, 3(1), E28–E34.PubMedCrossRef
9.
go back to reference Wegner, A. (1976). Head to tail polymerization of actin. Journal of Molecular Biology, 108(1), 139–150.PubMedCrossRef Wegner, A. (1976). Head to tail polymerization of actin. Journal of Molecular Biology, 108(1), 139–150.PubMedCrossRef
10.
go back to reference Korn, E. D., Carlier, M. F., & Pantaloni, D. (1987). Actin polymerization and ATP hydrolysis. Science, 238(4827), 638–644.PubMedCrossRef Korn, E. D., Carlier, M. F., & Pantaloni, D. (1987). Actin polymerization and ATP hydrolysis. Science, 238(4827), 638–644.PubMedCrossRef
11.
go back to reference Bugyi, B., & Carlier, M. F. (2010). Control of actin filament treadmilling in cell motility. Annual Review of Biophysics, 39, 449–470.PubMedCrossRef Bugyi, B., & Carlier, M. F. (2010). Control of actin filament treadmilling in cell motility. Annual Review of Biophysics, 39, 449–470.PubMedCrossRef
12.
go back to reference dos Remedios, C. G., Chhabra, D., Kekic, M., Dedova, I. V., Tsubakihara, M., Berry, D. A., et al. (2003). Actin binding proteins: regulation of cytoskeletal microfilaments. PhysiologicalReviews, 83(2), 433–473. dos Remedios, C. G., Chhabra, D., Kekic, M., Dedova, I. V., Tsubakihara, M., Berry, D. A., et al. (2003). Actin binding proteins: regulation of cytoskeletal microfilaments. PhysiologicalReviews, 83(2), 433–473.
13.
go back to reference Miller, A. L. (2011). The contractile ring. CurrentBiology, 21(24), R976–R978. Miller, A. L. (2011). The contractile ring. CurrentBiology, 21(24), R976–R978.
14.
go back to reference Lymn, R. W., & Taylor, E. W. (1971). Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry, 10(25), 4617–4624.PubMedCrossRef Lymn, R. W., & Taylor, E. W. (1971). Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry, 10(25), 4617–4624.PubMedCrossRef
15.
go back to reference Rayment, I., Holden, H. M., Whittaker, M., Yohn, C. B., Lorenz, M., Holmes, K. C., & Milligan, R. A. (1993). Structure of the actin-myosin complex and its implications for muscle contraction. Science, 261(5117), 58–65.PubMedCrossRef Rayment, I., Holden, H. M., Whittaker, M., Yohn, C. B., Lorenz, M., Holmes, K. C., & Milligan, R. A. (1993). Structure of the actin-myosin complex and its implications for muscle contraction. Science, 261(5117), 58–65.PubMedCrossRef
16.
go back to reference Geeves, M. A., & Holmes, K. C. (2005). The molecular mechanism of muscle contraction. Advances in Protein Chemistry, 71, 161–193.PubMedCrossRef Geeves, M. A., & Holmes, K. C. (2005). The molecular mechanism of muscle contraction. Advances in Protein Chemistry, 71, 161–193.PubMedCrossRef
17.
go back to reference Pantaloni, D., Le Clainche, C., & Carlier, M. F. (2001). Mechanism of actin-based motility. Science, 292(5521), 1502–1506.PubMedCrossRef Pantaloni, D., Le Clainche, C., & Carlier, M. F. (2001). Mechanism of actin-based motility. Science, 292(5521), 1502–1506.PubMedCrossRef
18.
go back to reference Footer, M. J., Kerssemakers, J. W. J., Theriot, J. A., & Dogterom, M. (2007). Direct measurement of force generation by actin filament polymerizationusing an optical trap. Proceedings of the National Academy of Sciences of the United States of America, 104(7), 2181–2186.PubMedPubMedCentralCrossRef Footer, M. J., Kerssemakers, J. W. J., Theriot, J. A., & Dogterom, M. (2007). Direct measurement of force generation by actin filament polymerizationusing an optical trap. Proceedings of the National Academy of Sciences of the United States of America, 104(7), 2181–2186.PubMedPubMedCentralCrossRef
19.
go back to reference Atilgan, E., Wirtz, D., & Sun, S. X. (2005). Morphology of the lamellipodium and organization of actin filaments at the leading edge of crawling cells. Biophysical Journal, 89(5), 3589–3602.PubMedPubMedCentralCrossRef Atilgan, E., Wirtz, D., & Sun, S. X. (2005). Morphology of the lamellipodium and organization of actin filaments at the leading edge of crawling cells. Biophysical Journal, 89(5), 3589–3602.PubMedPubMedCentralCrossRef
20.
go back to reference Loisel, T. P., Boujemaa, R., Pantaloni, D., & Carlier, M. F. (1999). Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature, 401(6753), 613–616.PubMedCrossRef Loisel, T. P., Boujemaa, R., Pantaloni, D., & Carlier, M. F. (1999). Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature, 401(6753), 613–616.PubMedCrossRef
21.
go back to reference Zeile, W. L., Zhang, F., Dickinson, R. B., & Purich, D. L. (2005). Listeria's right-handed helical rocket-tail trajectories: mechanistic implications for force generation in actin-basedmotility. Cell Motility and the Cytoskeleton, 60(2), 121–128.PubMedCrossRef Zeile, W. L., Zhang, F., Dickinson, R. B., & Purich, D. L. (2005). Listeria's right-handed helical rocket-tail trajectories: mechanistic implications for force generation in actin-basedmotility. Cell Motility and the Cytoskeleton, 60(2), 121–128.PubMedCrossRef
22.
go back to reference Foster, K. W. (2012). Flagella, Cilia, Actin- and Centrin-based Movement. In N. Sperelakis (Ed.), Cell Physiology Source Book (Fourth Edition) (pp. 823–853). Academic Press. Foster, K. W. (2012). Flagella, Cilia, Actin- and Centrin-based Movement. In N. Sperelakis (Ed.), Cell Physiology Source Book (Fourth Edition) (pp. 823–853). Academic Press.
23.
go back to reference Carlson, B. M. (2018). Cells. In A. G. Wolff (Ed.), The Human Body: Linking Structure and Function (pp. 16–19). Academic Press. Carlson, B. M. (2018). Cells. In A. G. Wolff (Ed.), The Human Body: Linking Structure and Function (pp. 16–19). Academic Press.
25.
go back to reference Hirokawa, N. (1998). Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science, 279(5350), 519–526.PubMedCrossRef Hirokawa, N. (1998). Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science, 279(5350), 519–526.PubMedCrossRef
26.
go back to reference Desai, A., & Mitchison, T. J. (1997). Microtubule polymerization dynamics. Annual. Review Cell and Developmental Biology, 13, 83–117.CrossRef Desai, A., & Mitchison, T. J. (1997). Microtubule polymerization dynamics. Annual. Review Cell and Developmental Biology, 13, 83–117.CrossRef
27.
28.
go back to reference Belmont, L. D., Hyman, A. A., Sawin, K. E., & Mitchison, T. J. (1990). Real-time visualization of cell cycle-dependent changes in microtubule dynamics in cytoplasmic extracts. Cell, 62(3), 579–589.PubMedCrossRef Belmont, L. D., Hyman, A. A., Sawin, K. E., & Mitchison, T. J. (1990). Real-time visualization of cell cycle-dependent changes in microtubule dynamics in cytoplasmic extracts. Cell, 62(3), 579–589.PubMedCrossRef
29.
30.
go back to reference Walczak, C. E., & Heald, R. (2008). Mechanisms of mitotic spindle assembly and function. International Review of Cytology, 265, 111–158.PubMedCrossRef Walczak, C. E., & Heald, R. (2008). Mechanisms of mitotic spindle assembly and function. International Review of Cytology, 265, 111–158.PubMedCrossRef
31.
go back to reference Achler, C., Filmer, D., Merte, C., & Drenckhahn, D. (1989). Role of microtubules in polarized delivery of apical membrane proteins to the brush border of the intestinal epithelium. Journal of Cell Biology, 109(1), 179–189.CrossRef Achler, C., Filmer, D., Merte, C., & Drenckhahn, D. (1989). Role of microtubules in polarized delivery of apical membrane proteins to the brush border of the intestinal epithelium. Journal of Cell Biology, 109(1), 179–189.CrossRef
32.
go back to reference Siegrist, S. E., & Doe, C. Q. (2007). Microtubule-induced cortical cell polarity. Genes and Development, 21(5), 483–496.PubMedCrossRef Siegrist, S. E., & Doe, C. Q. (2007). Microtubule-induced cortical cell polarity. Genes and Development, 21(5), 483–496.PubMedCrossRef
33.
go back to reference Hesse, M., Magin, T. M., & Weber, K. (2001). Genes for intermediate filament proteins and the draft sequence of the human genome: novel keratin genes and a surprisingly high number of pseudogenes related to keratin genes 8 and 18. Journal of Cell Science, 114(Pt14), 2569–2575.PubMedCrossRef Hesse, M., Magin, T. M., & Weber, K. (2001). Genes for intermediate filament proteins and the draft sequence of the human genome: novel keratin genes and a surprisingly high number of pseudogenes related to keratin genes 8 and 18. Journal of Cell Science, 114(Pt14), 2569–2575.PubMedCrossRef
34.
go back to reference Jones, J. C., Kam, C. Y., Harmon, R. M., Woychek, A. V., Hopkinson, S. B., & Green, K. J. (2017). Intermediate Filaments and the Plasma Membrane. Cold Spring Harbor Perspectives in Biology, 9(1), a025866.PubMedPubMedCentralCrossRef Jones, J. C., Kam, C. Y., Harmon, R. M., Woychek, A. V., Hopkinson, S. B., & Green, K. J. (2017). Intermediate Filaments and the Plasma Membrane. Cold Spring Harbor Perspectives in Biology, 9(1), a025866.PubMedPubMedCentralCrossRef
35.
go back to reference Aebi, U., Cohn, J., Buhle, L., & Gerace, L. (1986). The nuclear lamina is a meshwork of intermediate-type filaments. Nature, 323(6088), 560–564.PubMedCrossRef Aebi, U., Cohn, J., Buhle, L., & Gerace, L. (1986). The nuclear lamina is a meshwork of intermediate-type filaments. Nature, 323(6088), 560–564.PubMedCrossRef
36.
go back to reference Howard, J. (1997). Molecular motors: structural adaptations to cellular functions. Nature, 389(6651), 561–567.PubMedCrossRef Howard, J. (1997). Molecular motors: structural adaptations to cellular functions. Nature, 389(6651), 561–567.PubMedCrossRef
37.
go back to reference Krendel, M., & Mooseker, M. S. (2005). Myosins: tails (and heads) of functional diversity. Physiology, 20, 239–251.PubMedCrossRef Krendel, M., & Mooseker, M. S. (2005). Myosins: tails (and heads) of functional diversity. Physiology, 20, 239–251.PubMedCrossRef
38.
go back to reference Howard, J., Hudspeth, A. J., & Vale, R. D. (1989). Movement of microtubules by single kinesin molecules. Nature, 342(6246), 154–158.PubMedCrossRef Howard, J., Hudspeth, A. J., & Vale, R. D. (1989). Movement of microtubules by single kinesin molecules. Nature, 342(6246), 154–158.PubMedCrossRef
39.
go back to reference Ampe, C., & Van Troys, M. (2017). Mammalian Actins: Isoform-Specific Functions and Diseases. Handbook of Experimental Pharmacology, 235, 1–37.PubMed Ampe, C., & Van Troys, M. (2017). Mammalian Actins: Isoform-Specific Functions and Diseases. Handbook of Experimental Pharmacology, 235, 1–37.PubMed
40.
go back to reference Dugina, V., Zwaenepoel, I., Gabbiani, G., Clement, S., & Chaponnier, C. (2009). Beta- and gamma-cytoplasmic actins display distinct distribution and functional diversity. Journal of Cell Science, 122(16), 2980–2988.PubMedCrossRef Dugina, V., Zwaenepoel, I., Gabbiani, G., Clement, S., & Chaponnier, C. (2009). Beta- and gamma-cytoplasmic actins display distinct distribution and functional diversity. Journal of Cell Science, 122(16), 2980–2988.PubMedCrossRef
41.
go back to reference Perrin, B. J., & Ervasti, J. M. (2010). The Actin Gene Family: Function Follows Isoform. Cytoskeleton (Hoboken), 67(10), 630–634.CrossRef Perrin, B. J., & Ervasti, J. M. (2010). The Actin Gene Family: Function Follows Isoform. Cytoskeleton (Hoboken), 67(10), 630–634.CrossRef
42.
go back to reference Burke, T. A., Christensen, J. R., Barone, E., Suarez, C., Sirotkin, V., & Kovar, D. R. (2014). Homeostatic Actin Cytoskeleton Networks Are Regulated by Assembly Factor Competition for Monomers. Current Biology, 24(5), 579–585.PubMedCrossRef Burke, T. A., Christensen, J. R., Barone, E., Suarez, C., Sirotkin, V., & Kovar, D. R. (2014). Homeostatic Actin Cytoskeleton Networks Are Regulated by Assembly Factor Competition for Monomers. Current Biology, 24(5), 579–585.PubMedCrossRef
43.
go back to reference Cao, L. G., Babcock, G. G., Rubenstein, P. A., & Wang, Y. L. (1992). Effects of profilin and profilactin on actin structure and function in living cells. Journal of Cell Biology, 117(5), 1023–1029.CrossRef Cao, L. G., Babcock, G. G., Rubenstein, P. A., & Wang, Y. L. (1992). Effects of profilin and profilactin on actin structure and function in living cells. Journal of Cell Biology, 117(5), 1023–1029.CrossRef
44.
go back to reference Carlsson, L., Nystrom, L. E., Sundkvist, I., Markey, F., & Lindberg, U. (1977). Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells. Journal of MolecularBiology, 115(3), 465–483. Carlsson, L., Nystrom, L. E., Sundkvist, I., Markey, F., & Lindberg, U. (1977). Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells. Journal of MolecularBiology, 115(3), 465–483.
45.
go back to reference Fujiwara, I., Vavylonis, D., & Pollard, T. D. (2007). Polymerization of ADP- and ADP-Pi-actin determined by fluorescence microscopy. Proceedings of the National Academy of Sciences of the United States of America, 104(21), 8827–8832.PubMedPubMedCentralCrossRef Fujiwara, I., Vavylonis, D., & Pollard, T. D. (2007). Polymerization of ADP- and ADP-Pi-actin determined by fluorescence microscopy. Proceedings of the National Academy of Sciences of the United States of America, 104(21), 8827–8832.PubMedPubMedCentralCrossRef
46.
go back to reference Pollard, T. D., & Weeds, A. G. (1984). The rate constant for ATP hydrolysis by polymerizedactin. FEBS Letters, 170(1), 94–98.PubMedCrossRef Pollard, T. D., & Weeds, A. G. (1984). The rate constant for ATP hydrolysis by polymerizedactin. FEBS Letters, 170(1), 94–98.PubMedCrossRef
47.
go back to reference Mukherjee, T. M., & Staehelin, L. A. (1971). The fine-structural organization of the brush border of intestinal epithelial cells. Journal of Cell Science, 8(3), 573‐599.CrossRef Mukherjee, T. M., & Staehelin, L. A. (1971). The fine-structural organization of the brush border of intestinal epithelial cells. Journal of Cell Science, 8(3), 573‐599.CrossRef
48.
go back to reference Mooseker, M. S., & Tilney, L. G. (1975). Organization of an actin filament-membrane complex. Filament polarity and membrane attachment in the microvilli of intestinal epithelialcells. Journal of Cell Biology, 67(3), 725–743.CrossRef Mooseker, M. S., & Tilney, L. G. (1975). Organization of an actin filament-membrane complex. Filament polarity and membrane attachment in the microvilli of intestinal epithelialcells. Journal of Cell Biology, 67(3), 725–743.CrossRef
49.
go back to reference Bretscher, A., & Weber, K. (1978). Localization of actin and microfilament-associated proteins in the microvilli and terminal web of the intestinal brush border by immunofluorescence microscopy. Journal of Cell Biology, (3), 839–845. Bretscher, A., & Weber, K. (1978). Localization of actin and microfilament-associated proteins in the microvilli and terminal web of the intestinal brush border by immunofluorescence microscopy. Journal of Cell Biology, (3), 839–845.
50.
go back to reference Bearer, E. L. (1993). Role of Actin Polymerization in Cell Locomotion: Molecules and Models. American Journal of Respiratory Cell and Molecular Biology, 8(6), 582–591.PubMedCrossRef Bearer, E. L. (1993). Role of Actin Polymerization in Cell Locomotion: Molecules and Models. American Journal of Respiratory Cell and Molecular Biology, 8(6), 582591.PubMedCrossRef
51.
go back to reference Slack, J. M. W. (2014). The basis of growth and differentiation. In R. Lanza, R. Langer, & J. Vacanti (Eds.), Principles of Tissue Engineering (Fourth Edition) (pp. 127–145). Academic Press. Slack, J. M. W. (2014). The basis of growth and differentiation. In R. Lanza, R. Langer, & J. Vacanti (Eds.), Principles of Tissue Engineering (Fourth Edition) (pp. 127–145). Academic Press.
52.
go back to reference Zheng, Y., Wong, M. L., Alberts, B., & Mitchison, T. (1995). Nucleation of microtubule assembly by a gamma-tubulin-containing ring complex. Nature, 378(6557), 578–583.PubMedCrossRef Zheng, Y., Wong, M. L., Alberts, B., & Mitchison, T. (1995). Nucleation of microtubule assembly by a gamma-tubulin-containing ring complex. Nature, 378(6557), 578–583.PubMedCrossRef
53.
go back to reference Howard, J., & Hyman, A. A. (2003). Dynamics and mechanics of the microtubule plus end. Nature, 422(6933), 753–758.PubMedCrossRef Howard, J., & Hyman, A. A. (2003). Dynamics and mechanics of the microtubule plus end. Nature, 422(6933), 753–758.PubMedCrossRef
54.
go back to reference Mitchison, T., & Kirschner, M. (1984). Dynamic instability of microtubule growth. Nature, 312(5991), 237–242.PubMedCrossRef Mitchison, T., & Kirschner, M. (1984). Dynamic instability of microtubule growth. Nature, 312(5991), 237–242.PubMedCrossRef
55.
go back to reference Rodionov, V. I., & Borisy, G. G. (1997). Microtubule treadmilling in vivo. Science, 275(5297), 215–218.PubMedCrossRef Rodionov, V. I., & Borisy, G. G. (1997). Microtubule treadmilling in vivo. Science, 275(5297), 215–218.PubMedCrossRef
56.
go back to reference Aldaz, H., Rice, L. M., Stearns, T., & Agard, D. A. (2005). Insights into microtubule nucleation from the crystal structure of human gamma-tubulin. Nature, 435(7041), 523–527.PubMedCrossRef Aldaz, H., Rice, L. M., Stearns, T., & Agard, D. A. (2005). Insights into microtubule nucleation from the crystal structure of human gamma-tubulin. Nature, 435(7041), 523–527.PubMedCrossRef
57.
go back to reference Drewes, G., Ebneth, A., & Mandelkow, E. M. (1998). MAPs, MARKs and microtubule dynamics. Trends in Biochemical Sciences, 23(8), 307–311.PubMedCrossRef Drewes, G., Ebneth, A., & Mandelkow, E. M. (1998). MAPs, MARKs and microtubule dynamics. Trends in Biochemical Sciences, 23(8), 307–311.PubMedCrossRef
58.
go back to reference Andersen, S. S. (2000). Spindle assembly and the art of regulating microtubule dynamics by MAPs and Stathmin/Op18. Trends in Cell Biology, 10(7), 261–267.PubMedCrossRef Andersen, S. S. (2000). Spindle assembly and the art of regulating microtubule dynamics by MAPs and Stathmin/Op18. Trends in Cell Biology, 10(7), 261–267.PubMedCrossRef
59.
go back to reference Permana, S., Hisanaga, S., Nagatomo, Y., Iida, J., Hotani, H., & Itoh, T. J. (2005). Truncation of the projection domain of MAP4 (microtubule-associatedprotein 4) leads to attenuation of microtubule dynamic instability. Cell Structure and Function, 29(5–6), 147–157.PubMedCrossRef Permana, S., Hisanaga, S., Nagatomo, Y., Iida, J., Hotani, H., & Itoh, T. J. (2005). Truncation of the projection domain of MAP4 (microtubule-associatedprotein 4) leads to attenuation of microtubule dynamic instability. Cell Structure and Function, 29(5–6), 147–157.PubMedCrossRef
60.
go back to reference Garcia, M. L., & Cleveland, D. W. (2001). Going new places using an old MAP: tau, microtubules and human neurodegenerative disease. Current Opinion in Cell Biology, 13(1), 41–48.PubMedCrossRef Garcia, M. L., & Cleveland, D. W. (2001). Going new places using an old MAP: tau, microtubules and human neurodegenerative disease. Current Opinion in Cell Biology, 13(1), 41–48.PubMedCrossRef
61.
go back to reference Schweizer, J., Bowden, P. E., Coulombe, P. A., Langbein, L., Lane, E. B., Magin, T. M., et al. (2006). New consensus nomenclature for mammalian keratins. Journal of Cell Biology, 174(2), 169–174.CrossRef Schweizer, J., Bowden, P. E., Coulombe, P. A., Langbein, L., Lane, E. B., Magin, T. M., et al. (2006). New consensus nomenclature for mammalian keratins. Journal of Cell Biology, 174(2), 169–174.CrossRef
62.
go back to reference Franke, W. W., Schmid, E., Winter, S., Osborn, M., & Weber, K. (1979). Widespread occurrence of intermediate-sized filaments of the vimentin-type in cultured cells from diverse vertebrates. Experimental Cell Research, 123(1), 25–46.PubMedCrossRef Franke, W. W., Schmid, E., Winter, S., Osborn, M., & Weber, K. (1979). Widespread occurrence of intermediate-sized filaments of the vimentin-type in cultured cells from diverse vertebrates. Experimental Cell Research, 123(1), 25–46.PubMedCrossRef
63.
go back to reference Lazarides, E., & Hubbard, B. D. (1976). Immunological characterization of the subunit of the 100 A filaments from muscle cells. Proceedings of the National Academy of Sciences of the United States of America, 7(12), 4344–4348.CrossRef Lazarides, E., & Hubbard, B. D. (1976). Immunological characterization of the subunit of the 100 A filaments from muscle cells. Proceedings of the National Academy of Sciences of the United States of America, 7(12), 4344–4348.CrossRef
64.
go back to reference Hoffman, P. N., & Lasek, R. J. (1975). The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. Journal of Cell Biology, 66(2), 351–366.CrossRef Hoffman, P. N., & Lasek, R. J. (1975). The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. Journal of Cell Biology, 66(2), 351366.CrossRef
65.
go back to reference Lendahl, U., Zimmerman, L. B., & McKay, R. D. G. (1990). CNS stem cells express a new class of intermediate filament protein. Cell, 60(4), 585–595.PubMedCrossRef Lendahl, U., Zimmerman, L. B., & McKay, R. D. G. (1990). CNS stem cells express a new class of intermediate filament protein. Cell, 60(4), 585–595.PubMedCrossRef
66.
go back to reference Mignone, J. L., Kukekov, V., Chiang, A. S., Steindler, D., & Enikolopov, G. J. (2004). Neural stem and progenitor cells in nestin-GFP transgenic mice. Journal of Comparative Neurology, 469(3), 311–324.CrossRef Mignone, J. L., Kukekov, V., Chiang, A. S., Steindler, D., & Enikolopov, G. J. (2004). Neural stem and progenitor cells in nestin-GFP transgenic mice. Journal of Comparative Neurology, 469(3), 311–324.CrossRef
67.
go back to reference Koster, S., Weitz, D. A., Goldman, R. D., Aebi, U., & Hermann, H. (2015). Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networks. Current Opinion in Cell Biology, 32, 82–91.PubMedCrossRef Koster, S., Weitz, D. A., Goldman, R. D., Aebi, U., & Hermann, H. (2015). Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networks. Current Opinion in Cell Biology, 32, 82–91.PubMedCrossRef
68.
go back to reference Helfand, B. T., Chang, L., & Goldman, R. D. (2003). The dynamic and motile properties of intermediate filaments. Annual Review of Cell and Developmental Biology, 19, 445–467.PubMedCrossRef Helfand, B. T., Chang, L., & Goldman, R. D. (2003). The dynamic and motile properties of intermediate filaments. Annual Review of Cell and Developmental Biology, 19, 445–467.PubMedCrossRef
69.
go back to reference Gerace, L., & Blobel, G. (1980). The nuclear envelope lamina is reversibly depolymerized during mitosis. Cell., 19(1), 277–287.PubMedCrossRef Gerace, L., & Blobel, G. (1980). The nuclear envelope lamina is reversibly depolymerized during mitosis. Cell., 19(1), 277–287.PubMedCrossRef
70.
go back to reference Ottaviano, Y., & Gerace, L. (1985). Phosphorylation of the nuclear lamins during interphase and mitosis. Journal of Biological Chemistry, 260(1), 624–632.CrossRef Ottaviano, Y., & Gerace, L. (1985). Phosphorylation of the nuclear lamins during interphase and mitosis. Journal of Biological Chemistry, 260(1), 624–632.CrossRef
71.
go back to reference Coulombe, P. A., Kerns, M. L., & Fuchs, E. (2009). Epidermolysis bullosa simplex: a paradigm for disorders of tissue fragility. Journal of Clinical Investigation, 119(7), 1784–1793.CrossRef Coulombe, P. A., Kerns, M. L., & Fuchs, E. (2009). Epidermolysis bullosa simplex: a paradigm for disorders of tissue fragility. Journal of Clinical Investigation, 119(7), 1784–1793.CrossRef
72.
go back to reference Goldfarb, L. G., Olivé, M., Vicart, P., & Goebel, H. H. (2008). Intermediate Filament Diseases: Desminopathy. Advances in Experimental Medicine and Biology, 642, 131–164.PubMedPubMedCentralCrossRef Goldfarb, L. G., Olivé, M., Vicart, P., & Goebel, H. H. (2008). Intermediate Filament Diseases: Desminopathy. Advances in Experimental Medicine and Biology, 642, 131–164.PubMedPubMedCentralCrossRef
73.
go back to reference Xiao, S., McLean, J., & Robertson, J. (2006). Neuronal Intermediate Filaments and ALS: A New Look at an Old Question. Biochimica Biophysica Acta, 1762(11-12), 1001–1012.CrossRef Xiao, S., McLean, J., & Robertson, J. (2006). Neuronal Intermediate Filaments and ALS: A New Look at an Old Question. Biochimica Biophysica Acta, 1762(11-12), 1001–1012.CrossRef
74.
go back to reference Talmadge, J. E., & Fidler, I. J. (2010). AACR Centennial Series: The Biology of Cancer Metastasis: Historical Perspective. Cancer Research, 70(14), 5649–5469.PubMedPubMedCentralCrossRef Talmadge, J. E., & Fidler, I. J. (2010). AACR Centennial Series: The Biology of Cancer Metastasis: Historical Perspective. Cancer Research, 70(14), 5649–5469.PubMedPubMedCentralCrossRef
75.
go back to reference Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews Cancer, 2(8), 563–572.PubMedCrossRef Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews Cancer, 2(8), 563–572.PubMedCrossRef
76.
go back to reference Woodhouse, E. C., Chuaqui, R. F., & Liotta, L. A. (1997). General mechanisms of metastasis. Cancer, 80(8 Suppl), 1529–1537.PubMedCrossRef Woodhouse, E. C., Chuaqui, R. F., & Liotta, L. A. (1997). General mechanisms of metastasis. Cancer, 80(8 Suppl), 1529–1537.PubMedCrossRef
78.
go back to reference Hiratsuka, S., Nakamura, K., Iwai, S., Murakami, M., Itoh, T., Kijima, H., et al. (2002). MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell, (4), 289–300. Hiratsuka, S., Nakamura, K., Iwai, S., Murakami, M., Itoh, T., Kijima, H., et al. (2002). MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell, (4), 289–300.
79.
go back to reference Hiratsuka, S., Watanabe, A., Aburatani, H., & Maru, Y. (2006). Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nature Cell Biology, 8(12), 1369–1375.PubMedCrossRef Hiratsuka, S., Watanabe, A., Aburatani, H., & Maru, Y. (2006). Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nature Cell Biology, 8(12), 1369–1375.PubMedCrossRef
80.
go back to reference Hiratsuka, S., Watanabe, A., Sakurai, Y., Akashi-Takamura, S., Ishibashi, S., Miyake, K., et al. (2008). The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nature Cell Biology, 10(11), 1349–1355.PubMedCrossRef Hiratsuka, S., Watanabe, A., Sakurai, Y., Akashi-Takamura, S., Ishibashi, S., Miyake, K., et al. (2008). The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nature Cell Biology, 10(11), 1349–1355.PubMedCrossRef
82.
go back to reference van't Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A. M., Mao, M., et al. (2002). Gene Expression Profiling Predicts Clinical Outcome of Breast Cancer. Nature, 415(6871), 530–536.CrossRef van't Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A. M., Mao, M., et al. (2002). Gene Expression Profiling Predicts Clinical Outcome of Breast Cancer. Nature, 415(6871), 530–536.CrossRef
83.
go back to reference Talhouk, R. S., Bissell, M. J., & Werb, Z. (1992). Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution. Journal of Cell Biology, 118(5), 1271–1282.CrossRef Talhouk, R. S., Bissell, M. J., & Werb, Z. (1992). Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution. Journal of Cell Biology, 118(5), 1271–1282.CrossRef
84.
go back to reference Wu, D. Y., & Goldberg, D. J. (1993). Regulated tyrosine phosphorylation at the tips of growth cone filopodia. Journal of Cell Biology, 123(3), 653–664.CrossRef Wu, D. Y., & Goldberg, D. J. (1993). Regulated tyrosine phosphorylation at the tips of growth cone filopodia. Journal of Cell Biology, 123(3), 653–664.CrossRef
85.
go back to reference Folkman, J. (1971). Tumor angiogenesis: therapeutic implications. New England Journal of Medicine, 285(21), 1182–1186.CrossRef Folkman, J. (1971). Tumor angiogenesis: therapeutic implications. New England Journal of Medicine, 285(21), 1182–1186.CrossRef
86.
go back to reference Liotta, L. A., & Kohn, E. C. (2001). The microenvironment of the tumour-host interface. Nature, 411(6835), 375–379.PubMedCrossRef Liotta, L. A., & Kohn, E. C. (2001). The microenvironment of the tumour-host interface. Nature, 411(6835), 375–379.PubMedCrossRef
87.
go back to reference Coussens, L. M., & Werb, Z. (1996). Matrix metalloproteinases and the development of cancer. Chemistry and Biology, 3(11), 895–904.PubMedCrossRef Coussens, L. M., & Werb, Z. (1996). Matrix metalloproteinases and the development of cancer. Chemistry and Biology, 3(11), 895–904.PubMedCrossRef
88.
go back to reference Brooks, P. C., Montgomery, A. M., Rosenfeld, M., Reisfeld, R. A., Hu, T., Klier, G., & Cheresh, D. A. (1994). Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell, 79(7), 1157–1164.PubMedCrossRef Brooks, P. C., Montgomery, A. M., Rosenfeld, M., Reisfeld, R. A., Hu, T., Klier, G., & Cheresh, D. A. (1994). Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell, 79(7), 1157–1164.PubMedCrossRef
89.
go back to reference Davis, G. E. (1992). Affinity of integrins for damaged extracellular matrix: alpha v beta 3 binds to denatured collagen type I through RGD sites. Biochemical and Biophysical Research Communications, 182(3), 1025–1031.PubMedCrossRef Davis, G. E. (1992). Affinity of integrins for damaged extracellular matrix: alpha v beta 3 binds to denatured collagen type I through RGD sites. Biochemical and Biophysical Research Communications, 182(3), 1025–1031.PubMedCrossRef
90.
go back to reference Klymkowsky, M. W., & Savagner, P. (2009). Epithelial-mesenchymal Transition: A Cancer Researcher's Conceptual Friend and Foe. American Jorunal of Pathology, 174(5), 1588–1593.CrossRef Klymkowsky, M. W., & Savagner, P. (2009). Epithelial-mesenchymal Transition: A Cancer Researcher's Conceptual Friend and Foe. American Jorunal of Pathology, 174(5), 1588–1593.CrossRef
91.
go back to reference Polyak, K., & Weinberg, R. A. Transitions Between Epithelial and Mesenchymal States: Acquisition of Malignant and Stem Cell Traits. Nature Reviews Cancer, 9(4), 265–273. Polyak, K., & Weinberg, R. A. Transitions Between Epithelial and Mesenchymal States: Acquisition of Malignant and Stem Cell Traits. Nature Reviews Cancer, 9(4), 265–273.
92.
go back to reference Micalizzi, D. S., Farabaugh, S. M., & Ford, H. L. (2010). Epithelial-mesenchymaltransition in cancer: parallels between normal development and tumor progression. Journal of Mammary Gland Biology and Neoplasia, 15(2), 117–134.PubMedPubMedCentralCrossRef Micalizzi, D. S., Farabaugh, S. M., & Ford, H. L. (2010). Epithelial-mesenchymaltransition in cancer: parallels between normal development and tumor progression. Journal of Mammary Gland Biology and Neoplasia, 15(2), 117–134.PubMedPubMedCentralCrossRef
93.
go back to reference Taube, J. H., Herschkowitz, J. I., Komurov, K., Zhou, A. Y., Gupta, S., Yang, J., et al. (2010). Core epithelial-to mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proceedings of the National Academy of Sciences of the United States of America, 107(35), 15449–15554.PubMedPubMedCentralCrossRef Taube, J. H., Herschkowitz, J. I., Komurov, K., Zhou, A. Y., Gupta, S., Yang, J., et al. (2010). Core epithelial-to mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proceedings of the National Academy of Sciences of the United States of America, 107(35), 15449–15554.PubMedPubMedCentralCrossRef
94.
go back to reference Friedl, P., & Wolf, K. (2008). Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Research, 68(18), 7247–7249.PubMedCrossRef Friedl, P., & Wolf, K. (2008). Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Research, 68(18), 7247–7249.PubMedCrossRef
95.
go back to reference Madsen, C. D., & Sahai, E. (2010). Cancer dissemination--lessons from leukocytes. Developmental Cell, 19(1), 13–26.PubMedCrossRef Madsen, C. D., & Sahai, E. (2010). Cancer dissemination--lessons from leukocytes. Developmental Cell, 19(1), 13–26.PubMedCrossRef
96.
go back to reference Sabeh, F., Shimizu-Hirota, R., & Weiss, S. J. (2009). Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. Journal of Cell Biology, 185(1), 11–19.CrossRef Sabeh, F., Shimizu-Hirota, R., & Weiss, S. J. (2009). Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. Journal of Cell Biology, 185(1), 11–19.CrossRef
98.
go back to reference Joyce, J. A., & Pollard, J. W. (2009). Microenvironmental regulation of metastasis. Nature Reviews Cancer, 9(4), 239–252.PubMedCrossRef Joyce, J. A., & Pollard, J. W. (2009). Microenvironmental regulation of metastasis. Nature Reviews Cancer, 9(4), 239–252.PubMedCrossRef
99.
go back to reference Karnoub, A. E., Dash, A. B., Vo, A. P., Sullivan, A., Brooks, M. W., Bell, G. W., et al. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449(7162), 557–563.PubMedCrossRef Karnoub, A. E., Dash, A. B., Vo, A. P., Sullivan, A., Brooks, M. W., Bell, G. W., et al. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449(7162), 557–563.PubMedCrossRef
100.
101.
go back to reference Wyckoff, J. B., Wang, Y., Lin, E. Y., Li, J. F., Goswami, S., Stanley, E. R., et al. (2007). Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Research, 67(6), 2649–2656.PubMedCrossRef Wyckoff, J. B., Wang, Y., Lin, E. Y., Li, J. F., Goswami, S., Stanley, E. R., et al. (2007). Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Research, 67(6), 2649–2656.PubMedCrossRef
102.
go back to reference Boureux, A., Vignal, E., Faure, S., & Fort, P. (2007). Evolution of the Rho family of ras-like GTPases in eukaryotes. Molecular Biology and Evolution, 24(1), 203–216.PubMedCrossRef Boureux, A., Vignal, E., Faure, S., & Fort, P. (2007). Evolution of the Rho family of ras-like GTPases in eukaryotes. Molecular Biology and Evolution, 24(1), 203–216.PubMedCrossRef
103.
104.
go back to reference Nobes, C. D., & Hall, A. (1995). Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell, 81(1), 53–62.PubMedCrossRef Nobes, C. D., & Hall, A. (1995). Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell, 81(1), 53–62.PubMedCrossRef
105.
go back to reference Etienne-Manneville, S., & Hall, A. (2002). Rho GTPases in cell biology. Nature, 420(6916), 629–635.PubMedCrossRef Etienne-Manneville, S., & Hall, A. (2002). Rho GTPases in cell biology. Nature, 420(6916), 629–635.PubMedCrossRef
106.
go back to reference Jaffe, A. B., & Hall, A. (2005). Rho GTPases: biochemistry and biology. Annual Reviews Cell and Developmental Biology, 21, 247–269.CrossRef Jaffe, A. B., & Hall, A. (2005). Rho GTPases: biochemistry and biology. Annual Reviews Cell and Developmental Biology, 21, 247–269.CrossRef
107.
go back to reference Rossman, K. L., Der, C. J., & Sondek, J. (2005). GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nature Reviews Molecular and Cellular Biology, 6(2), 167–180.CrossRef Rossman, K. L., Der, C. J., & Sondek, J. (2005). GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nature Reviews Molecular and Cellular Biology, 6(2), 167–180.CrossRef
108.
go back to reference Tcherkezian, J., & Lamarche-Vane, N. (2007). Current knowledge of the large RhoGAP family of proteins. Biology of the Cell, 99(2), 67–86.PubMedCrossRef Tcherkezian, J., & Lamarche-Vane, N. (2007). Current knowledge of the large RhoGAP family of proteins. Biology of the Cell, 99(2), 67–86.PubMedCrossRef
109.
go back to reference Garcia-Mata, R., Boulter, E., & Burridge, K. (2011). The 'invisible hand': regulation of RHO GTPases by RHOGDIs. Nature Reviews Molcular and Cellular Biology, 12(8), 493–504.CrossRef Garcia-Mata, R., Boulter, E., & Burridge, K. (2011). The 'invisible hand': regulation of RHO GTPases by RHOGDIs. Nature Reviews Molcular and Cellular Biology, 12(8), 493–504.CrossRef
110.
go back to reference Adamson, P., Paterson, H. F., & Hall, A. (1992). Intracellular localization of the P21 rho proteins. Journal of Cell Biology, 119(3), 617–627.CrossRef Adamson, P., Paterson, H. F., & Hall, A. (1992). Intracellular localization of the P21 rho proteins. Journal of Cell Biology, 119(3), 617–627.CrossRef
111.
go back to reference Riento, K., & Ridley, A. J. (2003). Rocks: multifunctional kinases in cell behaviour. Nature Reviews Molecular and Cellular Biology, 4(6), 446–456.CrossRef Riento, K., & Ridley, A. J. (2003). Rocks: multifunctional kinases in cell behaviour. Nature Reviews Molecular and Cellular Biology, 4(6), 446–456.CrossRef
112.
go back to reference Bishop, A. L., & Hall, A. (2000). Rho GTPases and thei reffector proteins. Biochemical Journal, 2(Pt 2), 241–255.CrossRef Bishop, A. L., & Hall, A. (2000). Rho GTPases and thei reffector proteins. Biochemical Journal, 2(Pt 2), 241–255.CrossRef
113.
go back to reference Bokoch, G. M. (2003). Biology of the p21-activated kinases. Annual Review of Biochemistry, 72, 743–781.PubMedCrossRef Bokoch, G. M. (2003). Biology of the p21-activated kinases. Annual Review of Biochemistry, 72, 743–781.PubMedCrossRef
115.
go back to reference Kakiuchi, M., Nishizawa, T., Ueda, H., Gotoh, K., Tanaka, A., Hayashi, A., et al. (2014). Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nature Genetics, 46(6), 583–587.PubMedCrossRef Kakiuchi, M., Nishizawa, T., Ueda, H., Gotoh, K., Tanaka, A., Hayashi, A., et al. (2014). Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nature Genetics, 46(6), 583–587.PubMedCrossRef
116.
go back to reference Sakata-Yanagimoto, M., Enami, T., Yoshida, K., Shiraishi, Y., Ishii, R., Miyake, Y., et al. (2014). Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nature Genetics, 46(2), 171–175.PubMedCrossRef Sakata-Yanagimoto, M., Enami, T., Yoshida, K., Shiraishi, Y., Ishii, R., Miyake, Y., et al. (2014). Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nature Genetics, 46(2), 171–175.PubMedCrossRef
117.
go back to reference Yoo, H. Y., Sung, M. K., Lee, S. H., Kim, S., Lee, H., Park, S., et al. (2014). A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nature Genetics, 46(4), 371–375.PubMedCrossRef Yoo, H. Y., Sung, M. K., Lee, S. H., Kim, S., Lee, H., Park, S., et al. (2014). A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nature Genetics, 46(4), 371–375.PubMedCrossRef
118.
119.
go back to reference Jaffe, A. B., & Hall, A. (2002). Rho GTPases in transformation and metastasis. Advances in Cancer Research, 84, 57–80.PubMedCrossRef Jaffe, A. B., & Hall, A. (2002). Rho GTPases in transformation and metastasis. Advances in Cancer Research, 84, 57–80.PubMedCrossRef
120.
go back to reference Melendez, J., Grogg, M., & Zheng, Y. (2011). Signaling role of Cdc42 in regulating mammalian physiology. Journal of Biological Chemistry, 286(4), 2375–2381.CrossRef Melendez, J., Grogg, M., & Zheng, Y. (2011). Signaling role of Cdc42 in regulating mammalian physiology. Journal of Biological Chemistry, 286(4), 2375–2381.CrossRef
121.
go back to reference Zhou, C., & Zheng, Y. (2013). Cell Type-specific Signaling Function of RhoA GTPase: Lessons from Mouse Gene Targeting. Journal of Biological Chemistry, 288(51), 36179–36188.CrossRef Zhou, C., & Zheng, Y. (2013). Cell Type-specific Signaling Function of RhoA GTPase: Lessons from Mouse Gene Targeting. Journal of Biological Chemistry, 288(51), 36179–36188.CrossRef
122.
go back to reference Kamai, T., Yamanishi, T., Shirataki, H., Takagi, K., Asami, H., et al. (2004). Overexpression of RhoA, Rac1, and Cdc42 GTPases is associated with progression in testicular cancer. Clinical Cancer Research, 10(14), 4799–4805.PubMedCrossRef Kamai, T., Yamanishi, T., Shirataki, H., Takagi, K., Asami, H., et al. (2004). Overexpression of RhoA, Rac1, and Cdc42 GTPases is associated with progression in testicular cancer. Clinical Cancer Research, 10(14), 4799–4805.PubMedCrossRef
123.
go back to reference Fritz, G., Brachetti, C., Bahlmann, F., Schmidt, M., & Kaina, B. (2002). Rho GTPases in human breast tumours: expression and mutation analyses and correlation with clinical parameters. British Journal of Cancer, 87(6), 635–644.PubMedPubMedCentralCrossRef Fritz, G., Brachetti, C., Bahlmann, F., Schmidt, M., & Kaina, B. (2002). Rho GTPases in human breast tumours: expression and mutation analyses and correlation with clinical parameters. British Journal of Cancer, 87(6), 635–644.PubMedPubMedCentralCrossRef
124.
go back to reference Engers, R., Ziegler, S., Mueller, M., Walter, A., Willers, R., & Gabbert, H. E. (2007). Prognostic relevance of increased Rac GTPase expression in prostate carcinomas. Endocrine Related Cancer, 14(2), 245–256.PubMedCrossRef Engers, R., Ziegler, S., Mueller, M., Walter, A., Willers, R., & Gabbert, H. E. (2007). Prognostic relevance of increased Rac GTPase expression in prostate carcinomas. Endocrine Related Cancer, 14(2), 245–256.PubMedCrossRef
125.
go back to reference Pan, Y., Bi, F., Liu, N., Xue, Y., Yao, X., Zheng, Y., & Fan, D. (2004). Expression of seven main Rho family members in gastric carcinoma. Biochemical and Biophysical Research Communications, 315(3), 686–691.PubMedCrossRef Pan, Y., Bi, F., Liu, N., Xue, Y., Yao, X., Zheng, Y., & Fan, D. (2004). Expression of seven main Rho family members in gastric carcinoma. Biochemical and Biophysical Research Communications, 315(3), 686–691.PubMedCrossRef
126.
go back to reference Ji, J., Feng, X., Shi, M., Cai, Q., Yu, Y., Zhu, Z., & Zhang, J. (2015). Rac1 is correlated with aggressiveness and a potential therapeutic target for gastric cancer. International Journal of Oncology, 46(3), 1343–1353.PubMedCrossRef Ji, J., Feng, X., Shi, M., Cai, Q., Yu, Y., Zhu, Z., & Zhang, J. (2015). Rac1 is correlated with aggressiveness and a potential therapeutic target for gastric cancer. International Journal of Oncology, 46(3), 1343–1353.PubMedCrossRef
127.
go back to reference Faried, A., Faried, L. S., Usman, N., Kato, H., & Kuwano, H. (2007). Clinical and prognostic significance of RhoA and RhoC gene expression in esophageal squamous cell carcinoma. Annals of Surgical Oncolgy, 14(12), 3593–3601.CrossRef Faried, A., Faried, L. S., Usman, N., Kato, H., & Kuwano, H. (2007). Clinical and prognostic significance of RhoA and RhoC gene expression in esophageal squamous cell carcinoma. Annals of Surgical Oncolgy, 14(12), 3593–3601.CrossRef
128.
go back to reference Braga, V. M. M., Machesky, L. M., Hall, A., & Hotchin, N. (1997). The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. Journal of Cell Biology, 137(6), 1421–1431.CrossRef Braga, V. M. M., Machesky, L. M., Hall, A., & Hotchin, N. (1997). The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. Journal of Cell Biology, 137(6), 1421–1431.CrossRef
129.
go back to reference Kozma, R., Ahmed, S., Best, A., & Lim, L. (1995). The Ras related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Molecular and Cellular Biology, 15(4), 1942–1952.PubMedPubMedCentralCrossRef Kozma, R., Ahmed, S., Best, A., & Lim, L. (1995). The Ras related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Molecular and Cellular Biology, 15(4), 1942–1952.PubMedPubMedCentralCrossRef
130.
go back to reference Nobes, C. D., & Hall, A. (1995). Rho, Rac and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia and filopodia. Cell, 81(1), 1–20.CrossRef Nobes, C. D., & Hall, A. (1995). Rho, Rac and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia and filopodia. Cell, 81(1), 1–20.CrossRef
131.
go back to reference Nobes, C. D., & Hall, A. (1999). Rho GTPases control polarity, protrusion and adhesion during cell movement. Journal of Cell Biology, 144(6), 1235–1244.CrossRef Nobes, C. D., & Hall, A. (1999). Rho GTPases control polarity, protrusion and adhesion during cell movement. Journal of Cell Biology, 144(6), 1235–1244.CrossRef
132.
go back to reference Ridley, A. J., & Hall, A. (1992). The small GTP-binding protein Rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell, 70(3), 389–399.PubMedCrossRef Ridley, A. J., & Hall, A. (1992). The small GTP-binding protein Rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell, 70(3), 389–399.PubMedCrossRef
133.
go back to reference Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D., & Hall, A. (1992). The small GTP-binding protein Rac regulates growth factor-induced membrane ruffling. Cell, 70(3), 401–410.PubMedCrossRef Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D., & Hall, A. (1992). The small GTP-binding protein Rac regulates growth factor-induced membrane ruffling. Cell, 70(3), 401–410.PubMedCrossRef
134.
go back to reference Khosravi-Far, R., Solski, P. A., Clark, G. J., Kinch, M., & Der, C. J. (1995). Activation of Rac1, RhoA, and Mitogen-Activated Protein Kinases Is Required for Ras Transformation. Molecular Cell Biology, 15(11), 6443–6653.CrossRef Khosravi-Far, R., Solski, P. A., Clark, G. J., Kinch, M., & Der, C. J. (1995). Activation of Rac1, RhoA, and Mitogen-Activated Protein Kinases Is Required for Ras Transformation. Molecular Cell Biology, 15(11), 6443–6653.CrossRef
135.
go back to reference Reymond, N., Im, J. H., Garg, R., Vega, F. M., Borda d’Agua, B., & Riou, P. (2012). Cdc42 promotes transendothelial migration of cancer cells through β1 integrin. Journal of Cell Biology, 199(4), 653–668.CrossRef Reymond, N., Im, J. H., Garg, R., Vega, F. M., Borda d’Agua, B., & Riou, P. (2012). Cdc42 promotes transendothelial migration of cancer cells through β1 integrin. Journal of Cell Biology, 199(4), 653–668.CrossRef
136.
go back to reference Hakem, A., Sanchez-Sweatman, O., You-Ten, A., Duncan, G., Wakeham, A., & Khokha, R. (2005). RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes Development, 19(17), 1974–1979.PubMedPubMedCentralCrossRef Hakem, A., Sanchez-Sweatman, O., You-Ten, A., Duncan, G., Wakeham, A., & Khokha, R. (2005). RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes Development, 19(17), 1974–1979.PubMedPubMedCentralCrossRef
137.
go back to reference Harding, M. A., & Theodorescu, D. (2010). RhoGDI signaling provides targets for cancer therapy. European Journal of Cancer, 46(7), 1252–1259.PubMedCrossRef Harding, M. A., & Theodorescu, D. (2010). RhoGDI signaling provides targets for cancer therapy. European Journal of Cancer, 46(7), 1252–1259.PubMedCrossRef
138.
go back to reference Vigil, D., Cherfils, J., Rossman, K. L., & Der, C. J. (2010). Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nature Reviews Cancer, 10(12), 842–857.PubMedPubMedCentralCrossRef Vigil, D., Cherfils, J., Rossman, K. L., & Der, C. J. (2010). Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nature Reviews Cancer, 10(12), 842–857.PubMedPubMedCentralCrossRef
139.
go back to reference Durkin, M. E., Yuan, B. Z., Zhou, X., Zimonjic, D. B., Lowy, D. R., Thorgeirsson, S. S., et al. (2007). DLC-1: a Rho GTPase-activating protein and tumour suppressor. Journal of Cellular and Moecular Medicine, 11(5), 1185–1207.CrossRef Durkin, M. E., Yuan, B. Z., Zhou, X., Zimonjic, D. B., Lowy, D. R., Thorgeirsson, S. S., et al. (2007). DLC-1: a Rho GTPase-activating protein and tumour suppressor. Journal of Cellular and Moecular Medicine, 11(5), 1185–1207.CrossRef
140.
go back to reference Goodison, S., Yuan, J., Sloan, D., Kim, R., Li, C., Popescu, N. C., et al. (2005). The Rho GAP protein DLC-1 functions as a metastasis suppressor in breast cancer cells. Cancer Research, 65(14), 6042–6053.PubMedPubMedCentralCrossRef Goodison, S., Yuan, J., Sloan, D., Kim, R., Li, C., Popescu, N. C., et al. (2005). The Rho GAP protein DLC-1 functions as a metastasis suppressor in breast cancer cells. Cancer Research, 65(14), 6042–6053.PubMedPubMedCentralCrossRef
141.
go back to reference Zhao, L., Wang, H., Li, J., Liu, Y., & Ding, Y. (2008). Overexpression of Rho GDP-dissociation inhibitor alpha is associated with tumor progression and poor prognosis of colorectal cancer. Journal of Proteome Research, 7(9), 3994–4003.PubMedCrossRef Zhao, L., Wang, H., Li, J., Liu, Y., & Ding, Y. (2008). Overexpression of Rho GDP-dissociation inhibitor alpha is associated with tumor progression and poor prognosis of colorectal cancer. Journal of Proteome Research, 7(9), 3994–4003.PubMedCrossRef
142.
go back to reference Ding, J., Huang, S., Wu, S., Zhao, Y., Liang, L., Yan, M., et al. (2010). Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA. Nature Cell Biology, 12(4), 390–399.PubMedCrossRef Ding, J., Huang, S., Wu, S., Zhao, Y., Liang, L., Yan, M., et al. (2010). Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA. Nature Cell Biology, 12(4), 390–399.PubMedCrossRef
143.
go back to reference Moissoglu, K., McRoberts, K. S., Meier, J. A., Theodorescu, D., & Schwartz, M. A. (2009). Rho GDP dissociation inhibitor 2 suppresses metastasis via unconventional regulation of Rho GTPases. Cancer Research, 69(7), 2838–2844.PubMedPubMedCentralCrossRef Moissoglu, K., McRoberts, K. S., Meier, J. A., Theodorescu, D., & Schwartz, M. A. (2009). Rho GDP dissociation inhibitor 2 suppresses metastasis via unconventional regulation of Rho GTPases. Cancer Research, 69(7), 2838–2844.PubMedPubMedCentralCrossRef
144.
go back to reference Hu, L. D., Zou, H. F., Zhan, S. X., & Cao, K. M. (2007). Biphasic expression of RhoGDI2 in the progression of breast cancer and its negative relation with lymphnode metastasis. Oncology Reports, 17(6), 1383–1389.PubMed Hu, L. D., Zou, H. F., Zhan, S. X., & Cao, K. M. (2007). Biphasic expression of RhoGDI2 in the progression of breast cancer and its negative relation with lymphnode metastasis. Oncology Reports, 17(6), 1383–1389.PubMed
145.
go back to reference Mullins, R. D., Heuser, J. A., & Pollard, T. D. (1998). The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of actin filaments. Proceedings of the National Academy of Sciences of the United States of America, 95(11), 6181–6186.PubMedPubMedCentralCrossRef Mullins, R. D., Heuser, J. A., & Pollard, T. D. (1998). The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of actin filaments. Proceedings of the National Academy of Sciences of the United States of America, 95(11), 6181–6186.PubMedPubMedCentralCrossRef
146.
go back to reference Amann, K. J., & Pollard, T. D. (2001). Direct real-time observation of actin filament branching mediated byArp2/3 complex using total internal reflection fluorescence microscopy. Proceedings of the National Academy of Sciences of the United States of America, 98(26), 15009–15013.PubMedPubMedCentralCrossRef Amann, K. J., & Pollard, T. D. (2001). Direct real-time observation of actin filament branching mediated byArp2/3 complex using total internal reflection fluorescence microscopy. Proceedings of the National Academy of Sciences of the United States of America, 98(26), 15009–15013.PubMedPubMedCentralCrossRef
147.
go back to reference Machesky, L. M., & Insall, R. H. (1998). Scar1 and the related Wiskott–Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Current Biology, 8(25), 1347–1356.PubMedCrossRef Machesky, L. M., & Insall, R. H. (1998). Scar1 and the related Wiskott–Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Current Biology, 8(25), 1347–1356.PubMedCrossRef
148.
go back to reference Machesky, L. M., Mullins, R. D., Higgs, H. N., Kaiser, D. A., Blanchoin, L., May, R. C., et al. (1999). Scar, a WASP-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 3739–3744.PubMedPubMedCentralCrossRef Machesky, L. M., Mullins, R. D., Higgs, H. N., Kaiser, D. A., Blanchoin, L., May, R. C., et al. (1999). Scar, a WASP-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 3739–3744.PubMedPubMedCentralCrossRef
149.
go back to reference Rohatgi, R., Ma, L., Miki, H., Lopez, M., Kirchhausen, T., Takenawa, T., et al. (1999). The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell, 97(2), 221–231.PubMedCrossRef Rohatgi, R., Ma, L., Miki, H., Lopez, M., Kirchhausen, T., Takenawa, T., et al. (1999). The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell, 97(2), 221–231.PubMedCrossRef
150.
go back to reference Otsubo, T., Iwaya, K., Mukai, Y., Mizokami, Y., Serizawa, H., Matsuoka, T., et al. (2004). Involvement of Arp2/3 complex in the process of colorectal carcinogenesis. Modern Pathology, 17(4), 461‐467.CrossRef Otsubo, T., Iwaya, K., Mukai, Y., Mizokami, Y., Serizawa, H., Matsuoka, T., et al. (2004). Involvement of Arp2/3 complex in the process of colorectal carcinogenesis. Modern Pathology, 17(4), 461‐467.CrossRef
151.
go back to reference Semba, S., Iwaya, K., Matsubayashi, J., Serzawa, H., Kataba, H., Takashi, H., et al. (2006). Coexpression of actin-related protein 2 and Wiskott-Aldrich syndrome family verproline-homologous protein 2 in adenocarcinoma of the lung. Clinical Cancer Reserach, 12(8), 2449–2454.CrossRef Semba, S., Iwaya, K., Matsubayashi, J., Serzawa, H., Kataba, H., Takashi, H., et al. (2006). Coexpression of actin-related protein 2 and Wiskott-Aldrich syndrome family verproline-homologous protein 2 in adenocarcinoma of the lung. Clinical Cancer Reserach, 12(8), 2449–2454.CrossRef
152.
go back to reference Linder, S., Nelson, D., Weiss, M., & Aepfelbacher, M. (1999). Wiskott–Aldrich syndrome protein regulates podosomes in primary human macrophages. Proceedings of the National Academy of Sciences of the United States of America, 96(17), 9648–9653.PubMedPubMedCentralCrossRef Linder, S., Nelson, D., Weiss, M., & Aepfelbacher, M. (1999). Wiskott–Aldrich syndrome protein regulates podosomes in primary human macrophages. Proceedings of the National Academy of Sciences of the United States of America, 96(17), 9648–9653.PubMedPubMedCentralCrossRef
153.
go back to reference Mizutani, K., Miki, H., He, H., Maruta, H., & Takenawa, T. (2002). Essential role of neural Wiskott–Aldrich syndrome protein in podosome formation and degradation of extracellular matrix in src transformed fibroblasts. Cancer Research, 62(3), 669–674.PubMed Mizutani, K., Miki, H., He, H., Maruta, H., & Takenawa, T. (2002). Essential role of neural Wiskott–Aldrich syndrome protein in podosome formation and degradation of extracellular matrix in src transformed fibroblasts. Cancer Research, 62(3), 669–674.PubMed
154.
go back to reference Hiura, K., Lim, S. S., Little, S. P., Lin, S., & Sato, M. (1995). Differentiation dependent expression of tensin and cortcatin in chicken osteoclasts. Cell Motility and the Cytoskeleton, 30(4), 272–284.PubMedCrossRef Hiura, K., Lim, S. S., Little, S. P., Lin, S., & Sato, M. (1995). Differentiation dependent expression of tensin and cortcatin in chicken osteoclasts. Cell Motility and the Cytoskeleton, 30(4), 272–284.PubMedCrossRef
155.
go back to reference Yamaguchi, H., Lorenz, M., Kempiak, S., Sarmiento, C., Coniglio, S., Symons, M., et al. (2005). Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. Journal of Cell Biology, 168(3), 441–452.CrossRef Yamaguchi, H., Lorenz, M., Kempiak, S., Sarmiento, C., Coniglio, S., Symons, M., et al. (2005). Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. Journal of Cell Biology, 168(3), 441–452.CrossRef
156.
go back to reference Goode, B. L., & Eck, M. J. (2007). Mechanism and Function of Formins in the Control of Actin Assembly. Annual Review of Biochemistry, 76, 593–627.PubMedCrossRef Goode, B. L., & Eck, M. J. (2007). Mechanism and Function of Formins in the Control of Actin Assembly. Annual Review of Biochemistry, 76, 593–627.PubMedCrossRef
157.
go back to reference Higgs, H. N. (2005). Formin proteins: a domain-based approach. Trends in Biochemical Sciences, 30(6), 342–353.PubMedCrossRef Higgs, H. N. (2005). Formin proteins: a domain-based approach. Trends in Biochemical Sciences, 30(6), 342–353.PubMedCrossRef
158.
go back to reference Higashida, C., Miyoshi, T., Fujita, A., Oceguera-Yanez, F., Monypenny, J., Andou, Y., et al. (2004). Actin polymerization-driven molecular movement of mDia1 in living cells. Science, (5666), 2007–2010. Higashida, C., Miyoshi, T., Fujita, A., Oceguera-Yanez, F., Monypenny, J., Andou, Y., et al. (2004). Actin polymerization-driven molecular movement of mDia1 in living cells. Science, (5666), 2007–2010.
159.
go back to reference Moseley, J. B., Sagot, I., Manning, A. L., Xu, Y., Eck, M. J., Pellman, D., & Goode, B. L. (2004). A conserved mechanism for Bni1- and mDia1-induced actin assembly and dual regulation of Bni1 by Bud6 and profilin. Molecular Biology of the Cell, 15(2), 896–907.PubMedPubMedCentralCrossRef Moseley, J. B., Sagot, I., Manning, A. L., Xu, Y., Eck, M. J., Pellman, D., & Goode, B. L. (2004). A conserved mechanism for Bni1- and mDia1-induced actin assembly and dual regulation of Bni1 by Bud6 and profilin. Molecular Biology of the Cell, 15(2), 896–907.PubMedPubMedCentralCrossRef
160.
go back to reference Zigmond, S. H., Evangelista, M., Boone, C., Yang, C., Dar, A. C., Sicheri, F., et al. (2003). Formin leaky cap allows elongation in the presence of tight capping proteins. Current Biology, 13(20), 1820–1823.PubMedCrossRef Zigmond, S. H., Evangelista, M., Boone, C., Yang, C., Dar, A. C., Sicheri, F., et al. (2003). Formin leaky cap allows elongation in the presence of tight capping proteins. Current Biology, 13(20), 1820–1823.PubMedCrossRef
161.
go back to reference Kovar, D. R., Harris, E. S., Mahaffy, R., Higgs, H. N., & Pollard, T. D. (2006). Control of the assembly of ATP- and ADP-actin by formins and profilin. Cell, 124(2), 423–435.PubMedCrossRef Kovar, D. R., Harris, E. S., Mahaffy, R., Higgs, H. N., & Pollard, T. D. (2006). Control of the assembly of ATP- and ADP-actin by formins and profilin. Cell, 124(2), 423–435.PubMedCrossRef
162.
go back to reference Vavylonis, D., Kovar, D. R., O'Shaughnessy, B., & Pollard, T. D. (2006). Model of formin associated actin filament elongation. Molecular Cell, 21(4), 455–466.PubMedPubMedCentralCrossRef Vavylonis, D., Kovar, D. R., O'Shaughnessy, B., & Pollard, T. D. (2006). Model of formin associated actin filament elongation. Molecular Cell, 21(4), 455–466.PubMedPubMedCentralCrossRef
163.
go back to reference Hotulainen, P., Paunola, E., Vartiainen, M. K., & Lappalainen, P. (2005). Actin-depolymerizing factor and cofilin-1 play overlapping roles in promoting rapid F-actin depolymerization in mammalian no nmuscle cells. Molecular Biology of the Cell, 16(2), 649–664.PubMedPubMedCentralCrossRef Hotulainen, P., Paunola, E., Vartiainen, M. K., & Lappalainen, P. (2005). Actin-depolymerizing factor and cofilin-1 play overlapping roles in promoting rapid F-actin depolymerization in mammalian no nmuscle cells. Molecular Biology of the Cell, 16(2), 649–664.PubMedPubMedCentralCrossRef
164.
go back to reference Ichetovkin, I., Han, J., Pang, K. M., Knecht, D. A., & Condeelis, J. S. (2000). Actin filaments are severed by both native and recombinant dictyostelium cofilin but to different extents. Cell Motility and the Cytoskeleton, 45(4), 293–306.PubMedCrossRef Ichetovkin, I., Han, J., Pang, K. M., Knecht, D. A., & Condeelis, J. S. (2000). Actin filaments are severed by both native and recombinant dictyostelium cofilin but to different extents. Cell Motility and the Cytoskeleton, 45(4), 293–306.PubMedCrossRef
165.
go back to reference Ichetovkin, I., Grant, W., & Condeelis, J. (2002). Cofilin produces newly polymerized actin filaments that are preferred for dendritic nucleation by the Arp2/3 complex. Current Biology, 12(1), 79–84.PubMedCrossRef Ichetovkin, I., Grant, W., & Condeelis, J. (2002). Cofilin produces newly polymerized actin filaments that are preferred for dendritic nucleation by the Arp2/3 complex. Current Biology, 12(1), 79–84.PubMedCrossRef
166.
go back to reference Adrianantoandro, E., & Pollard, T. (2006). Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/Cofilin. Molecular Cell, 24(1), 13–23.CrossRef Adrianantoandro, E., & Pollard, T. (2006). Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/Cofilin. Molecular Cell, 24(1), 13–23.CrossRef
167.
go back to reference Wang, L. H., Xiang, J., Yan, M., Zhang, Y., Zhao, Y., Yue, C. F., et al. (2010). The mitotic kinase Aurora-A induces mammary cell migration and breast cancer metastasis by activating the Cofilin-F-actin pathway. Cancer Research, 70(22), 9118–9128.PubMedCrossRef Wang, L. H., Xiang, J., Yan, M., Zhang, Y., Zhao, Y., Yue, C. F., et al. (2010). The mitotic kinase Aurora-A induces mammary cell migration and breast cancer metastasis by activating the Cofilin-F-actin pathway. Cancer Research, 70(22), 9118–9128.PubMedCrossRef
168.
go back to reference Ghosh, M., Song, X., Mouneimne, G., Sidani, M., Lawrence, D. S., & Condeelis, J. S. (2004). Cofilin promotes actin polymerization and defines the direction of cell motility. Science, 304(5671), 743‐746.CrossRef Ghosh, M., Song, X., Mouneimne, G., Sidani, M., Lawrence, D. S., & Condeelis, J. S. (2004). Cofilin promotes actin polymerization and defines the direction of cell motility. Science, 304(5671), 743‐746.CrossRef
169.
go back to reference Yap, C. T., Simpson, T. I., Pratt, T., Price, D. J., & Maciver, S. K. (2005). The motility of glioblastoma tumour cells is modulated by intracellular cofilin expression in a concentration-dependent manner. Cell Motility and the Cytoskeleton, 60(3), 153–165.PubMedCrossRef Yap, C. T., Simpson, T. I., Pratt, T., Price, D. J., & Maciver, S. K. (2005). The motility of glioblastoma tumour cells is modulated by intracellular cofilin expression in a concentration-dependent manner. Cell Motility and the Cytoskeleton, 60(3), 153–165.PubMedCrossRef
170.
go back to reference Des Marais, V., Macaluso, F., Condeelis, J., & Bailly, M. (2004). Synergistic interaction between the Arp2/3complex and cofilin drives stimulated lamellipodia extension. Journal of Cell Science, 117(Pt16), 3499–3510.CrossRef Des Marais, V., Macaluso, F., Condeelis, J., & Bailly, M. (2004). Synergistic interaction between the Arp2/3complex and cofilin drives stimulated lamellipodia extension. Journal of Cell Science, 117(Pt16), 3499–3510.CrossRef
171.
go back to reference Yang, N., Higuchi, O., Ohashi, K., Nagata, K., Wada, A., Kangawa, K., et al. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature, 393(6687), 809–812. Yang, N., Higuchi, O., Ohashi, K., Nagata, K., Wada, A., Kangawa, K., et al. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature, 393(6687), 809–812.
172.
go back to reference Toshima, J., Toshima, J. Y., Amano, T., Yang, N., Narumiya, S., & Mizuno, K. (2001). Cofilin phosphorylation by protein kinase testicular protein kinase 1 and its role in integrin-mediated actin reorganization and focal adhesion formation. Molecular Biology of the Cell, 12(4), 1131–1145.PubMedPubMedCentralCrossRef Toshima, J., Toshima, J. Y., Amano, T., Yang, N., Narumiya, S., & Mizuno, K. (2001). Cofilin phosphorylation by protein kinase testicular protein kinase 1 and its role in integrin-mediated actin reorganization and focal adhesion formation. Molecular Biology of the Cell, 12(4), 1131–1145.PubMedPubMedCentralCrossRef
173.
go back to reference Nakano, K., Kanai-Azuma, M., Kanai, Y., Moryiama, K., Yazaki, K., Hayashi, Y., et al. (2003). Cofilin phosphorylation and actin polymerization by NRK/NESK, a member of the germinal center kinase family. Experimental Cell Research, 287(2), 219–227.PubMedCrossRef Nakano, K., Kanai-Azuma, M., Kanai, Y., Moryiama, K., Yazaki, K., Hayashi, Y., et al. (2003). Cofilin phosphorylation and actin polymerization by NRK/NESK, a member of the germinal center kinase family. Experimental Cell Research, 287(2), 219–227.PubMedCrossRef
174.
go back to reference Niwa, R., Nagata-Ohashi, K., Takeichi, M., Mizuno, K., & Uemura, T. (2002). Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell, 108(2), 233–246.PubMedCrossRef Niwa, R., Nagata-Ohashi, K., Takeichi, M., Mizuno, K., & Uemura, T. (2002). Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell, 108(2), 233–246.PubMedCrossRef
175.
go back to reference Ambach, A., Saunus, J., Konstandin, M., Wesselborg, S., Meuer, S. C., & Samstag, Y. (2000). The serine phosphatases PP1 and PP2A associate with and activate the actin-binding protein cofilin in human T lymphocytes. European Journal of Immunology, 30(12), 3422–3431.PubMedCrossRef Ambach, A., Saunus, J., Konstandin, M., Wesselborg, S., Meuer, S. C., & Samstag, Y. (2000). The serine phosphatases PP1 and PP2A associate with and activate the actin-binding protein cofilin in human T lymphocytes. European Journal of Immunology, 30(12), 3422–3431.PubMedCrossRef
176.
go back to reference Gohla, A., Birkenfeld, J., & Bokoch, G. M. (2005). Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nature Cell Biology, 7(1), 21–29.PubMedCrossRef Gohla, A., Birkenfeld, J., & Bokoch, G. M. (2005). Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nature Cell Biology, 7(1), 21–29.PubMedCrossRef
177.
go back to reference Mouneimne, G., Soon, L., Des Marais, V., Sidani, M., Song, X., Yip, S. C., et al. (2004). Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation. Journal of Cell Biology, 166(5), 697–708.CrossRef Mouneimne, G., Soon, L., Des Marais, V., Sidani, M., Song, X., Yip, S. C., et al. (2004). Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation. Journal of Cell Biology, 166(5), 697–708.CrossRef
178.
go back to reference Patel, H., & Barber, D. (2005). A developmentally regulated Na-H exchanger in Dyctyostelium discoideum is necessary for cell polarity during chemotaxis. Journal of Cell Biology, 169(2), 321–329.CrossRef Patel, H., & Barber, D. (2005). A developmentally regulated Na-H exchanger in Dyctyostelium discoideum is necessary for cell polarity during chemotaxis. Journal of Cell Biology, 169(2), 321–329.CrossRef
179.
go back to reference Bernstein, B. W., Painter, W. B., Chen, H., Minamide, L. S., Abe, H., & Bamburg, J. R. (2000). Intracellular pH modulation of ADF/cofilin proteins. Cell Motility and the Cytoskeleton, 47(4), 319–336.PubMedCrossRef Bernstein, B. W., Painter, W. B., Chen, H., Minamide, L. S., Abe, H., & Bamburg, J. R. (2000). Intracellular pH modulation of ADF/cofilin proteins. Cell Motility and the Cytoskeleton, 47(4), 319–336.PubMedCrossRef
180.
go back to reference Wang, W., Goswami, S., Sahai, E., Wyckoff, J. B., Segall, J. E., & Condeelis, J. S. (2005). Tumor cells caught in the act of invading: their strategy for enhanced cell motility. Trends in Cell Biology, 15(3), 138–145.PubMedCrossRef Wang, W., Goswami, S., Sahai, E., Wyckoff, J. B., Segall, J. E., & Condeelis, J. S. (2005). Tumor cells caught in the act of invading: their strategy for enhanced cell motility. Trends in Cell Biology, 15(3), 138–145.PubMedCrossRef
181.
go back to reference Wang, W., Goswami, S., Lapidus, K., Wells, A. L., Wyckoff, J. B., Sahai, E., et al. (2004). Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Research, 64(23), 8585–8594.PubMedCrossRef Wang, W., Goswami, S., Lapidus, K., Wells, A. L., Wyckoff, J. B., Sahai, E., et al. (2004). Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Research, 64(23), 8585–8594.PubMedCrossRef
182.
go back to reference Gunnersen, J. M., Spirkoska, V., Smith, P. E., Danks, R. A., & Tan, S. S. (2000). Growth and migration markers of rat C6 glioma cells identified by serial analysis of gene expression. Glia, 32(2), 146–154.PubMedCrossRef Gunnersen, J. M., Spirkoska, V., Smith, P. E., Danks, R. A., & Tan, S. S. (2000). Growth and migration markers of rat C6 glioma cells identified by serial analysis of gene expression. Glia, 32(2), 146–154.PubMedCrossRef
183.
go back to reference Davila, M., Frost, A. R., Grizzle, W. E., & Chakrabarti, R. (2003). LIM kinase 1 isessential for the invasive growth of prostate epithelial cells: implications in prostate cancer. Journal of Biological Chemistry, 278(38), 36868–36875.CrossRef Davila, M., Frost, A. R., Grizzle, W. E., & Chakrabarti, R. (2003). LIM kinase 1 isessential for the invasive growth of prostate epithelial cells: implications in prostate cancer. Journal of Biological Chemistry, 278(38), 36868–36875.CrossRef
184.
go back to reference Yoshioka, K., Foletta, V., Bernard, O., & Itoh, K. (2003). A role for LIM kinase in cancer invasion. Proceedings of the National Academy of Sciences of the United States of America, 100(12), 7247–7252.PubMedPubMedCentralCrossRef Yoshioka, K., Foletta, V., Bernard, O., & Itoh, K. (2003). A role for LIM kinase in cancer invasion. Proceedings of the National Academy of Sciences of the United States of America, 100(12), 7247–7252.PubMedPubMedCentralCrossRef
185.
go back to reference Ding, S. J., Li, Y., Shao, X. X., Zhou, H., Zeng, R., Tang, Z. Y., et al. (2004). Proteome analysis of hepatocellular carcinoma cell strains, MHCC97-H and MHCC97-L, with different metastasis potentials. Proteomics, 4(4), 982–994.PubMedCrossRef Ding, S. J., Li, Y., Shao, X. X., Zhou, H., Zeng, R., Tang, Z. Y., et al. (2004). Proteome analysis of hepatocellular carcinoma cell strains, MHCC97-H and MHCC97-L, with different metastasis potentials. Proteomics, 4(4), 982–994.PubMedCrossRef
186.
go back to reference Collazo, J., Zhu, B., Larkin, S., Martin, S. K., Pu, H., Horbinski, C., et al. (2014). Cofilin drives cell-invasive and metastatic responses to TGF-β in prostate cancer. Cancer research, 74(8), 2362–2373.PubMedPubMedCentralCrossRef Collazo, J., Zhu, B., Larkin, S., Martin, S. K., Pu, H., Horbinski, C., et al. (2014). Cofilin drives cell-invasive and metastatic responses to TGF-β in prostate cancer. Cancer research, 74(8), 2362–2373.PubMedPubMedCentralCrossRef
187.
go back to reference Wang, W., Mouneimne, G., Sidani, M., Wyckoff, J., Chen, X., Makris, A., et al. (2006). The activity status of cofilin is directly related to invasion, intravasation, and metastasis of mammary tumors. Journal of Cell Biology, 173(3), 395–404.CrossRef Wang, W., Mouneimne, G., Sidani, M., Wyckoff, J., Chen, X., Makris, A., et al. (2006). The activity status of cofilin is directly related to invasion, intravasation, and metastasis of mammary tumors. Journal of Cell Biology, 173(3), 395–404.CrossRef
188.
go back to reference Machesky, L. M., & Li, A. (2010). Fascin: invasive filopodia promoting metastasis. Communicative & Integrative Biology, 3(3), 263–270.CrossRef Machesky, L. M., & Li, A. (2010). Fascin: invasive filopodia promoting metastasis. Communicative & Integrative Biology, 3(3), 263–270.CrossRef
189.
go back to reference Zhang, F. R., Tao, L. H., Shen, Z. Y., Lv, Z., Xu, L. Y., & Li, E. M. (2008). Fascin expression in human embryonic, fetal, and normal adult tissue. Journal of Histochemistry and Cytochemistry, 56(2), 193–199.PubMedPubMedCentralCrossRef Zhang, F. R., Tao, L. H., Shen, Z. Y., Lv, Z., Xu, L. Y., & Li, E. M. (2008). Fascin expression in human embryonic, fetal, and normal adult tissue. Journal of Histochemistry and Cytochemistry, 56(2), 193–199.PubMedPubMedCentralCrossRef
190.
go back to reference Adams, J. C. (2004). Roles of fascin in cell adhesion and motility. Current Opinion in Cell Biology, 16(5), 590–596.PubMedCrossRef Adams, J. C. (2004). Roles of fascin in cell adhesion and motility. Current Opinion in Cell Biology, 16(5), 590–596.PubMedCrossRef
191.
go back to reference Adams, J. C., Clelland, J. D., Collett, G. D. M., Matsumura, F., Yamashiro, S., & Zhang, L. (1999). Cell-matrix adhesions differentially regulate fascin phosphorylation. Molecular Biology of the Cell, 10(12), 4177–4190.PubMedPubMedCentralCrossRef Adams, J. C., Clelland, J. D., Collett, G. D. M., Matsumura, F., Yamashiro, S., & Zhang, L. (1999). Cell-matrix adhesions differentially regulate fascin phosphorylation. Molecular Biology of the Cell, 10(12), 4177–4190.PubMedPubMedCentralCrossRef
192.
go back to reference Shonukan, O., Bagayogo, I., McCrea, P., Chao, M., & Hempstead, B. (2003). Neurotrophin-induced melanoma cell migration is mediated through the actin-bundling protein fascin. Oncogene, 22(23), 3616–3623.PubMedCrossRef Shonukan, O., Bagayogo, I., McCrea, P., Chao, M., & Hempstead, B. (2003). Neurotrophin-induced melanoma cell migration is mediated through the actin-bundling protein fascin. Oncogene, 22(23), 3616–3623.PubMedCrossRef
193.
go back to reference Yamashiro-Matsumura, S., & Matsumura, F. (1986). Intracellular localization of the 55-kD actin-bundling protein in cultured cells: spatial relationships with actin, alpha-actinin, tropomyosin, and fimbrin. Journal of Cell Biology, 103(2), 631–640.CrossRef Yamashiro-Matsumura, S., & Matsumura, F. (1986). Intracellular localization of the 55-kD actin-bundling protein in cultured cells: spatial relationships with actin, alpha-actinin, tropomyosin, and fimbrin. Journal of Cell Biology, 103(2), 631–640.CrossRef
194.
go back to reference Elkhatib, N., Neu, M. B., Zensen, C., Schmoller, K. M., Louvard, D., Bausch, A. R., et al. (2014). Fascin plays a role in stress fiber organization and focal adhesion disassembly. Current Biology, 24(13), 1492–1499.PubMedCrossRef Elkhatib, N., Neu, M. B., Zensen, C., Schmoller, K. M., Louvard, D., Bausch, A. R., et al. (2014). Fascin plays a role in stress fiber organization and focal adhesion disassembly. Current Biology, 24(13), 1492–1499.PubMedCrossRef
195.
go back to reference Aratyn, Y. S., Schaus, T. E., Taylor, E. W., & Borisy, G. G. (2007). Intrinsic dynamic behavior of fascin in filopodia. Molecular Biology of the Cell, 18(10), 3928–3940.PubMedPubMedCentralCrossRef Aratyn, Y. S., Schaus, T. E., Taylor, E. W., & Borisy, G. G. (2007). Intrinsic dynamic behavior of fascin in filopodia. Molecular Biology of the Cell, 18(10), 3928–3940.PubMedPubMedCentralCrossRef
196.
go back to reference Quintavalle, M., Elia, L., Condorelli, G., & Courtneidge, S. A. (2010). MicroRNA control of podosome formation invascular smooth muscle cells in vivo and in vitro. Journal of Cell Biology, 189(1), 13–22.CrossRef Quintavalle, M., Elia, L., Condorelli, G., & Courtneidge, S. A. (2010). MicroRNA control of podosome formation invascular smooth muscle cells in vivo and in vitro. Journal of Cell Biology, 189(1), 13–22.CrossRef
197.
go back to reference Li, A., Dawson, J. C., Forero-Vargas, M., Spence, H. J., Yu, X., Konig, I., et al. (2010). The actin-bundling protein fascin stabilizes actin ininvadopodia and potentiates protrusive invasion. Current Biology, 20(4), 339–345.PubMedCrossRef Li, A., Dawson, J. C., Forero-Vargas, M., Spence, H. J., Yu, X., Konig, I., et al. (2010). The actin-bundling protein fascin stabilizes actin ininvadopodia and potentiates protrusive invasion. Current Biology, 20(4), 339–345.PubMedCrossRef
198.
go back to reference Jayo, A., & Parsons, M. (2010). Fascin: a key regulator of cytoskeletal dynamics. Interntional Journal of Biochemistry and Cell Biology, 42(10), 1614–1617.CrossRef Jayo, A., & Parsons, M. (2010). Fascin: a key regulator of cytoskeletal dynamics. Interntional Journal of Biochemistry and Cell Biology, 42(10), 1614–1617.CrossRef
199.
go back to reference Keshamouni, V. G., Jagtap, P., Michailidis, G., Strahler, J. R., Kuick, R., Reka, A. K., et al. (2009). Temporal quantitative proteomics by iTRAQ2D-LC-MS/MS and corresponding mRNAexpression analysis identify post-transcriptional modulation of actin-cytoskeleton regulators during TGF-beta-induced epithelial-mesenchymal transition. Journal of Proteome Research, 8(1), 35–47.PubMedCrossRef Keshamouni, V. G., Jagtap, P., Michailidis, G., Strahler, J. R., Kuick, R., Reka, A. K., et al. (2009). Temporal quantitative proteomics by iTRAQ2D-LC-MS/MS and corresponding mRNAexpression analysis identify post-transcriptional modulation of actin-cytoskeleton regulators during TGF-beta-induced epithelial-mesenchymal transition. Journal of Proteome Research, 8(1), 35–47.PubMedCrossRef
200.
go back to reference Vignjevic, D., Schoumacher, M., Gavert, N., Janssen, K. P., Jih, G., Laé, M., et al. (2007). Fascin, a novel target of beta-catenin-TCF signaling, is expressed at the invasive front of human colon cancer. Cancer Research, 67(14), 6844–6853.PubMedCrossRef Vignjevic, D., Schoumacher, M., Gavert, N., Janssen, K. P., Jih, G., Laé, M., et al. (2007). Fascin, a novel target of beta-catenin-TCF signaling, is expressed at the invasive front of human colon cancer. Cancer Research, 67(14), 6844–6853.PubMedCrossRef
201.
go back to reference Snyder, M., Huang, X. Y., & Zhang, J. J. (2011). Signal transducers and activators of transcription 3 (STAT3) directly regulates cytokine-induced fascin expression and is required for breast cancer cell migration. Journal of Biological Chemistry, 286(45), 38886–38893.CrossRef Snyder, M., Huang, X. Y., & Zhang, J. J. (2011). Signal transducers and activators of transcription 3 (STAT3) directly regulates cytokine-induced fascin expression and is required for breast cancer cell migration. Journal of Biological Chemistry, 286(45), 38886–38893.CrossRef
202.
go back to reference Chiyomaru, T., Enokida, H., Tatarano, S., Kawahara, K., Uchida, Y., Nishiyama, K., et al. (2010). miR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expressionin bladder cancer. British Journal of Cancer, 102(5), 883–891.PubMedPubMedCentralCrossRef Chiyomaru, T., Enokida, H., Tatarano, S., Kawahara, K., Uchida, Y., Nishiyama, K., et al. (2010). miR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expressionin bladder cancer. British Journal of Cancer, 102(5), 883–891.PubMedPubMedCentralCrossRef
203.
go back to reference Gotte, M., Mohr, C., Koo, C. Y., Stock, C., Vaske, A. K., Viola, M., et al. (2010). miR-145-dependent targeting of junctional adhesion molecule A and modulation of fascin expression areassociated with reduced breast cancer cell motility and invasiveness. Oncogene, 29(50), 6569–6580.PubMedCrossRef Gotte, M., Mohr, C., Koo, C. Y., Stock, C., Vaske, A. K., Viola, M., et al. (2010). miR-145-dependent targeting of junctional adhesion molecule A and modulation of fascin expression areassociated with reduced breast cancer cell motility and invasiveness. Oncogene, 29(50), 6569–6580.PubMedCrossRef
204.
go back to reference Fuse, M., Nohata, N., Kojima, S., Chiyomaru, T., Kawakami, K., Enokida, H., et al. (2011). Restorationof miR-145 expression suppresses cell proliferation, migration and invasion in prostate cancerby targeting FSCN1. International Journal of Oncology, 38(4), 11093–11101. Fuse, M., Nohata, N., Kojima, S., Chiyomaru, T., Kawakami, K., Enokida, H., et al. (2011). Restorationof miR-145 expression suppresses cell proliferation, migration and invasion in prostate cancerby targeting FSCN1. International Journal of Oncology, 38(4), 11093–11101.
205.
go back to reference Yamakita, Y., Ono, S., Matsumura, F., & Yamashiro, F. (1996). Phosphorylation of human fascin inhibits its actin binding and bundling activities. Journal of Biological Chemistry, 271(21), 12632–12638.CrossRef Yamakita, Y., Ono, S., Matsumura, F., & Yamashiro, F. (1996). Phosphorylation of human fascin inhibits its actin binding and bundling activities. Journal of Biological Chemistry, 271(21), 12632–12638.CrossRef
206.
go back to reference Ono, S., Yamakita, Y., Yamashiro, S., Matsudaira, P. T., Gnarra, J. R., Obinata, F., et al. (1997). Identification of an actin binding region and a protein kinase C phosphorylation site on human fascin. Journal of Biological Chemistry, 272(4), 2527–2533.CrossRef Ono, S., Yamakita, Y., Yamashiro, S., Matsudaira, P. T., Gnarra, J. R., Obinata, F., et al. (1997). Identification of an actin binding region and a protein kinase C phosphorylation site on human fascin. Journal of Biological Chemistry, 272(4), 2527–2533.CrossRef
207.
go back to reference Ma, Y., & Machesky, L. M. (2015). Fascin1 in Carcinomas: Its Regulation and Prognostic Value. International Journal of Cancer, 137(11), 2534–2544.PubMedCrossRef Ma, Y., & Machesky, L. M. (2015). Fascin1 in Carcinomas: Its Regulation and Prognostic Value. International Journal of Cancer, 137(11), 2534–2544.PubMedCrossRef
208.
go back to reference Chen, S. F., Yang, S. F., Li, J. W., Nieh, P. C., Lin, S. Y., Fu, E., et al. (2007). Expression of fascin in oral and oropharyngeal squamous cell carcinomas has prognostic significance—a tissue microarray study of 129 cases. Histopathology, 51(2), 173–183.PubMedCrossRef Chen, S. F., Yang, S. F., Li, J. W., Nieh, P. C., Lin, S. Y., Fu, E., et al. (2007). Expression of fascin in oral and oropharyngeal squamous cell carcinomas has prognostic significance—a tissue microarray study of 129 cases. Histopathology, 51(2), 173–183.PubMedCrossRef
209.
go back to reference Durmaz, A., Kurt, B., Ongoru, O., Karahatay, S., Gerek, M., & Yalcin, S. (2010). Significance of fascin expression in laryngeal squamous cell carcinoma. The Journal of Laryngology & Otology, 124(2), 194–198.CrossRef Durmaz, A., Kurt, B., Ongoru, O., Karahatay, S., Gerek, M., & Yalcin, S. (2010). Significance of fascin expression in laryngeal squamous cell carcinoma. The Journal of Laryngology & Otology, 124(2), 194–198.CrossRef
210.
go back to reference Puppa, G., Maisonneuve, P., Sonzogni, A., Masullo, M., Chiappa, A., Valerio, M., et al. (2007). Independent prognostic value of fascin immunoreactivity in stage III-IV colonic adenocarcinoma. British Journal of Cancer, 96(7), 1118–1126.PubMedPubMedCentralCrossRef Puppa, G., Maisonneuve, P., Sonzogni, A., Masullo, M., Chiappa, A., Valerio, M., et al. (2007). Independent prognostic value of fascin immunoreactivity in stage III-IV colonic adenocarcinoma. British Journal of Cancer, 96(7), 1118–1126.PubMedPubMedCentralCrossRef
211.
go back to reference Oh, S. Y., Kim, Y. B., Suh, K. W., Paek, O. J., & Moon, H. Y. (2012). Prognostic impact of fascin-1 expression is more significant in advanced colorectal cancer. Journal of Surgical Research, 172(1), 102–108.CrossRef Oh, S. Y., Kim, Y. B., Suh, K. W., Paek, O. J., & Moon, H. Y. (2012). Prognostic impact of fascin-1 expression is more significant in advanced colorectal cancer. Journal of Surgical Research, 172(1), 102–108.CrossRef
212.
go back to reference Yoder, B. J., Tso, E., Skacel, M., Pettay, J., Tarr, S., Budd, T., et al. (2005). The expression of fascin, an actin-bundling motility protein, correlates with hormone receptor-negative breast cancer and a more aggressive clinical course. Clinical Cancer Research, 11(1), 186–192.PubMedCrossRef Yoder, B. J., Tso, E., Skacel, M., Pettay, J., Tarr, S., Budd, T., et al. (2005). The expression of fascin, an actin-bundling motility protein, correlates with hormone receptor-negative breast cancer and a more aggressive clinical course. Clinical Cancer Research, 11(1), 186–192.PubMedCrossRef
213.
go back to reference Al-Alwan, M., Olabi, S., Ghebeh, H., Barhoush, E., Tulbah, A., Al-Tweigeriet, T., et al. (2011). Fascin is a key regulator of breast cancer invasion that acts via the modification of metastasis-associated molecules. PLoS One, 6(11), e27339.PubMedPubMedCentralCrossRef Al-Alwan, M., Olabi, S., Ghebeh, H., Barhoush, E., Tulbah, A., Al-Tweigeriet, T., et al. (2011). Fascin is a key regulator of breast cancer invasion that acts via the modification of metastasis-associated molecules. PLoS One, 6(11), e27339.PubMedPubMedCentralCrossRef
214.
go back to reference Li, A., Morton, J. P., Ma, Y., Karim, S. A., Zhou, Y., Faller, W. J., et al. (2014). Fascin is regulated by slug, promotes progression of pancreatic cancer in mice, and is associated with patient outcomes. Gastroenterology, 146(5), 1386–1396.PubMedCrossRef Li, A., Morton, J. P., Ma, Y., Karim, S. A., Zhou, Y., Faller, W. J., et al. (2014). Fascin is regulated by slug, promotes progression of pancreatic cancer in mice, and is associated with patient outcomes. Gastroenterology, 146(5), 1386–1396.PubMedCrossRef
215.
go back to reference Swierczynski, S. L., Maitra, A., Abraham, S. C., Iacobuzio-Donahue, C. A., Ashfaq, R., Cameron, J. L., et al. (2004). Analysis of novel tumor markers in pancreatic and biliary carcinomas using tissue microarrays. Human Pathology, 35(3), 357–366.PubMedCrossRef Swierczynski, S. L., Maitra, A., Abraham, S. C., Iacobuzio-Donahue, C. A., Ashfaq, R., Cameron, J. L., et al. (2004). Analysis of novel tumor markers in pancreatic and biliary carcinomas using tissue microarrays. Human Pathology, 35(3), 357–366.PubMedCrossRef
216.
go back to reference Pelosi, G., Pastorino, U., Pasini, F., Maissoneuve, P., Fraggetta, F., Iannucci, A., et al. (2003). Independent prognostic value of fascin immunoreactivity in stage I non small cell lung cancer. British Journal of Cancer, 88(4), 537–547.PubMedPubMedCentralCrossRef Pelosi, G., Pastorino, U., Pasini, F., Maissoneuve, P., Fraggetta, F., Iannucci, A., et al. (2003). Independent prognostic value of fascin immunoreactivity in stage I non small cell lung cancer. British Journal of Cancer, 88(4), 537–547.PubMedPubMedCentralCrossRef
217.
go back to reference Choi, P. J., Yang, D. K., Son, C. H., Lee, K. E., Lee, J. I., & Roh, M. S. (2006). Fascin immunoreactivity for preoperatively predicting lymphnode metastases in peripheral adenocarcinoma of the lung 3 cm or less in diameter. European Journal of Cardiothoracic Surgery, 30(3), 538–542.PubMedCrossRef Choi, P. J., Yang, D. K., Son, C. H., Lee, K. E., Lee, J. I., & Roh, M. S. (2006). Fascin immunoreactivity for preoperatively predicting lymphnode metastases in peripheral adenocarcinoma of the lung 3 cm or less in diameter. European Journal of Cardiothoracic Surgery, 30(3), 538–542.PubMedCrossRef
218.
go back to reference Poli, G., Ruggiero, C., Cantini, G., Canu, L., Baroni, G., Armignacco, R., et al. (2019). Fascin-1 Is a Novel Prognostic Biomarker Associated With Tumor Invasiveness in Adrenocortical Carcinoma. Journal of Clinical Endocrinology and Metabolis, 104(5), 1712–1724.CrossRef Poli, G., Ruggiero, C., Cantini, G., Canu, L., Baroni, G., Armignacco, R., et al. (2019). Fascin-1 Is a Novel Prognostic Biomarker Associated With Tumor Invasiveness in Adrenocortical Carcinoma. Journal of Clinical Endocrinology and Metabolis, 104(5), 1712–1724.CrossRef
219.
go back to reference Doghman, M., Karpova, T., Rodrigues, G. A., Arhatte, M., De Moura, J., & Cavalli, L. R. (2007). Increased steroidogenic factor-1 dosage triggers adrenocortical cell proliferation and cancer. Molecular Endocrinology, 21(12), 2968–2987.PubMedCrossRef Doghman, M., Karpova, T., Rodrigues, G. A., Arhatte, M., De Moura, J., & Cavalli, L. R. (2007). Increased steroidogenic factor-1 dosage triggers adrenocortical cell proliferation and cancer. Molecular Endocrinology, 21(12), 2968–2987.PubMedCrossRef
220.
go back to reference Ruggiero, C., Doghman-Bouguerra, M., Sbiera, S., Sbiera, I., Parsons, M., Ragazzon, B., et al. (2017). Dosage-dependent transcriptional regulation of VAV2 by Steroidogenic Factor-1 drives tumor cell invasion. Science Signaling, 10(469), eaal2464.PubMedCrossRef Ruggiero, C., Doghman-Bouguerra, M., Sbiera, S., Sbiera, I., Parsons, M., Ragazzon, B., et al. (2017). Dosage-dependent transcriptional regulation of VAV2 by Steroidogenic Factor-1 drives tumor cell invasion. Science Signaling, 10(469), eaal2464.PubMedCrossRef
221.
go back to reference Sellers, J. R. (2000). Myosins: a diverse superfamily. Biochimica et biophysica acta, 1496(1), 3–22.PubMedCrossRef Sellers, J. R. (2000). Myosins: a diverse superfamily. Biochimica et biophysica acta, 1496(1), 3–22.PubMedCrossRef
222.
go back to reference Zhou, X., Liu, Y., You, J., Zhang, H., Zhang, X., & Ye, L. (2008). Myosin light-chain kinase contributes to the proliferation and migration of breast cancer cells through cross-talk with activated ERK1/2. Cancer Letters, 270(2), 312–327.PubMedCrossRef Zhou, X., Liu, Y., You, J., Zhang, H., Zhang, X., & Ye, L. (2008). Myosin light-chain kinase contributes to the proliferation and migration of breast cancer cells through cross-talk with activated ERK1/2. Cancer Letters, 270(2), 312–327.PubMedCrossRef
223.
go back to reference Betapudi, V., Gokulrangan, G., Chance, M. R., & Egelhoff, T. T. (2011). A proteomic study of myosin II motor proteins during tumor cell migration. Journal of Molecular Biology, 407(5), 673–686.PubMedPubMedCentralCrossRef Betapudi, V., Gokulrangan, G., Chance, M. R., & Egelhoff, T. T. (2011). A proteomic study of myosin II motor proteins during tumor cell migration. Journal of Molecular Biology, 407(5), 673–686.PubMedPubMedCentralCrossRef
224.
go back to reference Yoshida, H., Cheng, W., Hun, J., Montell, D., Geisbrecht, E., Rosen, D., et al. (2004). Lessons from border cell migration in the Drosophila ovary: A role for myosin VI in dissemination of human ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 101(21), 8144–8149.PubMedPubMedCentralCrossRef Yoshida, H., Cheng, W., Hun, J., Montell, D., Geisbrecht, E., Rosen, D., et al. (2004). Lessons from border cell migration in the Drosophila ovary: A role for myosin VI in dissemination of human ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 101(21), 8144–8149.PubMedPubMedCentralCrossRef
225.
go back to reference Bai, J., Uehara, Y., & Montell, D. J. (2000). Regulation of invasive cell behavior by taiman, a Drosophila protein related to AIB1, a steroid receptor coactivator amplified in breast cancer. Cell, 103(7), 1047–1058.PubMedCrossRef Bai, J., Uehara, Y., & Montell, D. J. (2000). Regulation of invasive cell behavior by taiman, a Drosophila protein related to AIB1, a steroid receptor coactivator amplified in breast cancer. Cell, 103(7), 1047–1058.PubMedCrossRef
226.
go back to reference Loikkanen, I., Toljamo, K., Hirvikoski, P., Väisänen, T. P., Paavonen, T. K., & Vaarala, M. H. (2009). Myosin VI is a modulator of androgen-dependent gene expression. Oncology Reports, 22(5), 991–995.PubMed Loikkanen, I., Toljamo, K., Hirvikoski, P., Väisänen, T. P., Paavonen, T. K., & Vaarala, M. H. (2009). Myosin VI is a modulator of androgen-dependent gene expression. Oncology Reports, 22(5), 991–995.PubMed
227.
go back to reference Ruppender, N., Larson, S., Lakely, B., Kollath, L., Brown, L., Coleman, I., et al. (2015). Cellular Adhesion Promotes Prostate Cancer Cells Escape from Dormancy. PLoS One, 10(6), e0130565.PubMedPubMedCentralCrossRef Ruppender, N., Larson, S., Lakely, B., Kollath, L., Brown, L., Coleman, I., et al. (2015). Cellular Adhesion Promotes Prostate Cancer Cells Escape from Dormancy. PLoS One, 10(6), e0130565.PubMedPubMedCentralCrossRef
228.
go back to reference Lan, L., Han, H., Zuo, H., Chen, Z., Du, Y., Zhao, W., Gu, J., & Zhang, Z. (2010). Upregulation of myosin Va by Snail is involved in cancer cell migration and metastasis. International Journal of Cancer, 126(1), 53–64.PubMedCrossRef Lan, L., Han, H., Zuo, H., Chen, Z., Du, Y., Zhao, W., Gu, J., & Zhang, Z. (2010). Upregulation of myosin Va by Snail is involved in cancer cell migration and metastasis. International Journal of Cancer, 126(1), 53–64.PubMedCrossRef
229.
go back to reference Vickaryous, N., Polanco-Echeverry, G., Morrow, S., Suraweera, N., Thomas, H., Tomlinson, I., & Silver, A. (2008). Smooth-muscle myosin mutations in hereditary non-polyposis colorectal cancer syndrome. British Journal of Cancer, 99(10), 1726–1728.PubMedPubMedCentralCrossRef Vickaryous, N., Polanco-Echeverry, G., Morrow, S., Suraweera, N., Thomas, H., Tomlinson, I., & Silver, A. (2008). Smooth-muscle myosin mutations in hereditary non-polyposis colorectal cancer syndrome. British Journal of Cancer, 99(10), 1726–1728.PubMedPubMedCentralCrossRef
230.
go back to reference Laing, N. G., & Nowak, K. J. (2005). When contractile proteins go bad: the sarcomere and skeletal muscle disease. Bioessays, 27(8), 809–822.PubMedCrossRef Laing, N. G., & Nowak, K. J. (2005). When contractile proteins go bad: the sarcomere and skeletal muscle disease. Bioessays, 27(8), 809–822.PubMedCrossRef
231.
go back to reference Alhopuro, P., Phichith, D., Tuupanen, S., Sammalkorpi, H., Nybondas, M., Saharinen, J., et al. (2008). Unregulated smooth-muscle myosin in human intestinal neoplasia. Proceedings of the National Academy of Sciences of the United States of America, 105(14), 5513–5518.PubMedPubMedCentralCrossRef Alhopuro, P., Phichith, D., Tuupanen, S., Sammalkorpi, H., Nybondas, M., Saharinen, J., et al. (2008). Unregulated smooth-muscle myosin in human intestinal neoplasia. Proceedings of the National Academy of Sciences of the United States of America, 105(14), 5513–5518.PubMedPubMedCentralCrossRef
232.
go back to reference Pessina, P., Conti, V., Pacelli, F., Rosa, F., Doglietto, G. B., Brunelli, S., & Bossola, M. (2010). Skeletal muscle of gastric cancer patients expresses genes involved in muscle regeneration. Oncology Reports, 24(3), 741–745.PubMed Pessina, P., Conti, V., Pacelli, F., Rosa, F., Doglietto, G. B., Brunelli, S., & Bossola, M. (2010). Skeletal muscle of gastric cancer patients expresses genes involved in muscle regeneration. Oncology Reports, 24(3), 741–745.PubMed
233.
go back to reference Dong, W., Chen, X., Chen, P., Yue, D., Zhu, L., & Fan, Q. (2012). Inactivation of MYO5B promotes invasion and motility ingastric cancer cells. Digestive Diseases and Science, 57(5), 1247–1252.CrossRef Dong, W., Chen, X., Chen, P., Yue, D., Zhu, L., & Fan, Q. (2012). Inactivation of MYO5B promotes invasion and motility ingastric cancer cells. Digestive Diseases and Science, 57(5), 1247–1252.CrossRef
234.
go back to reference Kaneko, K., Satoh, K., Masamune, A., Satoh, A., & Shimosegawa, T. (2002). Myosin light chain kinase inhibitors can block invasion and adhesion of human pancreatic cancer cell lines. Pancreas, 24(1), 34–41.PubMedCrossRef Kaneko, K., Satoh, K., Masamune, A., Satoh, A., & Shimosegawa, T. (2002). Myosin light chain kinase inhibitors can block invasion and adhesion of human pancreatic cancer cell lines. Pancreas, 24(1), 34–41.PubMedCrossRef
235.
go back to reference Roy, I., McAllister, D. M., Gorse, E., Dixon, K., Piper, C. T., Zimmerman, N. P., et al. (2015). Pancreatic Cancer Cell Migration and Metastasis Is Regulated by Chemokine-Biased Agonism and Bioenergetic Signaling. Cancer research, 75(17), 3529–3542.PubMedPubMedCentralCrossRef Roy, I., McAllister, D. M., Gorse, E., Dixon, K., Piper, C. T., Zimmerman, N. P., et al. (2015). Pancreatic Cancer Cell Migration and Metastasis Is Regulated by Chemokine-Biased Agonism and Bioenergetic Signaling. Cancer research, 75(17), 3529–3542.PubMedPubMedCentralCrossRef
236.
go back to reference Jacobs, K., Van Gele, M., Forsyth, R., Brochez, L., Vanhoecke, B., De Wever, O., & Bracke, M. (2010). P-cadherin counteracts myosin II-B function: implications in melanoma progression. Molecular Cancer, 9, 255.PubMedPubMedCentralCrossRef Jacobs, K., Van Gele, M., Forsyth, R., Brochez, L., Vanhoecke, B., De Wever, O., & Bracke, M. (2010). P-cadherin counteracts myosin II-B function: implications in melanoma progression. Molecular Cancer, 9, 255.PubMedPubMedCentralCrossRef
237.
go back to reference Li, H., Zhou, F., Wang, H., Lin, D., Chen, G., Zuo, X., et al. (2015). Knockdown of myosin VI by lentivirus mediated short hairpin RNA suppresses proliferation of melanoma. Molecular Medicine Reports, 12(5), 6801–6806.PubMedCrossRef Li, H., Zhou, F., Wang, H., Lin, D., Chen, G., Zuo, X., et al. (2015). Knockdown of myosin VI by lentivirus mediated short hairpin RNA suppresses proliferation of melanoma. Molecular Medicine Reports, 12(5), 6801–6806.PubMedCrossRef
238.
go back to reference Gillespie, G. Y., Soroceanu, L., Manning, T. J., Gladson, C. L., & Rosenfeld, S. S. (1999). Glioma migration can be blocked by nontoxic inhibitors of myosin II. Cancer Research, 59(9), 2076–2082.PubMed Gillespie, G. Y., Soroceanu, L., Manning, T. J., Gladson, C. L., & Rosenfeld, S. S. (1999). Glioma migration can be blocked by nontoxic inhibitors of myosin II. Cancer Research, 59(9), 2076–2082.PubMed
239.
go back to reference Liu, P., Tarlé, S. A., Hajra, A., Claxton, D. F., Marlton, P., Freedman, M., et al. (1993). Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science, 261(5124), 1041–1044.PubMedCrossRef Liu, P., Tarlé, S. A., Hajra, A., Claxton, D. F., Marlton, P., Freedman, M., et al. (1993). Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science, 261(5124), 1041–1044.PubMedCrossRef
240.
go back to reference Ouderkirk, J. L., & Krendel, M. (2014). Myosin 1e is a component of the invadosome core that contributes to regulation of invadosome dynamics. Experimental Cell Research, 322(2), 265–276.PubMedPubMedCentralCrossRef Ouderkirk, J. L., & Krendel, M. (2014). Myosin 1e is a component of the invadosome core that contributes to regulation of invadosome dynamics. Experimental Cell Research, 322(2), 265–276.PubMedPubMedCentralCrossRef
241.
go back to reference Tohtong, R., Phattarasakul, K., Jiraviriyakul, A., & Sutthiphongchai, T. (2003). Dependence of metastatic cancer cell invasion on MLCK-catalyzed phosphorylation of myosin regulatory light chain. Prostate Cancer Prostatic Dieases, 6(3), 212–216.CrossRef Tohtong, R., Phattarasakul, K., Jiraviriyakul, A., & Sutthiphongchai, T. (2003). Dependence of metastatic cancer cell invasion on MLCK-catalyzed phosphorylation of myosin regulatory light chain. Prostate Cancer Prostatic Dieases, 6(3), 212–216.CrossRef
242.
go back to reference Ivkovic, S., Beadle, C., Noticewala, S., Massey, S. C., Swanson, K. R., Toro, L. N., et al. (2012). Direct inhibition of myosin II effectively blocks glioma invasion in the presence of multiple motogens. Molecular Biology of the Cell, 23(4), 533–542.PubMedPubMedCentralCrossRef Ivkovic, S., Beadle, C., Noticewala, S., Massey, S. C., Swanson, K. R., Toro, L. N., et al. (2012). Direct inhibition of myosin II effectively blocks glioma invasion in the presence of multiple motogens. Molecular Biology of the Cell, 23(4), 533–542.PubMedPubMedCentralCrossRef
243.
go back to reference Vicente-Manzanares, M., Zareno, J., Whitmore, L., Choi, C. K., & Horwitz, A. F. (2007). Regulation of protusion, adhesion dynamics, and polarity by myosins IIA and IIB in migration of cells. Journal of Cell Biology, 176(5), 573–580.CrossRef Vicente-Manzanares, M., Zareno, J., Whitmore, L., Choi, C. K., & Horwitz, A. F. (2007). Regulation of protusion, adhesion dynamics, and polarity by myosins IIA and IIB in migration of cells. Journal of Cell Biology, 176(5), 573–580.CrossRef
244.
go back to reference Lan, L., Han, H., Zuo, H., Chen, Z., Du, Y., Zhao, W., Gu, J., & Zhang, Z. (2010). Upregulation of myosin Va by Snail is involved in cancer cell migration and metastasis. International Journal of Cancer, 126(1), 53–64.PubMedCrossRef Lan, L., Han, H., Zuo, H., Chen, Z., Du, Y., Zhao, W., Gu, J., & Zhang, Z. (2010). Upregulation of myosin Va by Snail is involved in cancer cell migration and metastasis. International Journal of Cancer, 126(1), 53–64.PubMedCrossRef
245.
go back to reference Wang, F. S., Wolenski, J. S., Cheney, R. E., Mooseker, M. S., & Jay, D. G. (1996). Function of myosin-V in filopodial extention of neuronal growth cone. Science, 273(5275), 660–663.PubMedCrossRef Wang, F. S., Wolenski, J. S., Cheney, R. E., Mooseker, M. S., & Jay, D. G. (1996). Function of myosin-V in filopodial extention of neuronal growth cone. Science, 273(5275), 660–663.PubMedCrossRef
246.
go back to reference Letellier, E., Schmitz, M., Ginolhac, A., Rodriguez, F., Ullmann, P., & Qureshi-Baig, K. (2017). Loss of Myosin Vb in colorectal cancer is a strong prognostic factor for disease recurrence. British Journal of Cancer, 117, 1689–1701.PubMedPubMedCentralCrossRef Letellier, E., Schmitz, M., Ginolhac, A., Rodriguez, F., Ullmann, P., & Qureshi-Baig, K. (2017). Loss of Myosin Vb in colorectal cancer is a strong prognostic factor for disease recurrence. British Journal of Cancer, 117, 1689–1701.PubMedPubMedCentralCrossRef
247.
go back to reference Knudsen, B. (2006). Migrating with myosin VI. American Journal of Pathology, 169(5), 1523–1526.CrossRef Knudsen, B. (2006). Migrating with myosin VI. American Journal of Pathology, 169(5), 1523–1526.CrossRef
248.
go back to reference Post, P. L., Bokoch, G. M., & Mooseker, M. S. (1998). Human myosin-IXb is a mechanochemically active motor and a GAP for rho. Journal of Cell Science, 111(Pt7), 941–950.PubMedCrossRef Post, P. L., Bokoch, G. M., & Mooseker, M. S. (1998). Human myosin-IXb is a mechanochemically active motor and a GAP for rho. Journal of Cell Science, 111(Pt7), 941–950.PubMedCrossRef
249.
go back to reference Omelchenko, T., & Hall, A. (2012). Myosin-IXA regulates collective epithelial cell migration by targeting rho gap activity to cell cell junctions. Current Biology, 22(4), 278–288.PubMedPubMedCentralCrossRef Omelchenko, T., & Hall, A. (2012). Myosin-IXA regulates collective epithelial cell migration by targeting rho gap activity to cell cell junctions. Current Biology, 22(4), 278–288.PubMedPubMedCentralCrossRef
250.
go back to reference Berg, J. S., & Cheney, R. E. (2002). Myosin-X is an unconventional myosin that undergoes intrafilopodial motility. Nature Cell Biology, 4(3), 246–250.PubMedCrossRef Berg, J. S., & Cheney, R. E. (2002). Myosin-X is an unconventional myosin that undergoes intrafilopodial motility. Nature Cell Biology, 4(3), 246–250.PubMedCrossRef
251.
go back to reference Bohil, A. B., Robertson, B. W., & Cheney, R. E. (2006). Myosin-X is a molecular motor that functions in filopodia formation. Proceedings of the National Academy of Sciences of the United States of America, 103(33), 12411–12416.PubMedPubMedCentralCrossRef Bohil, A. B., Robertson, B. W., & Cheney, R. E. (2006). Myosin-X is a molecular motor that functions in filopodia formation. Proceedings of the National Academy of Sciences of the United States of America, 103(33), 12411–12416.PubMedPubMedCentralCrossRef
252.
go back to reference Mischel, P. S., Shai, R., Shi, T., Horvath, S., Lu, K. V., Choe, G., et al. (2003). Identification of molecular subtypes of glioblastoma by gene expression profiling. Oncogene, 22(15), 2361–2373.PubMedCrossRef Mischel, P. S., Shai, R., Shi, T., Horvath, S., Lu, K. V., Choe, G., et al. (2003). Identification of molecular subtypes of glioblastoma by gene expression profiling. Oncogene, 22(15), 2361–2373.PubMedCrossRef
253.
go back to reference Ross, M. E., Zhou, X., Song, G., Shurtleff, S. A., Girtman, K., Williams, W. K., et al. (2003). Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood, 102(8), 2951–2959.PubMedCrossRef Ross, M. E., Zhou, X., Song, G., Shurtleff, S. A., Girtman, K., Williams, W. K., et al. (2003). Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood, 102(8), 2951–2959.PubMedCrossRef
254.
go back to reference Cao, R., Chen, J., Zhang, X., Zhai, Y., Qing, X., Xing, W., et al. (2014). Elevated expression of myosin X in tumours contributes to breast cancer aggressiveness and metastasis. British Journal of Cancer, 111(3), 539–550.PubMedPubMedCentralCrossRef Cao, R., Chen, J., Zhang, X., Zhai, Y., Qing, X., Xing, W., et al. (2014). Elevated expression of myosin X in tumours contributes to breast cancer aggressiveness and metastasis. British Journal of Cancer, 111(3), 539–550.PubMedPubMedCentralCrossRef
255.
go back to reference Arjonen, A., Kaukonen, R., Mattila, E., Rouhi, P., Hognas, G., Sihto, H., et al. (2014). Mutant p53-associated myosin-X upregulation promotes breast cancer invasion and metastasis. Journal of Clinical Investigation, 124(3), 1069–1082.CrossRef Arjonen, A., Kaukonen, R., Mattila, E., Rouhi, P., Hognas, G., Sihto, H., et al. (2014). Mutant p53-associated myosin-X upregulation promotes breast cancer invasion and metastasis. Journal of Clinical Investigation, 124(3), 1069–1082.CrossRef
256.
go back to reference Moser, M., Legate, K. R., Zent, R., & Fassler, R. (2009). The tail of integrins, talin, and kindlins. Science, 324(5929), 895–899.PubMedCrossRef Moser, M., Legate, K. R., Zent, R., & Fassler, R. (2009). The tail of integrins, talin, and kindlins. Science, 324(5929), 895–899.PubMedCrossRef
257.
go back to reference Calderwood, D. A. (2004). Talin controls integrin activation. Biochemical Society Transactions, 32(Pt3), 434–437.PubMedCrossRef Calderwood, D. A. (2004). Talin controls integrin activation. Biochemical Society Transactions, 32(Pt3), 434–437.PubMedCrossRef
258.
go back to reference Critchley, D. R., & Gingras, A. R. (2008). Talin at a glance. Journal of Cell Science, 121, 1345–1347.PubMedCrossRef Critchley, D. R., & Gingras, A. R. (2008). Talin at a glance. Journal of Cell Science, 121, 1345–1347.PubMedCrossRef
259.
go back to reference Senetar, M. A., Foster, S. J., & McCann, R. O. (2004). Intrasteric inhibition mediates the interaction of the I/LWEQ module proteins Talin1, Talin2, Hip1, and Hip12 with actin. Biochemistry, 43(49), 15418–15428.PubMedCrossRef Senetar, M. A., Foster, S. J., & McCann, R. O. (2004). Intrasteric inhibition mediates the interaction of the I/LWEQ module proteins Talin1, Talin2, Hip1, and Hip12 with actin. Biochemistry, 43(49), 15418–15428.PubMedCrossRef
260.
go back to reference Smith, S. J., & McCann, R. O. (2007). A C-terminal dimerization motif is required for focal adhesion targeting of Talin1 and the interaction of the Talin1 I/LWEQ module with F-actin. Biochemistry, 46(38), 10886–10898.PubMedCrossRef Smith, S. J., & McCann, R. O. (2007). A C-terminal dimerization motif is required for focal adhesion targeting of Talin1 and the interaction of the Talin1 I/LWEQ module with F-actin. Biochemistry, 46(38), 10886–10898.PubMedCrossRef
261.
go back to reference Calderwood, D.A., Zent, R., Grant, R., Rees, D.J., Hynes, R.O., & Ginsberg, M.H. (1999). The Talin head domain binds to integrin beta subunit cytoplasmic tails and regulates integrin activation. Journal of Biological Chemistry, 274(49), 28071–28074. Calderwood, D.A., Zent, R., Grant, R., Rees, D.J., Hynes, R.O., & Ginsberg, M.H. (1999). The Talin head domain binds to integrin beta subunit cytoplasmic tails and regulates integrin activation. Journal of Biological Chemistry, 274(49), 28071–28074.
262.
go back to reference Frame, M., & Norman, J. (2008). A tal(in) of cell spreading. Nature Cell Biology, 10(9), 1017–1019.PubMedCrossRef Frame, M., & Norman, J. (2008). A tal(in) of cell spreading. Nature Cell Biology, 10(9), 1017–1019.PubMedCrossRef
263.
go back to reference Huang, C., Rajfur, Z., Yousefi, N., Chen, Z., Jacobson, K., & Ginsberg, M. H. (2009). Talin phosphorylation by Cdk5 regulates Smurf1-mediated talin head ubiquitylation and cell migration. Nature Cell Biology, 11(5), 624–630.PubMedPubMedCentralCrossRef Huang, C., Rajfur, Z., Yousefi, N., Chen, Z., Jacobson, K., & Ginsberg, M. H. (2009). Talin phosphorylation by Cdk5 regulates Smurf1-mediated talin head ubiquitylation and cell migration. Nature Cell Biology, 11(5), 624–630.PubMedPubMedCentralCrossRef
264.
go back to reference Jin, J. K., Tien, P. C., Cheng, C. J., Song, J. H., Huang, C., Lin, S. H., & Gallick, G. E. (2015). Talin1 phosphorylation activates ß1 integrins: A novel mechanism to promote prostate cancer bone metastasis. Oncogene, 34(14), 1811–1821.PubMedCrossRef Jin, J. K., Tien, P. C., Cheng, C. J., Song, J. H., Huang, C., Lin, S. H., & Gallick, G. E. (2015). Talin1 phosphorylation activates ß1 integrins: A novel mechanism to promote prostate cancer bone metastasis. Oncogene, 34(14), 1811–1821.PubMedCrossRef
265.
go back to reference Sakamoto, S., McCann, R. O., Dhir, R., & Kypriano, N. (2010). Talin1 promotes tumor invasion and metastasis via focal adhesion signaling and anoikis resistance. Cancer Research, 70(5), 1885–1895.PubMedPubMedCentralCrossRef Sakamoto, S., McCann, R. O., Dhir, R., & Kypriano, N. (2010). Talin1 promotes tumor invasion and metastasis via focal adhesion signaling and anoikis resistance. Cancer Research, 70(5), 1885–1895.PubMedPubMedCentralCrossRef
266.
go back to reference Chen, P., Lei, L., Wang, J., Zou, X., Zhang, D., Deng, L., & Wu, D. (2017). Downregulation of Talin1 promotes hepatocellular carcinoma progression through activation of the ERK1/2 pathway. Cancer Science, 108(6), 1157–1168.PubMedPubMedCentralCrossRef Chen, P., Lei, L., Wang, J., Zou, X., Zhang, D., Deng, L., & Wu, D. (2017). Downregulation of Talin1 promotes hepatocellular carcinoma progression through activation of the ERK1/2 pathway. Cancer Science, 108(6), 1157–1168.PubMedPubMedCentralCrossRef
267.
go back to reference Bostanci, O., Kemik, O., Kemik, A., Battal, M., Demir, U., Purisa, S., & Mihmanli, M. (2014). A novel screening test for colon cancer: Talin-1. European Review for Medical and Pharmacological Sciences, 18(17), 2533–2537.PubMed Bostanci, O., Kemik, O., Kemik, A., Battal, M., Demir, U., Purisa, S., & Mihmanli, M. (2014). A novel screening test for colon cancer: Talin-1. European Review for Medical and Pharmacological Sciences, 18(17), 2533–2537.PubMed
268.
go back to reference Youns, M. M., Abdel, W. A., Hassan, Z. A., & Attia, M. S. (2013). Serum talin-1 is a potential novel biomarker for diagnosis of the epatocellular carcinoma in Egyptian patients. Asian Pacific Journal of Cancer Prevention, 14(6), 3819–3823.PubMedCrossRef Youns, M. M., Abdel, W. A., Hassan, Z. A., & Attia, M. S. (2013). Serum talin-1 is a potential novel biomarker for diagnosis of the epatocellular carcinoma in Egyptian patients. Asian Pacific Journal of Cancer Prevention, 14(6), 3819–3823.PubMedCrossRef
269.
go back to reference Fang, K. P., Dai, W., Ren, Y. H., Xu, Y. C., Zhang, S. M., & Qian, Y. B. (2016). Both Talin-1 and Talin-2 correlate with malignancy potential of the human hepatocellular carcinoma MHCC-97 L cell. BMC Cancer, 16, 45.PubMedPubMedCentralCrossRef Fang, K. P., Dai, W., Ren, Y. H., Xu, Y. C., Zhang, S. M., & Qian, Y. B. (2016). Both Talin-1 and Talin-2 correlate with malignancy potential of the human hepatocellular carcinoma MHCC-97 L cell. BMC Cancer, 16, 45.PubMedPubMedCentralCrossRef
270.
go back to reference Liang, Y., Chen, H., Ji, L., Du, J., Xie, X., Li, X., & Lou, Y. (2018). Talin2 regulates breast cancer cell migration and invasion by apoptosis. Oncology Letters, 16(1), 285–293.PubMedPubMedCentral Liang, Y., Chen, H., Ji, L., Du, J., Xie, X., Li, X., & Lou, Y. (2018). Talin2 regulates breast cancer cell migration and invasion by apoptosis. Oncology Letters, 16(1), 285–293.PubMedPubMedCentral
271.
go back to reference Everley, P. A., Krijgsveld, J., Zetter, B. R., & Gygi, S. P. (2004). Quantitative cancer proteomics: stable isotope labeling with aminoacids in cell culture (SILAC) as a tool for prostate cancer research. Molecular and Cellular Proteomics, 3(7), 729–735.PubMedCrossRef Everley, P. A., Krijgsveld, J., Zetter, B. R., & Gygi, S. P. (2004). Quantitative cancer proteomics: stable isotope labeling with aminoacids in cell culture (SILAC) as a tool for prostate cancer research. Molecular and Cellular Proteomics, 3(7), 729–735.PubMedCrossRef
272.
go back to reference Pittenger, M. F., Kazzaz, J. A., & Helfman, D. M. (1994). Functional properties of non-muscle tropomyosin isoforms. Current Opinion in Cell Biology, 6(1), 96–104.PubMedCrossRef Pittenger, M. F., Kazzaz, J. A., & Helfman, D. M. (1994). Functional properties of non-muscle tropomyosin isoforms. Current Opinion in Cell Biology, 6(1), 96–104.PubMedCrossRef
273.
go back to reference Gunning, P. W., Ghoshdastider, U., Whitaker, S., Popp, D., & Robinson, R. C. (2015). The evolution of compositionally and functionally distinct actin filaments. Journal of Cell Science, 128(11), 2009–2019.PubMedCrossRef Gunning, P. W., Ghoshdastider, U., Whitaker, S., Popp, D., & Robinson, R. C. (2015). The evolution of compositionally and functionally distinct actin filaments. Journal of Cell Science, 128(11), 2009–2019.PubMedCrossRef
274.
go back to reference Brown, J. H., Kim, K. H., Jun, G., et al. (2001). Deciphering the design of the tropomyosin molecule. Proceedings of the National Academy of Sciences of the United States of America, 98(15), 8496–8501.PubMedPubMedCentralCrossRef Brown, J. H., Kim, K. H., Jun, G., et al. (2001). Deciphering the design of the tropomyosin molecule. Proceedings of the National Academy of Sciences of the United States of America, 98(15), 8496–8501.PubMedPubMedCentralCrossRef
275.
go back to reference Gordon, A. M., Homsher, E., & Regnier, M. (2000). Regulation of contraction in striated muscle. Physiological Reviews, 80(2), 853–924.PubMedCrossRef Gordon, A. M., Homsher, E., & Regnier, M. (2000). Regulation of contraction in striated muscle. Physiological Reviews, 80(2), 853–924.PubMedCrossRef
276.
go back to reference Schevzov, G., Gunning, P., Jeffrey, P. L., Temm-Grove, C., Helfman, D. M., Lin, J. J., et al. (1997). Tropomyosin localization reveals distinct populations of microfilaments in neurites and growth cones. Molecular and Cellular Neuroscience, 8(6), 439–454.PubMedCrossRef Schevzov, G., Gunning, P., Jeffrey, P. L., Temm-Grove, C., Helfman, D. M., Lin, J. J., et al. (1997). Tropomyosin localization reveals distinct populations of microfilaments in neurites and growth cones. Molecular and Cellular Neuroscience, 8(6), 439–454.PubMedCrossRef
277.
go back to reference Schevzov, G., Kee, A. J., Wang, B., Sequeira, V. B., Hook, J., & Coombes, J. D. (2015). Regulation of cell proliferation by ERK and signal-dependent nuclear translocation of ERK is dependent on Tm5NM1-containing actin filaments. Molecular Biology of the Cell, 26(13), 2475–2490.PubMedPubMedCentralCrossRef Schevzov, G., Kee, A. J., Wang, B., Sequeira, V. B., Hook, J., & Coombes, J. D. (2015). Regulation of cell proliferation by ERK and signal-dependent nuclear translocation of ERK is dependent on Tm5NM1-containing actin filaments. Molecular Biology of the Cell, 26(13), 2475–2490.PubMedPubMedCentralCrossRef
278.
go back to reference Lin, J. J., Hegmann, T. E., & Lin, J. L. (1998). Differential localization of tropomyosin isoforms in cultured nonmuscle cells. Journal of Cell Biology, 107(2), 563–572.CrossRef Lin, J. J., Hegmann, T. E., & Lin, J. L. (1998). Differential localization of tropomyosin isoforms in cultured nonmuscle cells. Journal of Cell Biology, 107(2), 563–572.CrossRef
279.
go back to reference McMichael, B. K., Kotadiya, P., Singh, T., Holliday, L. S., & Lee, B. S. (2006). Tropomyosin isoforms localize to distinct microfilament populations in osteoclasts. Bone, 39(4), 694–705.PubMedCrossRef McMichael, B. K., Kotadiya, P., Singh, T., Holliday, L. S., & Lee, B. S. (2006). Tropomyosin isoforms localize to distinct microfilament populations in osteoclasts. Bone, 39(4), 694–705.PubMedCrossRef
280.
go back to reference Dominguez, R. (2011). Tropomyosin: the gatekeeper’s view of the actin filament revealed. Biophyscal Journal, 100(4), 797–798.CrossRef Dominguez, R. (2011). Tropomyosin: the gatekeeper’s view of the actin filament revealed. Biophyscal Journal, 100(4), 797–798.CrossRef
281.
go back to reference Johnson, M., East, D. A., & Mulvihill, D. P. (2014). Formins determine the functional properties of actin filaments in yeast. Current Biology, 24(13), 1525–1530.PubMedCrossRef Johnson, M., East, D. A., & Mulvihill, D. P. (2014). Formins determine the functional properties of actin filaments in yeast. Current Biology, 24(13), 1525–1530.PubMedCrossRef
282.
go back to reference Goins, L. M., & Mullins, R. D. (2015). A novel tropomyosin isoform functions at the mitotic spindle and Golgi in Drosophila. Molecular Biology of the Cell, 26(13), 2491–2504.PubMedPubMedCentralCrossRef Goins, L. M., & Mullins, R. D. (2015). A novel tropomyosin isoform functions at the mitotic spindle and Golgi in Drosophila. Molecular Biology of the Cell, 26(13), 2491–2504.PubMedPubMedCentralCrossRef
283.
go back to reference Perry, S. V. (2001). Vertebrate tropomyosin: distribution, properties and function. Journal of Muscle Research and Cell Motility, 22(1), 5–49.PubMedCrossRef Perry, S. V. (2001). Vertebrate tropomyosin: distribution, properties and function. Journal of Muscle Research and Cell Motility, 22(1), 5–49.PubMedCrossRef
284.
go back to reference Helfman, D. M., Flynn, P., Khan, P., & Saeed, A. (2008). Tropomyosin as a regulator of cancer cell transformation. Advances in Experimental Medicine and Biology, 644, 124–131.PubMedCrossRef Helfman, D. M., Flynn, P., Khan, P., & Saeed, A. (2008). Tropomyosin as a regulator of cancer cell transformation. Advances in Experimental Medicine and Biology, 644, 124–131.PubMedCrossRef
285.
go back to reference Bharadwaj, S., & Prasad, G. L. (2002). Tropomyosin-1, a novel suppressor of cellular transformation is downregulated by promoter methylation in cancer cells. Cancer Letters, 183(2), 205–213.PubMedCrossRef Bharadwaj, S., & Prasad, G. L. (2002). Tropomyosin-1, a novel suppressor of cellular transformation is downregulated by promoter methylation in cancer cells. Cancer Letters, 183(2), 205–213.PubMedCrossRef
286.
go back to reference Ku, B. M., Ryu, H. W., Lee, Y. K., Ryu, J., Yeon, J., & Choi, J. (2010). 4 '-Acetoamido-4-hydroxychalcone, a chalcone derivative, inhibits glioma growth and invasion through regulation of the tropomyosin 1 gene. Biochemical and Biophysical Research Communications, 402(3), 525–530.PubMedCrossRef Ku, B. M., Ryu, H. W., Lee, Y. K., Ryu, J., Yeon, J., & Choi, J. (2010). 4 '-Acetoamido-4-hydroxychalcone, a chalcone derivative, inhibits glioma growth and invasion through regulation of the tropomyosin 1 gene. Biochemical and Biophysical Research Communications, 402(3), 525–530.PubMedCrossRef
287.
go back to reference Yang, W., Wang, X., Zheng, W., Li, K., Liu, H., & Sun, Y. (2013). Genetic and epigenetic alterations are involved in the regulation of TPM1 in cholangiocarcinoma. International Journal of Oncology, 42(2), 690–698.PubMedCrossRef Yang, W., Wang, X., Zheng, W., Li, K., Liu, H., & Sun, Y. (2013). Genetic and epigenetic alterations are involved in the regulation of TPM1 in cholangiocarcinoma. International Journal of Oncology, 42(2), 690–698.PubMedCrossRef
288.
go back to reference Pan, H., Gu, L., Liu, B., Li, Y., Wang, Y., Bai, X., et al. (2017). Tropomyosin-1 acts as a potential tumor suppressorin human oral squamous cell carcinoma. PLoS One, 12(2), e0168900.PubMedPubMedCentralCrossRef Pan, H., Gu, L., Liu, B., Li, Y., Wang, Y., Bai, X., et al. (2017). Tropomyosin-1 acts as a potential tumor suppressorin human oral squamous cell carcinoma. PLoS One, 12(2), e0168900.PubMedPubMedCentralCrossRef
289.
go back to reference Mlakar, V., Berginc, G., Volavsek, M., Stor, Z., Rems, M., & Glavac, D. (2009). Presence of activating KRAS mutations correlates significantly with expression of tumour suppressor genes DCN and TPM1 in colorectal cancer. BMC Cancer, 9, 282.PubMedPubMedCentralCrossRef Mlakar, V., Berginc, G., Volavsek, M., Stor, Z., Rems, M., & Glavac, D. (2009). Presence of activating KRAS mutations correlates significantly with expression of tumour suppressor genes DCN and TPM1 in colorectal cancer. BMC Cancer, 9, 282.PubMedPubMedCentralCrossRef
290.
go back to reference Zhu, S., Si, M. L., Wu, H., & Mo, Y. Y. (2007). MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). Journal of Biological Chemistry, 282(19), 14328–14336.CrossRef Zhu, S., Si, M. L., Wu, H., & Mo, Y. Y. (2007). MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). Journal of Biological Chemistry, 282(19), 14328–14336.CrossRef
291.
go back to reference Zhu, S., Wu, H., Wu, F., Nie, D., Sheng, S., & Mo, Y. Y. (2008). MicroRNA-21targets tumor suppressor genes in invasion and metastasis. Cell Research, 18(3), 350–359.PubMedCrossRef Zhu, S., Wu, H., Wu, F., Nie, D., Sheng, S., & Mo, Y. Y. (2008). MicroRNA-21targets tumor suppressor genes in invasion and metastasis. Cell Research, 18(3), 350–359.PubMedCrossRef
292.
go back to reference Wang, J., Guan, J., Lu, Z., Jin, J., Cai, Y., Wang, C., & Wang, F. (2015). Clinical and tumor significance of tropomyosin-1expression levels in renal cell carcinoma. Oncology Reports, 33(3), 1326–1334.PubMedCrossRef Wang, J., Guan, J., Lu, Z., Jin, J., Cai, Y., Wang, C., & Wang, F. (2015). Clinical and tumor significance of tropomyosin-1expression levels in renal cell carcinoma. Oncology Reports, 33(3), 1326–1334.PubMedCrossRef
293.
go back to reference Gagat, M., Grzanka, D., Izdebska, M., & Grzanka, A. (2013). Effect of L-homocysteine on endothelial cell-cell junctions following F-actin stabilization through tropomyosin-1 overexpression. International Journal of Molecular Medicine, 32(1), 115–129.PubMedCrossRef Gagat, M., Grzanka, D., Izdebska, M., & Grzanka, A. (2013). Effect of L-homocysteine on endothelial cell-cell junctions following F-actin stabilization through tropomyosin-1 overexpression. International Journal of Molecular Medicine, 32(1), 115–129.PubMedCrossRef
294.
go back to reference Stehn, J. R., Haass, N. K., Bonello, T., Desouza, M., Kottyan, G., Treutlein, H., et al. (2013). A novel class of anticancer compounds targets the actin cytoskeleton in tumor cells. Cancer Research, 73(16), 5169–5182.PubMedCrossRef Stehn, J. R., Haass, N. K., Bonello, T., Desouza, M., Kottyan, G., Treutlein, H., et al. (2013). A novel class of anticancer compounds targets the actin cytoskeleton in tumor cells. Cancer Research, 73(16), 5169–5182.PubMedCrossRef
295.
go back to reference Stehn, J. R., Schevzov, G., O’Neill, G. M., & Gunning, P. W. (2006). Specialisation of the tropomyosin composition of actin filaments provides new potential targets for chemotherapy. Current Cancer Drug Targets, 6(3), 245–256.PubMedCrossRef Stehn, J. R., Schevzov, G., O’Neill, G. M., & Gunning, P. W. (2006). Specialisation of the tropomyosin composition of actin filaments provides new potential targets for chemotherapy. Current Cancer Drug Targets, 6(3), 245–256.PubMedCrossRef
296.
go back to reference Miyado, K., Kimura, M., & Taniguchi, S. (1996). Decreased expression of a single tropomyosin isoform, TM5/TM30nm, results in reduction in motility of highly metastatic B16-F10 mouse melanoma cells. Biochemical Biophysical Research Communications, 225(2), 427–435.PubMedCrossRef Miyado, K., Kimura, M., & Taniguchi, S. (1996). Decreased expression of a single tropomyosin isoform, TM5/TM30nm, results in reduction in motility of highly metastatic B16-F10 mouse melanoma cells. Biochemical Biophysical Research Communications, 225(2), 427–435.PubMedCrossRef
297.
go back to reference Currier, M. A., Stehn, J. R., Swain, A., Chen, D., Hook, J., & Eiffe, E. (2017). Identification of Cancer-Targeted Tropomyosin Inhibitors and Their Synergy with Microtubule Drugs. Molecular Cancer Therapy, 16(8), 1555–1565.CrossRef Currier, M. A., Stehn, J. R., Swain, A., Chen, D., Hook, J., & Eiffe, E. (2017). Identification of Cancer-Targeted Tropomyosin Inhibitors and Their Synergy with Microtubule Drugs. Molecular Cancer Therapy, 16(8), 1555–1565.CrossRef
298.
go back to reference Goldberg, J. (1998). Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell, 95(2), 237–248.PubMedCrossRef Goldberg, J. (1998). Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell, 95(2), 237–248.PubMedCrossRef
299.
go back to reference Worthylake, D. K., Rossman, K. L., & Sondek, J. (2000). Crystal structure of Rac1 in complex with the guanine nucleotide exchange region of Tiam1. Nature, 408(6813), 682–688.PubMedCrossRef Worthylake, D. K., Rossman, K. L., & Sondek, J. (2000). Crystal structure of Rac1 in complex with the guanine nucleotide exchange region of Tiam1. Nature, 408(6813), 682–688.PubMedCrossRef
300.
go back to reference Peyroche, A., Antonny, B., Robineau, S., Acker, J., Cherfils, J., & Jackson, C. L. (1999). Brefeldin A acts to stabilize an abortive ARF-GDP Sec7 domain protein complex: involvement of specific residues of the Sec7 domain. Molecular Cell, 3(3), 275–285.PubMedCrossRef Peyroche, A., Antonny, B., Robineau, S., Acker, J., Cherfils, J., & Jackson, C. L. (1999). Brefeldin A acts to stabilize an abortive ARF-GDP Sec7 domain protein complex: involvement of specific residues of the Sec7 domain. Molecular Cell, 3(3), 275–285.PubMedCrossRef
301.
go back to reference Gao, Y., Dickerson, J. B., Guo, F., Zheng, J., & Zheng, Y. (2004). Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 101(20), 7618–7623.PubMedPubMedCentralCrossRef Gao, Y., Dickerson, J. B., Guo, F., Zheng, J., & Zheng, Y. (2004). Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 101(20), 7618–7623.PubMedPubMedCentralCrossRef
302.
go back to reference Yoshida, T., Zhang, Y., Rivera Rosado, L., Chen, J., Khan, T., Moon, S. Y., et al. (2010). Blockade of Rac1 activity induces G1 cell cycle arrest or apoptosis in breast cancer cells through downregulation of cyclin D1, survivin, and X-linked inhibitor of apoptosis protein. Molecular Cancer Therapy, 9(6), 1657–1668.CrossRef Yoshida, T., Zhang, Y., Rivera Rosado, L., Chen, J., Khan, T., Moon, S. Y., et al. (2010). Blockade of Rac1 activity induces G1 cell cycle arrest or apoptosis in breast cancer cells through downregulation of cyclin D1, survivin, and X-linked inhibitor of apoptosis protein. Molecular Cancer Therapy, 9(6), 1657–1668.CrossRef
303.
go back to reference Thomas, E. K., Cancelas, J. A., Chae, H. D., Cox, A. D., Keller, P. J., Perrotti, D., et al. (2007). Rac guanosine triphosphatases represent integrating molecular therapeutic targets for BCR-ABL-induced myeloproliferative disease. Cancer Cell, 12(5), 467–478.PubMedCrossRef Thomas, E. K., Cancelas, J. A., Chae, H. D., Cox, A. D., Keller, P. J., Perrotti, D., et al. (2007). Rac guanosine triphosphatases represent integrating molecular therapeutic targets for BCR-ABL-induced myeloproliferative disease. Cancer Cell, 12(5), 467–478.PubMedCrossRef
304.
go back to reference Colomba, A., Giuriato, S., Dejean, E., Thornber, K., Delsol, G., Tronchere, H., et al. (2011). Inhibition of Rac controls NPM–ALK-dependent lymphoma development and dissemination. Blood Cancer Journal, 1(6), e21.PubMedPubMedCentralCrossRef Colomba, A., Giuriato, S., Dejean, E., Thornber, K., Delsol, G., Tronchere, H., et al. (2011). Inhibition of Rac controls NPM–ALK-dependent lymphoma development and dissemination. Blood Cancer Journal, 1(6), e21.PubMedPubMedCentralCrossRef
305.
go back to reference Ji, J., Feng, X., Shi, M., Cai, Q., Yu, Y., Zhu, Z., et al. (2015). Rac1 is correlated with aggressiveness and a potential therapeutic target for gastric cancer. International Journal of Oncology, 46(3), 1343–1353.PubMedCrossRef Ji, J., Feng, X., Shi, M., Cai, Q., Yu, Y., Zhu, Z., et al. (2015). Rac1 is correlated with aggressiveness and a potential therapeutic target for gastric cancer. International Journal of Oncology, 46(3), 1343–1353.PubMedCrossRef
306.
go back to reference Karpel-Massler, G., Westhoff, M. A., Zhou, S., Nonnenmacher, L., Dwucet, A., Kast, R. E., et al. (2013). Combined inhibition of HER1/EGFR and RAC1 results in asynergistic antiproliferative effect on established and primary cultured human glioblastoma cells. Molecular Cancer Therapy, 12(9), 1783–1795.CrossRef Karpel-Massler, G., Westhoff, M. A., Zhou, S., Nonnenmacher, L., Dwucet, A., Kast, R. E., et al. (2013). Combined inhibition of HER1/EGFR and RAC1 results in asynergistic antiproliferative effect on established and primary cultured human glioblastoma cells. Molecular Cancer Therapy, 12(9), 1783–1795.CrossRef
307.
go back to reference Dutting, S., Heidenreich, J., Cherpokova, D., Amin, E., Zhang, S. C., Ahmadian, M. R., et al. (2015). Critical off-target effects of the widely used Rac1 inhibitors NSC23766 and EHT1864 in mouse platelets. Journal of Thrombosis and Haemostasis, 13(5), 827–838.PubMedCrossRef Dutting, S., Heidenreich, J., Cherpokova, D., Amin, E., Zhang, S. C., Ahmadian, M. R., et al. (2015). Critical off-target effects of the widely used Rac1 inhibitors NSC23766 and EHT1864 in mouse platelets. Journal of Thrombosis and Haemostasis, 13(5), 827–838.PubMedCrossRef
308.
go back to reference Ferri, N., Corsini, A., Bottino, P., Clerici, F., & Contini, A. (2009). Virtual screening approach for the identification of new Rac1 inhibitors. Journal of Medicinal Chemistry, 52(14), 4087–4090.PubMedCrossRef Ferri, N., Corsini, A., Bottino, P., Clerici, F., & Contini, A. (2009). Virtual screening approach for the identification of new Rac1 inhibitors. Journal of Medicinal Chemistry, 52(14), 4087–4090.PubMedCrossRef
309.
go back to reference Cardama, G. A., Comin, M., Hornos, L., Gonzalez, N., Defelipe, L., Turjanski, A., et al. (2014). Preclinical development of novel rac1-GEF signaling inhibitors using a rational design approach in highly aggressive breast cancer cell lines. Anticancer Agents in Medicinal Chemistry, 14(6), 840–851.CrossRef Cardama, G. A., Comin, M., Hornos, L., Gonzalez, N., Defelipe, L., Turjanski, A., et al. (2014). Preclinical development of novel rac1-GEF signaling inhibitors using a rational design approach in highly aggressive breast cancer cell lines. Anticancer Agents in Medicinal Chemistry, 14(6), 840–851.CrossRef
310.
go back to reference Cardama, G. A., Gonzalez, N., Ciarlantini, M., Donadío, L. G., Comin, M. J., Alonso, D. F., et al. (2014). Proapoptotic and antiinvasive activity of Rac1 small molecule inhibitors on malignant glioma cells. Onco Targets and Therapies, 7, 2021–2033. Cardama, G. A., Gonzalez, N., Ciarlantini, M., Donadío, L. G., Comin, M. J., Alonso, D. F., et al. (2014). Proapoptotic and antiinvasive activity of Rac1 small molecule inhibitors on malignant glioma cells. Onco Targets and Therapies, 7, 2021–2033.
311.
go back to reference Cabrera, M., Echeverria, E., Lenicov, F. R., Cardama, G. A., Gonzalez, N., Davio, C., et al. (2017). Pharmacological Rac1 inhibitors with selective apoptotic activity in human acute leukemic cell lines. Oncotarget, 8(58), 98509–98523.PubMedPubMedCentralCrossRef Cabrera, M., Echeverria, E., Lenicov, F. R., Cardama, G. A., Gonzalez, N., Davio, C., et al. (2017). Pharmacological Rac1 inhibitors with selective apoptotic activity in human acute leukemic cell lines. Oncotarget, 8(58), 98509–98523.PubMedPubMedCentralCrossRef
312.
go back to reference Gonzalez, N., Cardama, G. A., Comin, M. J., Segatori, V. I., Pifano, M., Alonso, D. F., et al. (2017). Pharmacological inhibition of Rac1-PAK1 axis restores tamoxifen sensitivity in human resistant breast cancer cells. Cell Signaling, 30, 154–161.CrossRef Gonzalez, N., Cardama, G. A., Comin, M. J., Segatori, V. I., Pifano, M., Alonso, D. F., et al. (2017). Pharmacological inhibition of Rac1-PAK1 axis restores tamoxifen sensitivity in human resistant breast cancer cells. Cell Signaling, 30, 154–161.CrossRef
313.
go back to reference Schmidt, S., Diriong, S., Mery, J., Fabbrizio, E., & Debant, A. (2002). Identification of the first Rho-GEF inhibitor, TRIPalpha, which targets the RhoA-specific GEF domain of Trio. FEBS Letters, 523(1-3), 35–42.PubMedCrossRef Schmidt, S., Diriong, S., Mery, J., Fabbrizio, E., & Debant, A. (2002). Identification of the first Rho-GEF inhibitor, TRIPalpha, which targets the RhoA-specific GEF domain of Trio. FEBS Letters, 523(1-3), 35–42.PubMedCrossRef
314.
go back to reference Bouquier, N., Fromont, S., Zeeh, J. C., Auziol, C., Larrousse, P., Robert, B., et al. (2009). Aptamer-derived peptides as potent inhibitors of the oncogenic RhoGEF Tgat. Chemistry and Biology, 16(4), 391–400.PubMedCrossRef Bouquier, N., Fromont, S., Zeeh, J. C., Auziol, C., Larrousse, P., Robert, B., et al. (2009). Aptamer-derived peptides as potent inhibitors of the oncogenic RhoGEF Tgat. Chemistry and Biology, 16(4), 391–400.PubMedCrossRef
315.
go back to reference Blangy, A., Bouquier, N., Gauthier-Rouvière, C., Schimdt, S., Debant, A., Leonetti, J. P., et al. (2006). Identification of TRIO-GEFD1 chemical inhibitors using the yeast exchange assay. Biology of the Cell, 98(9), 511–522.PubMedCrossRef Blangy, A., Bouquier, N., Gauthier-Rouvière, C., Schimdt, S., Debant, A., Leonetti, J. P., et al. (2006). Identification of TRIO-GEFD1 chemical inhibitors using the yeast exchange assay. Biology of the Cell, 98(9), 511–522.PubMedCrossRef
316.
go back to reference Bouquier, N., Vignal, E., Charrasse, S., Weill, M., Schimdt, S., Leometti, J. P., et al. (2009). A cell active chemical GEF inhibitor selectively targets the Trio/RhoG/Rac1 signaling pathway. Chemistry and Biology, 16(6), 657–666.PubMedCrossRef Bouquier, N., Vignal, E., Charrasse, S., Weill, M., Schimdt, S., Leometti, J. P., et al. (2009). A cell active chemical GEF inhibitor selectively targets the Trio/RhoG/Rac1 signaling pathway. Chemistry and Biology, 16(6), 657–666.PubMedCrossRef
317.
go back to reference Montalvo-Ortiz, B. L., Castillo-Pichardo, L., Hernandez, E., Humphries-Bicknaley, T., De La Mota-Peynado, A., Cubano, L. A., et al. (2012). Characterization of EHop-016, novel small molecule inhibitor of Rac GTPase. Journal of Biological Chemistry, 287(16), 13228–13238.CrossRef Montalvo-Ortiz, B. L., Castillo-Pichardo, L., Hernandez, E., Humphries-Bicknaley, T., De La Mota-Peynado, A., Cubano, L. A., et al. (2012). Characterization of EHop-016, novel small molecule inhibitor of Rac GTPase. Journal of Biological Chemistry, 287(16), 13228–13238.CrossRef
318.
go back to reference Ruggiero, C., & Lalli, E. (2017). VAV2: a novel prognostic marker and a druggablet arget for adrenocortical carcinoma. Oncotarget, 8(51), 88257–88258.PubMedPubMedCentralCrossRef Ruggiero, C., & Lalli, E. (2017). VAV2: a novel prognostic marker and a druggablet arget for adrenocortical carcinoma. Oncotarget, 8(51), 88257–88258.PubMedPubMedCentralCrossRef
319.
go back to reference Sbiera, S., Sbiera, I., Ruggiero, C., Doghman-Bouguerra, M., Korpershoek, E., de Krijger, R. R., et al. (2017). Assessment of VAV2 expression refines prognostic prediction in adrenocortical carcinoma. Journal of Clinical Endocrinology and Metabolism, 102(9), 3491–3498.PubMedCrossRef Sbiera, S., Sbiera, I., Ruggiero, C., Doghman-Bouguerra, M., Korpershoek, E., de Krijger, R. R., et al. (2017). Assessment of VAV2 expression refines prognostic prediction in adrenocortical carcinoma. Journal of Clinical Endocrinology and Metabolism, 102(9), 3491–3498.PubMedCrossRef
320.
321.
go back to reference Castillo-Pichardo, L., Humphries-Bickley, T., De La Parra, C., Forestier-Roman, I., Martinez-Ferrer, M., Hernandez, E., et al. (2014). The Rac inhibitor EHop-016 inhibits mammary tumor growth and metastasis in a nude mouse model. Translational Oncology, 7(5), 546–555.PubMedPubMedCentralCrossRef Castillo-Pichardo, L., Humphries-Bickley, T., De La Parra, C., Forestier-Roman, I., Martinez-Ferrer, M., Hernandez, E., et al. (2014). The Rac inhibitor EHop-016 inhibits mammary tumor growth and metastasis in a nude mouse model. Translational Oncology, 7(5), 546–555.PubMedPubMedCentralCrossRef
322.
go back to reference Humphries-Bickley, T., Castillo-Pichardo, L., Corujo-Carro, F., Duconge, J., Hernandez-O'Farrill, E., Vlaar, C., et al. (2015). Pharmacokinetics of Rac inhibitor EHop-016 in mice by ultra-performance liquid chromatography tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 981–982, 19–26.PubMedCrossRef Humphries-Bickley, T., Castillo-Pichardo, L., Corujo-Carro, F., Duconge, J., Hernandez-O'Farrill, E., Vlaar, C., et al. (2015). Pharmacokinetics of Rac inhibitor EHop-016 in mice by ultra-performance liquid chromatography tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 981–982, 19–26.PubMedCrossRef
323.
go back to reference Humphries-Bickley, T., Castillo-Pichardo, L., Hernandez-O'Farrill, E., Borrero-Garcia, L. D., Forestier-Roman, I., Gerena, Y., et al. (2017). Characterization of a dual Rac/Cdc42 inhibitor MBQ-167 in metastatic cancer. Molecular Cancer Therapy, 16(5), 805–818.CrossRef Humphries-Bickley, T., Castillo-Pichardo, L., Hernandez-O'Farrill, E., Borrero-Garcia, L. D., Forestier-Roman, I., Gerena, Y., et al. (2017). Characterization of a dual Rac/Cdc42 inhibitor MBQ-167 in metastatic cancer. Molecular Cancer Therapy, 16(5), 805–818.CrossRef
324.
go back to reference Zins, K., Lucas, T., Reichl, P., Abraham, D., & Aharinejad, S. (2013). A Rac1/Cdc42 GTPase-specific small molecule inhibitor suppresses growth of primary human prostate cancer xenografts and prolongs survival in mice. PLoS One, 8(9), e74924.PubMedPubMedCentralCrossRef Zins, K., Lucas, T., Reichl, P., Abraham, D., & Aharinejad, S. (2013). A Rac1/Cdc42 GTPase-specific small molecule inhibitor suppresses growth of primary human prostate cancer xenografts and prolongs survival in mice. PLoS One, 8(9), e74924.PubMedPubMedCentralCrossRef
325.
go back to reference Zins, K., Gunawardhana, S., Lucas, T., Abraham, D., & Aharinejad, S. (2013). Targeting Cdc42 with the small molecule drug AZA197 suppresses primary colon cancer growth and prolongs survival in a preclinical mouse xenograft model by downregulation of PAK1 activity. Journal of Translational Medicine, 11, 295.PubMedPubMedCentralCrossRef Zins, K., Gunawardhana, S., Lucas, T., Abraham, D., & Aharinejad, S. (2013). Targeting Cdc42 with the small molecule drug AZA197 suppresses primary colon cancer growth and prolongs survival in a preclinical mouse xenograft model by downregulation of PAK1 activity. Journal of Translational Medicine, 11, 295.PubMedPubMedCentralCrossRef
326.
go back to reference Peterson, J. R., Lebensohn, A. M., Pelish, H. E., & Kirschner, M. W. (2006). Biochemical suppression of small molecule inhibitors: a new strategy to identify inhibitor targets and signaling pathway components. Chemistry and Biology, 13(4), 443–452.PubMedCrossRef Peterson, J. R., Lebensohn, A. M., Pelish, H. E., & Kirschner, M. W. (2006). Biochemical suppression of small molecule inhibitors: a new strategy to identify inhibitor targets and signaling pathway components. Chemistry and Biology, 13(4), 443–452.PubMedCrossRef
327.
go back to reference Sakamori, R., Yu, S., Zhang, X., Hoffman, A., Sun, J., Das, S., et al. (2014). CDC42 inhibition suppresses progression of incipient intestinal tumors. Cancer Research, 74(19), 5480–5492.PubMedPubMedCentralCrossRef Sakamori, R., Yu, S., Zhang, X., Hoffman, A., Sun, J., Das, S., et al. (2014). CDC42 inhibition suppresses progression of incipient intestinal tumors. Cancer Research, 74(19), 5480–5492.PubMedPubMedCentralCrossRef
328.
go back to reference Friesland, A., Zhao, Y., Chen, Y. H., Wang, L., Zhou, H., & Lu, Q. (2013). Small molecule targeting Cdc42-intersectin interaction disrupts Golgi organization and suppresses cell motility. Proceedings of the National Academy of Sciences of the United States of America, 110(4), 1261–1266.PubMedPubMedCentralCrossRef Friesland, A., Zhao, Y., Chen, Y. H., Wang, L., Zhou, H., & Lu, Q. (2013). Small molecule targeting Cdc42-intersectin interaction disrupts Golgi organization and suppresses cell motility. Proceedings of the National Academy of Sciences of the United States of America, 110(4), 1261–1266.PubMedPubMedCentralCrossRef
329.
go back to reference Shutes, A., Onesto, C., Picard, V., Leblond, B., Schweighoffer, F., & Der, C. J. (2007). Specificity and mechanism of action of EHT 1864, a novel small molecule inhibitor of Rac family small GTPases. Journal of Biological Chemistry, 282(49), 35666–35678.CrossRef Shutes, A., Onesto, C., Picard, V., Leblond, B., Schweighoffer, F., & Der, C. J. (2007). Specificity and mechanism of action of EHT 1864, a novel small molecule inhibitor of Rac family small GTPases. Journal of Biological Chemistry, 282(49), 35666–35678.CrossRef
330.
go back to reference Rosenblatt, A. E., Garcia, M. I., Lyons, L., Xie, Y., Maiorino, C., Desire, L., et al. (2011). Inhibition of the RhoGTPase, Rac1, decreases estrogen receptor levels and is a novel therapeutic strategy in breast cancer. Endocrine Related Cancer, 18(2), 207–219.PubMedPubMedCentral Rosenblatt, A. E., Garcia, M. I., Lyons, L., Xie, Y., Maiorino, C., Desire, L., et al. (2011). Inhibition of the RhoGTPase, Rac1, decreases estrogen receptor levels and is a novel therapeutic strategy in breast cancer. Endocrine Related Cancer, 18(2), 207–219.PubMedPubMedCentral
331.
go back to reference Castoria, G., D’Amato, L., Ciociola, A., Giovannelli, P., Giraldi, T., Sepe, L., et al. (2011). Androgen-induced cell migration: role of androgen receptor/filamin A association. PLoS One, 6(2), e17218.PubMedPubMedCentralCrossRef Castoria, G., D’Amato, L., Ciociola, A., Giovannelli, P., Giraldi, T., Sepe, L., et al. (2011). Androgen-induced cell migration: role of androgen receptor/filamin A association. PLoS One, 6(2), e17218.PubMedPubMedCentralCrossRef
332.
go back to reference Molnar, J., Fazakas, C., Hasko, J., Sipos, O., Nagy, K., Nyul-Toth, A., et al. (2016). Transmigration characteristics of breast cancer and melanoma cells through the brain endothelium: role of rac and PI3K. Cell Adhesion and Migration, 10(3), 269–281.PubMedCrossRef Molnar, J., Fazakas, C., Hasko, J., Sipos, O., Nagy, K., Nyul-Toth, A., et al. (2016). Transmigration characteristics of breast cancer and melanoma cells through the brain endothelium: role of rac and PI3K. Cell Adhesion and Migration, 10(3), 269–281.PubMedCrossRef
333.
go back to reference Katz, E., Sims, A. H., Sproul, D., Caldwell, H., Dixon, M. J., Meehan, R. R., et al. (2012). Targeting of Rac GTPases blocks the spread of intact human breast cancer. Oncotarget, 3(6), 608–619.PubMedPubMedCentralCrossRef Katz, E., Sims, A. H., Sproul, D., Caldwell, H., Dixon, M. J., Meehan, R. R., et al. (2012). Targeting of Rac GTPases blocks the spread of intact human breast cancer. Oncotarget, 3(6), 608–619.PubMedPubMedCentralCrossRef
334.
go back to reference Hampsch, R. A., Shee, K., Bates, D., Lewis, L. D., Desire, L., Leblond, B., et al. (2017). Therapeutic sensitivity to Rac GTPase inhibition requires consequential suppression of mTORC1, AKT, and MEK signaling in breast cancer. Oncotarget, 8(13), 21806–21817.PubMedPubMedCentralCrossRef Hampsch, R. A., Shee, K., Bates, D., Lewis, L. D., Desire, L., Leblond, B., et al. (2017). Therapeutic sensitivity to Rac GTPase inhibition requires consequential suppression of mTORC1, AKT, and MEK signaling in breast cancer. Oncotarget, 8(13), 21806–21817.PubMedPubMedCentralCrossRef
335.
go back to reference Arnst, J. L., Hein, A. L., Taylor, M. A., Palermo, N. Y., Contreras, I., Sonawane, Y. A., et al. (2017). Discovery and characterization of small molecule Rac1 inhibitors. Oncotarget, 8(21), 34586–34600.PubMedPubMedCentralCrossRef Arnst, J. L., Hein, A. L., Taylor, M. A., Palermo, N. Y., Contreras, I., Sonawane, Y. A., et al. (2017). Discovery and characterization of small molecule Rac1 inhibitors. Oncotarget, 8(21), 34586–34600.PubMedPubMedCentralCrossRef
336.
go back to reference Surviladze, Z., Waller, A., Wu, Y., Romero, E., Edwards, B. S., Wandinger-Ness, A., et al. (2010). Identification of a small GTPase inhibitor using a highthroughput flow cytometry bead-based multiplex assay. Journal of Biomolecular Screening, 15(1), 10–20.PubMedCrossRef Surviladze, Z., Waller, A., Wu, Y., Romero, E., Edwards, B. S., Wandinger-Ness, A., et al. (2010). Identification of a small GTPase inhibitor using a highthroughput flow cytometry bead-based multiplex assay. Journal of Biomolecular Screening, 15(1), 10–20.PubMedCrossRef
337.
go back to reference Hong, L., Kenney, S. R., Phillips, G. K., Simpson, D., Schroeder, C. E., Noth, J., et al. (2013). Characterization of a Cdc42 protein inhibitor and its use as a molecular probe. Journal of Biological Chemistry, 288(12), 8531–8543.CrossRef Hong, L., Kenney, S. R., Phillips, G. K., Simpson, D., Schroeder, C. E., Noth, J., et al. (2013). Characterization of a Cdc42 protein inhibitor and its use as a molecular probe. Journal of Biological Chemistry, 288(12), 8531–8543.CrossRef
338.
go back to reference Surviladze, Z., Waller, A., Strouse, J. J., Bologa, C., Ursu, O., Salas, V., et al. (2010). A potent and selective inhibitor of Cdc42 GTPase. In Probe Reports from the NIH Molecular Libraries Program. Bethesda (MD): National Center for Biotechnology Information (US). Surviladze, Z., Waller, A., Strouse, J. J., Bologa, C., Ursu, O., Salas, V., et al. (2010). A potent and selective inhibitor of Cdc42 GTPase. In Probe Reports from the NIH Molecular Libraries Program. Bethesda (MD): National Center for Biotechnology Information (US).
339.
go back to reference Oprea, T. I., Sklar, L. A., Agola, J. O., Guo, Y., Silberberg, M., Roxby, J., et al. (2015). Novel activities of select NSAID enantiomers against Rac1 and Cdc42 GTPases. PLoS One, 10(11), 1–32.CrossRef Oprea, T. I., Sklar, L. A., Agola, J. O., Guo, Y., Silberberg, M., Roxby, J., et al. (2015). Novel activities of select NSAID enantiomers against Rac1 and Cdc42 GTPases. PLoS One, 10(11), 1–32.CrossRef
340.
go back to reference Carabaza, A., Cabré, F., Rotllan, E., Gomez, M., Gutierrez, M., Garcia, M. L., et al. (1996). Stereoselective inhibition of inducible cyclooxygenase by chiral nonsteroidal antiinflammatory drugs. Journal of Clinical Pharmacology, 36(6), 505–512.PubMedCrossRef Carabaza, A., Cabré, F., Rotllan, E., Gomez, M., Gutierrez, M., Garcia, M. L., et al. (1996). Stereoselective inhibition of inducible cyclooxygenase by chiral nonsteroidal antiinflammatory drugs. Journal of Clinical Pharmacology, 36(6), 505–512.PubMedCrossRef
341.
go back to reference Guo, Y., Kenney, S. R., Muller, C. Y., Adams, S., Rutledge, T., Romero, E., et al. (2015). R-ketorolac targets Cdc42 and Rac1 and alters ovarian cancer cell behaviors critical for invasion and metastasis. Molecular Cancer Therapy, 14(10), 2215–2227.CrossRef Guo, Y., Kenney, S. R., Muller, C. Y., Adams, S., Rutledge, T., Romero, E., et al. (2015). R-ketorolac targets Cdc42 and Rac1 and alters ovarian cancer cell behaviors critical for invasion and metastasis. Molecular Cancer Therapy, 14(10), 2215–2227.CrossRef
342.
go back to reference Peretti, A. S., Dominguez, D., Grimes, M. M., Hathaway, H. J., Prossnitz, E. R., Rivera, M. R., et al. (2017). The R-enantiomer of ketorolac delays mammary tumor development in mouse mammary tumor virus-polyoma middle T antigen (MMTV-PyMT) Mice. American Journal of Pathology, 188(2), 515–524.CrossRef Peretti, A. S., Dominguez, D., Grimes, M. M., Hathaway, H. J., Prossnitz, E. R., Rivera, M. R., et al. (2017). The R-enantiomer of ketorolac delays mammary tumor development in mouse mammary tumor virus-polyoma middle T antigen (MMTV-PyMT) Mice. American Journal of Pathology, 188(2), 515–524.CrossRef
343.
go back to reference Guo, Y., Kenney, S. R., Cook, L., Adams, S. F., Rutledge, T., Romero, E., et al. (2015). A Novel Pharmacologic Activity of Ketorolac for Therapeutic Benefit in Ovarian Cancer Patients. Clinical Cancer Research, 21(22), 5064–5072.PubMedPubMedCentralCrossRef Guo, Y., Kenney, S. R., Cook, L., Adams, S. F., Rutledge, T., Romero, E., et al. (2015). A Novel Pharmacologic Activity of Ketorolac for Therapeutic Benefit in Ovarian Cancer Patients. Clinical Cancer Research, 21(22), 5064–5072.PubMedPubMedCentralCrossRef
344.
go back to reference Murray, B. W., Guo, C., Piraino, J., Westwick, J. K., Zhang, C., Lamerdin, J., et al. (2010). Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 107(20), 9446–9451.PubMedPubMedCentralCrossRef Murray, B. W., Guo, C., Piraino, J., Westwick, J. K., Zhang, C., Lamerdin, J., et al. (2010). Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 107(20), 9446–9451.PubMedPubMedCentralCrossRef
345.
go back to reference Chow, H. Y., Jubb, A. M., Koch, J. N., Jaffer, Z. M., Stepanova, D., Campbell, D. A., et al. (2012). p21-Activated kinase 1 is required for efficient tumor formation and progression in a Ras-mediated skin cancer model. Cancer, 72(22), 5966–5975. Chow, H. Y., Jubb, A. M., Koch, J. N., Jaffer, Z. M., Stepanova, D., Campbell, D. A., et al. (2012). p21-Activated kinase 1 is required for efficient tumor formation and progression in a Ras-mediated skin cancer model. Cancer, 72(22), 5966–5975.
346.
go back to reference Pitts, T. M., Kulikowski, G. N., Tan, A. C., Murray, B. W., Aicaroli, J. J., Tentler, J. J., et al. (2013). Association of the epithelial-to-mesenchymal transition phenotype with responsiveness to the p21-activated kinase inhibitor, PF-3758309, in colon cancer models. Frontiers in Pharmacology, 4, 35.PubMedPubMedCentralCrossRef Pitts, T. M., Kulikowski, G. N., Tan, A. C., Murray, B. W., Aicaroli, J. J., Tentler, J. J., et al. (2013). Association of the epithelial-to-mesenchymal transition phenotype with responsiveness to the p21-activated kinase inhibitor, PF-3758309, in colon cancer models. Frontiers in Pharmacology, 4, 35.PubMedPubMedCentralCrossRef
347.
go back to reference Ong, C. C., Jubb, A. M., Jakubiak, D., Zhou, W., Rudolph, J., Haverty, P. M., et al. (2013). P21-activated kinase 1 (PAK1) as a therapeutic target in BRAF wild-type melanoma. Journal of the National Cancer Institute, 105(9), 606–607.PubMedCrossRef Ong, C. C., Jubb, A. M., Jakubiak, D., Zhou, W., Rudolph, J., Haverty, P. M., et al. (2013). P21-activated kinase 1 (PAK1) as a therapeutic target in BRAF wild-type melanoma. Journal of the National Cancer Institute, 105(9), 606–607.PubMedCrossRef
348.
go back to reference Bradshaw-Pierce, E. L., Pitts, T. M., Tan, A. C., McPhilips, K., West, M., Gustafson, D. L., et al. (2013). Tumor P-Glycoprotein Correlates with Efficacy of PF-3758309 in in vitro and in vivo Models of Colorectal Cancer. Frontiers in Pharmacology, 4, 22.PubMedPubMedCentralCrossRef Bradshaw-Pierce, E. L., Pitts, T. M., Tan, A. C., McPhilips, K., West, M., Gustafson, D. L., et al. (2013). Tumor P-Glycoprotein Correlates with Efficacy of PF-3758309 in in vitro and in vivo Models of Colorectal Cancer. Frontiers in Pharmacology, 4, 22.PubMedPubMedCentralCrossRef
349.
go back to reference Licciulli, S., Maksimoska, J., Zhou, C., Troutman, S., Kota, S., Liu, Q., et al. (2013). FRAX597, a small molecule inhibitor of the p21-activated kinases, inhibits tumorigenesis of neurofibromatosis type 2 (NF2)-associated Schwannomas. Journal of Biological Chemistry, 288(40), 29105–29114.CrossRef Licciulli, S., Maksimoska, J., Zhou, C., Troutman, S., Kota, S., Liu, Q., et al. (2013). FRAX597, a small molecule inhibitor of the p21-activated kinases, inhibits tumorigenesis of neurofibromatosis type 2 (NF2)-associated Schwannomas. Journal of Biological Chemistry, 288(40), 29105–29114.CrossRef
350.
go back to reference Maksimoska, J., Feng, L., Harms, K., Yi, C., Kissil, J., Marmorstein, R., et al. (2008). Targeting large kinase active site with rigid, bulky octahedral ruthenium complexes. Journal of the American Chemical Society, 130(47), 15764–15765.PubMedPubMedCentralCrossRef Maksimoska, J., Feng, L., Harms, K., Yi, C., Kissil, J., Marmorstein, R., et al. (2008). Targeting large kinase active site with rigid, bulky octahedral ruthenium complexes. Journal of the American Chemical Society, 130(47), 15764–15765.PubMedPubMedCentralCrossRef
351.
go back to reference Deacon, S. W., Beeser, A., Fukui, J. A., Rennehfart, U. E. E., Myers, C., Chernoff, J., et al. (2008). An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chemistry and Biology, 15(4), 322–331.PubMedCrossRef Deacon, S. W., Beeser, A., Fukui, J. A., Rennehfart, U. E. E., Myers, C., Chernoff, J., et al. (2008). An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chemistry and Biology, 15(4), 322–331.PubMedCrossRef
352.
go back to reference Viaud, J., & Peterson, J. R. (2009). An allosteric kinase inhibitor binds the p21-activated kinase autoregulatory domain covalently. Molecular Cancer Therapy, 8(9), 2559–2565.CrossRef Viaud, J., & Peterson, J. R. (2009). An allosteric kinase inhibitor binds the p21-activated kinase autoregulatory domain covalently. Molecular Cancer Therapy, 8(9), 2559–2565.CrossRef
353.
go back to reference Pelish, H. E., Peterson, J. R., Salvarezza, S. B., Rodriguez-Boulan, E., Chen, J. L., Stamnes, M., et al. (2006). Secramine inhibits Cdc42-dependent functions in cells and Cdc42 activation in vitro. Nature Chemical Biology, 2(1), 39–46.PubMedCrossRef Pelish, H. E., Peterson, J. R., Salvarezza, S. B., Rodriguez-Boulan, E., Chen, J. L., Stamnes, M., et al. (2006). Secramine inhibits Cdc42-dependent functions in cells and Cdc42 activation in vitro. Nature Chemical Biology, 2(1), 39–46.PubMedCrossRef
354.
go back to reference Lu, J., Chan, L., Fiji, H. D., Dahl, R., Kwon, O., & Tamanoi, F. (2009). In vivo antitumor effect of a novel inhibitor of protein geranylgeranyltransferase-I. Moleular Cancer Therapy, 8(5), 1218–1226.CrossRef Lu, J., Chan, L., Fiji, H. D., Dahl, R., Kwon, O., & Tamanoi, F. (2009). In vivo antitumor effect of a novel inhibitor of protein geranylgeranyltransferase-I. Moleular Cancer Therapy, 8(5), 1218–1226.CrossRef
355.
go back to reference Zimonjic, D. B., Chan, L. N., Tripathi, V., Lu, J., Kwon, O., Popescu, N. C., et al. (2013). In vitro and in vivo effects of geranylgeranyltransferase I inhibitor P61A6 on non-small cell lung cancer cells. BMC Cancer, 13, 198.PubMedPubMedCentralCrossRef Zimonjic, D. B., Chan, L. N., Tripathi, V., Lu, J., Kwon, O., Popescu, N. C., et al. (2013). In vitro and in vivo effects of geranylgeranyltransferase I inhibitor P61A6 on non-small cell lung cancer cells. BMC Cancer, 13, 198.PubMedPubMedCentralCrossRef
356.
go back to reference Kazi, A., Carie, A., Blaskovich, M. A., Bucher, C., Thai, V., Moulder, S., et al. (2009). Blockade of Protein Geranylgeranylation Inhibits Cdk2-dependent p27Kip1 Phosphorylation on Thr187 and Accumulates p27Kip1 in the Nucleus: Implications for Breast Cancer Therapy. Molecular and Cellular Biology, 29(8), 2254–2263.PubMedPubMedCentralCrossRef Kazi, A., Carie, A., Blaskovich, M. A., Bucher, C., Thai, V., Moulder, S., et al. (2009). Blockade of Protein Geranylgeranylation Inhibits Cdk2-dependent p27Kip1 Phosphorylation on Thr187 and Accumulates p27Kip1 in the Nucleus: Implications for Breast Cancer Therapy. Molecular and Cellular Biology, 29(8), 2254–2263.PubMedPubMedCentralCrossRef
357.
go back to reference Denoyelle, C., Vasse, M., Korner, M., Mishal, Z., Ganne, F., Vannier, J. P., et al. (2001). Cerivastatin, an inhibitor of HMG-CoA reductase, inhibits the signaling pathways involved in the invasiveness and metastatic properties of highly ivasive breast cancer cell lines: an in vitro study. Carcinogenesis, 22(8), 1139–1148.PubMedCrossRef Denoyelle, C., Vasse, M., Korner, M., Mishal, Z., Ganne, F., Vannier, J. P., et al. (2001). Cerivastatin, an inhibitor of HMG-CoA reductase, inhibits the signaling pathways involved in the invasiveness and metastatic properties of highly ivasive breast cancer cell lines: an in vitro study. Carcinogenesis, 22(8), 1139–1148.PubMedCrossRef
358.
go back to reference Collisson, E. A., Kleer, C., Wu, M., De, A., Gambhir, S. S., Merajver, S. D., & Kolodney, M. S. (2003). Atorvastatin prevents Rho C isoprenylation, invasion, and metastasis in human melanoma cells. Molecular Cancer Therapy, 2(10), 941–948. Collisson, E. A., Kleer, C., Wu, M., De, A., Gambhir, S. S., Merajver, S. D., & Kolodney, M. S. (2003). Atorvastatin prevents Rho C isoprenylation, invasion, and metastasis in human melanoma cells. Molecular Cancer Therapy, 2(10), 941–948.
359.
go back to reference Nubel, T., Dippold, W., Kleinert, H., Kaina, B., & Fritz, G. (2004). Lovastatin inhibits Rho-regulated expression of E-selectin by TNFalpha and attenuates tumor cell adhesion. Faseb Journal, 18(1), 140–142.PubMedCrossRef Nubel, T., Dippold, W., Kleinert, H., Kaina, B., & Fritz, G. (2004). Lovastatin inhibits Rho-regulated expression of E-selectin by TNFalpha and attenuates tumor cell adhesion. Faseb Journal, 18(1), 140–142.PubMedCrossRef
360.
go back to reference Turner, S. J., Zhuang, S., Zhang, T., Boss, G. R., & Pilz, R. B. (2008). Effects of lovastatin on Rho isoform expression, activity, and association with guanine nucleotide dissociation inhibitors. Biochemical Pharmacology, 75(2), 405–413.PubMedCrossRef Turner, S. J., Zhuang, S., Zhang, T., Boss, G. R., & Pilz, R. B. (2008). Effects of lovastatin on Rho isoform expression, activity, and association with guanine nucleotide dissociation inhibitors. Biochemical Pharmacology, 75(2), 405–413.PubMedCrossRef
361.
go back to reference Riganti, C., Doublier, S., Costamagna, C., Aldieri, E., Pescarmona, G., Ghigo, D., & Bosia, A. (2008). Activation of nuclear factor-kappa B pathway by simvastatin and RhoA silencing increases doxorubicin cytotoxicity in human color cancer HT29 cells. Molecular Pharmacology, 74(2), 476–484.PubMedCrossRef Riganti, C., Doublier, S., Costamagna, C., Aldieri, E., Pescarmona, G., Ghigo, D., & Bosia, A. (2008). Activation of nuclear factor-kappa B pathway by simvastatin and RhoA silencing increases doxorubicin cytotoxicity in human color cancer HT29 cells. Molecular Pharmacology, 74(2), 476–484.PubMedCrossRef
362.
go back to reference Njardarson, J. T., Gaul, C., Shan, D., Huang, X. Y., & Danishefsky, S. J. (2004). Discovery of potent cell migration inhibitors through total synthesis: lessons from structure-activity studies of (+)-migrastatin. Journal of the American Chemical Society, 126, 1038–1040.PubMedCrossRef Njardarson, J. T., Gaul, C., Shan, D., Huang, X. Y., & Danishefsky, S. J. (2004). Discovery of potent cell migration inhibitors through total synthesis: lessons from structure-activity studies of (+)-migrastatin. Journal of the American Chemical Society, 126, 1038–1040.PubMedCrossRef
363.
go back to reference Gaul, C., Njardarson, J. T., Shan, D., Dorn, D. C., Wu, K. D., Tong, W. P., et al. (2004). The migrastatin family: discovery of potent cell migration inhibitors by chemical synthesis. Journal of the American Chemical Society, 126(36), 11326–11337.PubMedCrossRef Gaul, C., Njardarson, J. T., Shan, D., Dorn, D. C., Wu, K. D., Tong, W. P., et al. (2004). The migrastatin family: discovery of potent cell migration inhibitors by chemical synthesis. Journal of the American Chemical Society, 126(36), 11326–11337.PubMedCrossRef
364.
go back to reference Shan, D., Chen, L., Njardarson, J. T., Gaul, C., Ma, X., Danishefsky, S. J., et al. (2005). Synthetic analogues of migrastatin that inhibit mammary tumor metastasis in mice. Proceedings of the National Academy of Sciences of the United States of America, 102(10), 3772–3776.PubMedPubMedCentralCrossRef Shan, D., Chen, L., Njardarson, J. T., Gaul, C., Ma, X., Danishefsky, S. J., et al. (2005). Synthetic analogues of migrastatin that inhibit mammary tumor metastasis in mice. Proceedings of the National Academy of Sciences of the United States of America, 102(10), 3772–3776.PubMedPubMedCentralCrossRef
365.
go back to reference Chen, L., Yang, S., Jakoncic, J., Zhang, J., & Huang, X. Y. (2010). Migrastatin analogues target fascin to block tumour metastasis. Nature, 464(7291), 1062–1066.PubMedPubMedCentralCrossRef Chen, L., Yang, S., Jakoncic, J., Zhang, J., & Huang, X. Y. (2010). Migrastatin analogues target fascin to block tumour metastasis. Nature, 464(7291), 1062–1066.PubMedPubMedCentralCrossRef
366.
go back to reference Yang, S., Huang, F.K., Huang, J., Chen, S., Jakoncic, J., Leo-Macias, A., et al. (2013). Molecular mechanism of fascin function in filopodial formation. Journal of Biological Chemistry, 288(1), 274‐284. Yang, S., Huang, F.K., Huang, J., Chen, S., Jakoncic, J., Leo-Macias, A., et al. (2013). Molecular mechanism of fascin function in filopodial formation. Journal of Biological Chemistry, 288(1), 274‐284.
367.
go back to reference Huang, F. K., Han, S., Xing, B., Huang, J., Liu, B., Bordeleau, F., et al. (2015). Targeted inhibition of fascin function blocks tumour invasion and metastatic colonization. Nature Communications, 6, 7465.PubMedCrossRef Huang, F. K., Han, S., Xing, B., Huang, J., Liu, B., Bordeleau, F., et al. (2015). Targeted inhibition of fascin function blocks tumour invasion and metastatic colonization. Nature Communications, 6, 7465.PubMedCrossRef
368.
go back to reference Han, S., Huang, J., Liu, B., Xing, B., Bordeleau, F., Reinhart-King, C. A., et al. (2016). Improving fascin inhibitors to block tumor cell migration and metastasis. Molecular Oncology, 10(7), 966–980.PubMedPubMedCentralCrossRef Han, S., Huang, J., Liu, B., Xing, B., Bordeleau, F., Reinhart-King, C. A., et al. (2016). Improving fascin inhibitors to block tumor cell migration and metastasis. Molecular Oncology, 10(7), 966–980.PubMedPubMedCentralCrossRef
369.
go back to reference Peterson, J. R., Lokey, R. S., Mitchison, T. J., & Kirschner, M. W. (2001). A Chemical Inhibitor of N-WASP Reveals a New Mechanism for Targeting Protein Interactions. Proceedings of the National Academy of Sciences of the United States of America, 98(19), 10624–10629.PubMedPubMedCentralCrossRef Peterson, J. R., Lokey, R. S., Mitchison, T. J., & Kirschner, M. W. (2001). A Chemical Inhibitor of N-WASP Reveals a New Mechanism for Targeting Protein Interactions. Proceedings of the National Academy of Sciences of the United States of America, 98(19), 10624–10629.PubMedPubMedCentralCrossRef
370.
go back to reference Peterson, J. R., Bickford, L. C., Morgan, D., Kim, A. S., Ouerfelli, O., Kirschner, M. W., et al. (2004). Chemical Inhibition of N-WASP by Stabilization of a Native Autoinhibited Conformation. Nature Structural and Molecular Biology, 11(8), 747–755.PubMedCrossRef Peterson, J. R., Bickford, L. C., Morgan, D., Kim, A. S., Ouerfelli, O., Kirschner, M. W., et al. (2004). Chemical Inhibition of N-WASP by Stabilization of a Native Autoinhibited Conformation. Nature Structural and Molecular Biology, 11(8), 747–755.PubMedCrossRef
371.
go back to reference Nolen, B. J., Tomasevic, N., Russell, A., Pierce, D. W., Jia, Z., McCormick, C. D., et al. (2009). Characterization of two classes of small molecule inhibitors of Arp2/3 complex. Nature, 460(7258), 1031–1034.PubMedPubMedCentralCrossRef Nolen, B. J., Tomasevic, N., Russell, A., Pierce, D. W., Jia, Z., McCormick, C. D., et al. (2009). Characterization of two classes of small molecule inhibitors of Arp2/3 complex. Nature, 460(7258), 1031–1034.PubMedPubMedCentralCrossRef
372.
go back to reference Hetrick, B., Han, M. S., Helgeson, L. A., & Nolen, B. J. (2013). Small Molecules CK-666 and CK-869 Inhibit Actin Related Protein 2/3 Complex by Blocking an Activating Conformational Change. Chemistry and Biology, 20(5), 701–712.PubMedCrossRef Hetrick, B., Han, M. S., Helgeson, L. A., & Nolen, B. J. (2013). Small Molecules CK-666 and CK-869 Inhibit Actin Related Protein 2/3 Complex by Blocking an Activating Conformational Change. Chemistry and Biology, 20(5), 701–712.PubMedCrossRef
373.
go back to reference To, C., Shilton, B. H., & Di Guglielmo, G. M. (2010). Synthetic triterpenoids target the Arp2/3 complex and inhibit branched actin polymerization. Journal of Biological Chemistry, 285(36), 27944–27957.CrossRef To, C., Shilton, B. H., & Di Guglielmo, G. M. (2010). Synthetic triterpenoids target the Arp2/3 complex and inhibit branched actin polymerization. Journal of Biological Chemistry, 285(36), 27944–27957.CrossRef
374.
go back to reference Choi, J., Lee, J. Y., Yoon, Y., Kim, C. H., Park, S., Kim, S. Y., et al. (2019). Pimozide Suppresses Cancer Cell Migration and Tumor Metastasis Through Binding to ARPC2, a Subunit of the Arp2/3 Complex. Cancer Science, 110(12), 3788–3801.PubMedPubMedCentralCrossRef Choi, J., Lee, J. Y., Yoon, Y., Kim, C. H., Park, S., Kim, S. Y., et al. (2019). Pimozide Suppresses Cancer Cell Migration and Tumor Metastasis Through Binding to ARPC2, a Subunit of the Arp2/3 Complex. Cancer Science, 110(12), 3788–3801.PubMedPubMedCentralCrossRef
375.
go back to reference Yoon, Y. J., Han, Y. M., Choi, J., Lee, Y. J., Yun, J., Lee, S. K., et al. (2019). Benproperine, an ARPC2 Inhibitor, Suppresses Cancer Cell Migration and Tumor Metastasis. Biochemical Pharmacology, 163, 46–59.PubMedCrossRef Yoon, Y. J., Han, Y. M., Choi, J., Lee, Y. J., Yun, J., Lee, S. K., et al. (2019). Benproperine, an ARPC2 Inhibitor, Suppresses Cancer Cell Migration and Tumor Metastasis. Biochemical Pharmacology, 163, 46–59.PubMedCrossRef
376.
go back to reference Rizvi, S. A., Neidt, E. M., Cui, J., Feiger, Z., Skau, G., & M.L., et al. (2009). Identification and Characterization of a Small Molecule Inhibitor of Formin-Mediated Actin Assembly. Chemistry and Biology, 16(11), 1158–1168.PubMedCrossRef Rizvi, S. A., Neidt, E. M., Cui, J., Feiger, Z., Skau, G., & M.L., et al. (2009). Identification and Characterization of a Small Molecule Inhibitor of Formin-Mediated Actin Assembly. Chemistry and Biology, 16(11), 1158–1168.PubMedCrossRef
377.
go back to reference Yang, C., Kwon, S., Kim, S. J., Jeong, M., Park, J. Y., Park, D., et al. (2017). Identification of indothiazinone as a natural antiplatelet agent. Chemical Biology & Drug Design, 90(5), 873–882.CrossRef Yang, C., Kwon, S., Kim, S. J., Jeong, M., Park, J. Y., Park, D., et al. (2017). Identification of indothiazinone as a natural antiplatelet agent. Chemical Biology & Drug Design, 90(5), 873–882.CrossRef
378.
go back to reference Le, X. F., Almeida, M. I., Mao, W., Spizzo, R., Rossi, S., Nicoloso, M. S., et al. (2012). Modulation of MicroRNA-194 and cell migration by HER2-targeting trastuzumab in breast cancer. PLoS One, 7(7), e41170.PubMedPubMedCentralCrossRef Le, X. F., Almeida, M. I., Mao, W., Spizzo, R., Rossi, S., Nicoloso, M. S., et al. (2012). Modulation of MicroRNA-194 and cell migration by HER2-targeting trastuzumab in breast cancer. PLoS One, 7(7), e41170.PubMedPubMedCentralCrossRef
379.
go back to reference Vanamala, J., Radhakrishnan, S., Reddivari, L., Bhat, V. B., & Ptitsyn, A. (2011). Resveratrol suppresses human colon cancer cell proliferation and induces apoptosis via targeting the pentose phosphate and the talin-FAK signaling pathways -A proteomic approach. Proteome Science, 9(1), 49.PubMedPubMedCentralCrossRef Vanamala, J., Radhakrishnan, S., Reddivari, L., Bhat, V. B., & Ptitsyn, A. (2011). Resveratrol suppresses human colon cancer cell proliferation and induces apoptosis via targeting the pentose phosphate and the talin-FAK signaling pathways -A proteomic approach. Proteome Science, 9(1), 49.PubMedPubMedCentralCrossRef
380.
go back to reference Jang, M., Cai, L., Udeani, G. O., Slowing, K. V., Thomas, C. F., Beecher, C. W., et al. (1997). Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 275(5297), 218–220.PubMedCrossRef Jang, M., Cai, L., Udeani, G. O., Slowing, K. V., Thomas, C. F., Beecher, C. W., et al. (1997). Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 275(5297), 218–220.PubMedCrossRef
381.
go back to reference Shaw, Y. J., Yang, Y. T., Garrison, J. B., Kyprianou, N., & Chen, C. S. (2004). Pharmacological exploitation of the alpha1-adrenoreceptor antagonist doxazosin to develop a novel class of antitumor agents that block intracellular protein kinase B/Akt activation. Journal of Medicinal Chemistry, 47(18), 4453–4462.PubMedCrossRef Shaw, Y. J., Yang, Y. T., Garrison, J. B., Kyprianou, N., & Chen, C. S. (2004). Pharmacological exploitation of the alpha1-adrenoreceptor antagonist doxazosin to develop a novel class of antitumor agents that block intracellular protein kinase B/Akt activation. Journal of Medicinal Chemistry, 47(18), 4453–4462.PubMedCrossRef
382.
go back to reference Garrison, J. B., Shaw, Y. J., Chen, C. S., & Kyprianou, N. (2007). Novel quinazoline-based compounds impair prostate tumorigenesis by targeting tumor vascularity. Cancer Research, 67(23), 11344–11352.PubMedPubMedCentralCrossRef Garrison, J. B., Shaw, Y. J., Chen, C. S., & Kyprianou, N. (2007). Novel quinazoline-based compounds impair prostate tumorigenesis by targeting tumor vascularity. Cancer Research, 67(23), 11344–11352.PubMedPubMedCentralCrossRef
383.
go back to reference Sakamoto, S., Schwarze, S., & Kyprianou, N. (2011). Anoikis disruption of focal adhesion-Akt signaling impairs renal cell carcinoma. European Urology, 59(5), 734–744.PubMedPubMedCentralCrossRef Sakamoto, S., Schwarze, S., & Kyprianou, N. (2011). Anoikis disruption of focal adhesion-Akt signaling impairs renal cell carcinoma. European Urology, 59(5), 734–744.PubMedPubMedCentralCrossRef
384.
go back to reference Hensley, P. J., Desiniotis, A., Wang, C., Stromberg, A., Chen, C. S., & Kyprianou, N. (2014). Novel pharmacologic targeting of tight junctions and focal adhesions in prostate cancer cells. PLoS One, 9(1), e86238.PubMedPubMedCentralCrossRef Hensley, P. J., Desiniotis, A., Wang, C., Stromberg, A., Chen, C. S., & Kyprianou, N. (2014). Novel pharmacologic targeting of tight junctions and focal adhesions in prostate cancer cells. PLoS One, 9(1), e86238.PubMedPubMedCentralCrossRef
385.
go back to reference Nakashima, S., Matsuda, H., Kurume, A., Oda, Y., Nakamura, S., Yamashita, M., & Yoshikawa, M. (2010). Cucurbitacin E as a new inhibitor of cofilin phosphorylation in human leukemia U937 cells. Bioorganic and Medicinal Chemistry Letters, 20(9), 2994–2997.PubMedCrossRef Nakashima, S., Matsuda, H., Kurume, A., Oda, Y., Nakamura, S., Yamashita, M., & Yoshikawa, M. (2010). Cucurbitacin E as a new inhibitor of cofilin phosphorylation in human leukemia U937 cells. Bioorganic and Medicinal Chemistry Letters, 20(9), 2994–2997.PubMedCrossRef
386.
go back to reference Sörensen, P. M., Iacob, R. E., Fritzsche, M., Engen, J. R., Brieher, W. M., Charras, G., et al. (2012). The natural product cucurbitacin E inhibits depolymerization of actin filaments. ACS Chemical Biology, 7(9), 1502–1508.PubMedPubMedCentralCrossRef Sörensen, P. M., Iacob, R. E., Fritzsche, M., Engen, J. R., Brieher, W. M., Charras, G., et al. (2012). The natural product cucurbitacin E inhibits depolymerization of actin filaments. ACS Chemical Biology, 7(9), 1502–1508.PubMedPubMedCentralCrossRef
387.
go back to reference Zhang, T., Li, J., Dong, Y., Dong, Z., Li, L., Dai, F., et al. (2012). Cucurbitacin E inhibits breast tumor metastasis by suppressing cell migration and invasion. Breast Cancer Research Treatment, 135(2), 445–458.PubMedCrossRef Zhang, T., Li, J., Dong, Y., Dong, Z., Li, L., Dai, F., et al. (2012). Cucurbitacin E inhibits breast tumor metastasis by suppressing cell migration and invasion. Breast Cancer Research Treatment, 135(2), 445–458.PubMedCrossRef
388.
go back to reference Huang, X., Sun, D., Pan, Q., Weiwei, W., Yi, C., Chen, X. X., et al. (2014). JG6, a Novel Marine-Derived Oligosaccharide, Suppresses Breast Cancer Metastasis via Binding to Cofilin. Oncotarget, 5(11), 3568–3578.PubMedPubMedCentralCrossRef Huang, X., Sun, D., Pan, Q., Weiwei, W., Yi, C., Chen, X. X., et al. (2014). JG6, a Novel Marine-Derived Oligosaccharide, Suppresses Breast Cancer Metastasis via Binding to Cofilin. Oncotarget, 5(11), 3568–3578.PubMedPubMedCentralCrossRef
389.
go back to reference Su, J., Zhou, Y., Pan, Z., Shi, L., Yang, J., Liao, A., et al. (2017). Downregulation of LIMK1-ADF/cofilin by DADS Inhibits the Migration and Invasion of Colon Cancer. Science Reports, 7, 45624.CrossRef Su, J., Zhou, Y., Pan, Z., Shi, L., Yang, J., Liao, A., et al. (2017). Downregulation of LIMK1-ADF/cofilin by DADS Inhibits the Migration and Invasion of Colon Cancer. Science Reports, 7, 45624.CrossRef
390.
go back to reference Cooper, J. A. (1987). Effects of cytochalasin and phalloidin on actin. J. Effects of cytochalasin and phalloidin on actin. Journal of Cell Biology, 105(4), 1473–1478. Cooper, J. A. (1987). Effects of cytochalasin and phalloidin on actin. J. Effects of cytochalasin and phalloidin on actin. Journal of Cell Biology, 105(4), 1473–1478.
391.
go back to reference Spector, I., Braet, F., Shochet, N. R., & Bubb, M. R. (1999). New anti-actin drugs in the study of the organization and function of the actin cytoskeleton. Microscopy Research and Technique, 47(1), 18–37.PubMedCrossRef Spector, I., Braet, F., Shochet, N. R., & Bubb, M. R. (1999). New anti-actin drugs in the study of the organization and function of the actin cytoskeleton. Microscopy Research and Technique, 47(1), 18–37.PubMedCrossRef
392.
go back to reference Wulf, E., Deboben, A., Bautz, F. A., Faulstich, H., & Wieland, T. (1979). Fluorescent phallotoxin, a tool for the visualization of cellular actin. Proceedings of the National Academy of Sciences of the United States of America, 76(9), 4498–4502.PubMedPubMedCentralCrossRef Wulf, E., Deboben, A., Bautz, F. A., Faulstich, H., & Wieland, T. (1979). Fluorescent phallotoxin, a tool for the visualization of cellular actin. Proceedings of the National Academy of Sciences of the United States of America, 76(9), 4498–4502.PubMedPubMedCentralCrossRef
393.
go back to reference Crews, P., Manes, L. V., & Boehler, M. (1986). Jasplakinolide, a cyclodepsipeptide from the marine sponge, Jaspis sp. Tetrahedron Letters, 27, 2797–2800.CrossRef Crews, P., Manes, L. V., & Boehler, M. (1986). Jasplakinolide, a cyclodepsipeptide from the marine sponge, Jaspis sp. Tetrahedron Letters, 27, 2797–2800.CrossRef
394.
go back to reference Zabriskie, T. M., Klocke, J. A., Ireland, C. M., Marcus, A. H., Molinski, T. F., & Faulkner, D. J. (1986). Jaspamide, a modified peptide from a Jaspis sponge, with insecticidal and antifungal activity. Journal of American Chemical Society, 108(11), 3123–3124.CrossRef Zabriskie, T. M., Klocke, J. A., Ireland, C. M., Marcus, A. H., Molinski, T. F., & Faulkner, D. J. (1986). Jaspamide, a modified peptide from a Jaspis sponge, with insecticidal and antifungal activity. Journal of American Chemical Society, 108(11), 3123–3124.CrossRef
395.
go back to reference Bubb, M. R., Senderowicz, A. M., Sausville, E. A., Duncan, K. L., & Korn, E. D. (1994). Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F actin. Journal of Biological Chemistry, 269(21), 14869–14871.CrossRef Bubb, M. R., Senderowicz, A. M., Sausville, E. A., Duncan, K. L., & Korn, E. D. (1994). Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F actin. Journal of Biological Chemistry, 269(21), 14869–14871.CrossRef
396.
go back to reference McGrath, J. L., Tardy, Y., Dewey Jr., C. F., Meister, J. J., & Hartwig, J. H. (1998). Simultaneous measurements of actin filament turnover, filament fraction, and monomer diffusion in endothelial cells. Biophysical Journal, 75(4), 2070–2078.PubMedPubMedCentralCrossRef McGrath, J. L., Tardy, Y., Dewey Jr., C. F., Meister, J. J., & Hartwig, J. H. (1998). Simultaneous measurements of actin filament turnover, filament fraction, and monomer diffusion in endothelial cells. Biophysical Journal, 75(4), 2070–2078.PubMedPubMedCentralCrossRef
397.
go back to reference Cramer, L. P. (1999). Role of actin-filament disassembly in lamellipodium protrusion in motile cells revealed using the drug jasplakinolide. Current Biology, 9(19), 1095–1105.PubMedCrossRef Cramer, L. P. (1999). Role of actin-filament disassembly in lamellipodium protrusion in motile cells revealed using the drug jasplakinolide. Current Biology, 9(19), 1095–1105.PubMedCrossRef
398.
go back to reference Bubb, M. R., Spector, I., Beyer, B. B., & Fosen, K. M. (2000). Effects of jasplakinolide on the Kinetics of actin polymerization. An explanation for certain in vivo observations. Journal of Biological Chemistry, 275(7), 5163–5170.CrossRef Bubb, M. R., Spector, I., Beyer, B. B., & Fosen, K. M. (2000). Effects of jasplakinolide on the Kinetics of actin polymerization. An explanation for certain in vivo observations. Journal of Biological Chemistry, 275(7), 5163–5170.CrossRef
399.
go back to reference Takeuchi, H., Ara, G., Sausville, E. A., & Teicher, B. (1998). Jasplakinolide: interaction with radiation and hyperthermia in human prostate carcinoma and Lewis lung carcinoma. Cancer Chemotherapy and Pharmacology, 42(6), 491–496.PubMedCrossRef Takeuchi, H., Ara, G., Sausville, E. A., & Teicher, B. (1998). Jasplakinolide: interaction with radiation and hyperthermia in human prostate carcinoma and Lewis lung carcinoma. Cancer Chemotherapy and Pharmacology, 42(6), 491–496.PubMedCrossRef
400.
go back to reference Kunze, B., Jansen, R., Sasse, F., Höfle, G., & Reichenbach, H. (1995). Chondramides A approximately D, new antifungal and cytostatic depsipeptides from Chondromyces crocatus (myxobacteria). Production, physico-chemical and biological properties. The Journal of Antibiotics, 48(11), 1262–1266.PubMedCrossRef Kunze, B., Jansen, R., Sasse, F., Höfle, G., & Reichenbach, H. (1995). Chondramides A approximately D, new antifungal and cytostatic depsipeptides from Chondromyces crocatus (myxobacteria). Production, physico-chemical and biological properties. The Journal of Antibiotics, 48(11), 1262–1266.PubMedCrossRef
401.
go back to reference Menhofer, M. H., Kubisch, R., Schreiner, L., Zorn, M., Foerster, F., Mueller, R., et al. (2014). The actin targeting compound Chondramide inhibits breast cancer metastasis via reduction of cellular contractility. PLoS One, 9(11), e112542.PubMedPubMedCentralCrossRef Menhofer, M. H., Kubisch, R., Schreiner, L., Zorn, M., Foerster, F., Mueller, R., et al. (2014). The actin targeting compound Chondramide inhibits breast cancer metastasis via reduction of cellular contractility. PLoS One, 9(11), e112542.PubMedPubMedCentralCrossRef
402.
go back to reference Bai, R., Verdier-Pinard, P., Gangwar, S., Stessman, C. C., Mcclure, K. J., Sausville, E. A., et al. (2001). Dolastatin 11, a marine depsipeptide, arrests cells at cytokinesis and induces hyperpolymerization of purified actin. Molecular Pharmacology, 59(3), 462–469.PubMedCrossRef Bai, R., Verdier-Pinard, P., Gangwar, S., Stessman, C. C., Mcclure, K. J., Sausville, E. A., et al. (2001). Dolastatin 11, a marine depsipeptide, arrests cells at cytokinesis and induces hyperpolymerization of purified actin. Molecular Pharmacology, 59(3), 462–469.PubMedCrossRef
403.
go back to reference Marquez, B. L., Watts, K. S., Yokochi, A., Roberts, M. A., Verdier-Pinard, P., Jimenez, J. I., et al. (2002). Structure and absolute stereochemistry of hectochlorin, a potent stimulator of actin assembly. Journal of Natural Products, 65(6), 866–871.PubMedCrossRef Marquez, B. L., Watts, K. S., Yokochi, A., Roberts, M. A., Verdier-Pinard, P., Jimenez, J. I., et al. (2002). Structure and absolute stereochemistry of hectochlorin, a potent stimulator of actin assembly. Journal of Natural Products, 65(6), 866–871.PubMedCrossRef
404.
go back to reference Bai, R., Covell, D. G., Liu, C., Ghosh, A. K., & Hamel, E. (2002). (-)-Doliculide, a new macrocyclic depsipeptide enhancer of actin assembly. Journal of Biological Chemistry, 277(35), 32165–32171.CrossRef Bai, R., Covell, D. G., Liu, C., Ghosh, A. K., & Hamel, E. (2002). (-)-Doliculide, a new macrocyclic depsipeptide enhancer of actin assembly. Journal of Biological Chemistry, 277(35), 32165–32171.CrossRef
405.
go back to reference Goddette, D. W., & Frieden, C. (1985). The binding of cytochalasin D to monomeric actin. Biochemical and Biophysical Research Communications, 128(3), 1087–1092.PubMedCrossRef Goddette, D. W., & Frieden, C. (1985). The binding of cytochalasin D to monomeric actin. Biochemical and Biophysical Research Communications, 128(3), 1087–1092.PubMedCrossRef
406.
go back to reference Goddette, D. W., & Frieden, C. (1986). The kinetics of cytochalasin D binding to monomeric actin. Journal of Biological Chemistry, 261(34), 15970–15973.CrossRef Goddette, D. W., & Frieden, C. (1986). The kinetics of cytochalasin D binding to monomeric actin. Journal of Biological Chemistry, 261(34), 15970–15973.CrossRef
407.
go back to reference Goddette, D. W., & Frieden, C. (1986). Actin polymerization. The mechanism of action of cytochalasin D. Journal of Biological Chemistry, 261(34), 15974–15980.CrossRef Goddette, D. W., & Frieden, C. (1986). Actin polymerization. The mechanism of action of cytochalasin D. Journal of Biological Chemistry, 261(34), 15974–15980.CrossRef
408.
go back to reference Brenner, S. L., & Korn, E. D. (1980). The effects of cytochalasins on actin polymerization and actin ATPase provide insights into the mechanism of polymerization. Journal of Biological Chemistry, 255(3), 841–844.CrossRef Brenner, S. L., & Korn, E. D. (1980). The effects of cytochalasins on actin polymerization and actin ATPase provide insights into the mechanism of polymerization. Journal of Biological Chemistry, 255(3), 841–844.CrossRef
409.
go back to reference Brenner, S. L., & Korn, E. D. (1981). Stimulation of actin ATPase activity by cytochalasins provides evidence for a new species of monomeric actin. Journal of Biological Chemistry, 256(16), 8663–8670.CrossRef Brenner, S. L., & Korn, E. D. (1981). Stimulation of actin ATPase activity by cytochalasins provides evidence for a new species of monomeric actin. Journal of Biological Chemistry, 256(16), 8663–8670.CrossRef
410.
go back to reference Dancker, P., & Low, I. (1979). Complex influence of cytochalasin B on actin polymerization. Naturforschung Section C Journal of Biosciences, 34(7-8), 555–557.CrossRef Dancker, P., & Low, I. (1979). Complex influence of cytochalasin B on actin polymerization. Naturforschung Section C Journal of Biosciences, 34(7-8), 555–557.CrossRef
411.
go back to reference Hartwig, J. H., & Stossel, T. P. (1979). Cytochalasin B and the structure of actin gels. Journal of Molecular Biology, 134(3), 539–553.PubMedCrossRef Hartwig, J. H., & Stossel, T. P. (1979). Cytochalasin B and the structure of actin gels. Journal of Molecular Biology, 134(3), 539–553.PubMedCrossRef
412.
go back to reference Murray, D., Horgan, G., Macmathuna, P., & Doran, P. (2008). NET1-mediated RhoA activation facilitates lysophosphatidic acid-induced cell migration and invasion in gastric cancer. British Journal of Cancer, 99(8), 1322–1329.PubMedPubMedCentralCrossRef Murray, D., Horgan, G., Macmathuna, P., & Doran, P. (2008). NET1-mediated RhoA activation facilitates lysophosphatidic acid-induced cell migration and invasion in gastric cancer. British Journal of Cancer, 99(8), 1322–1329.PubMedPubMedCentralCrossRef
413.
go back to reference Sun, W., Lim, C. T., & Kurniawan, N. A. (2014). Mechanistic adaptability of cancer cells strongly affects anti-migratory drug efficacy. Journal of the Royal Society Interface, 11(99), 20140638.PubMedCentralCrossRef Sun, W., Lim, C. T., & Kurniawan, N. A. (2014). Mechanistic adaptability of cancer cells strongly affects anti-migratory drug efficacy. Journal of the Royal Society Interface, 11(99), 20140638.PubMedCentralCrossRef
414.
go back to reference Huang, F. Y., Mei, W. L., Tan, G. H., Dai, H. F., Li, Y. N., Guo, J. L., et al. (2013). Cytochalasin D promotes pulmonary metastasis of B16 melanoma through expression of tissue factor. Oncology Reports, 30(1), 478–484.PubMedCrossRef Huang, F. Y., Mei, W. L., Tan, G. H., Dai, H. F., Li, Y. N., Guo, J. L., et al. (2013). Cytochalasin D promotes pulmonary metastasis of B16 melanoma through expression of tissue factor. Oncology Reports, 30(1), 478–484.PubMedCrossRef
415.
go back to reference Singh, J., & Hood, R. D. (1987). Effects of protein deficiency on the teratogenicity of cytochalasins in mice. Teratology, 35(1), 87–93.PubMedCrossRef Singh, J., & Hood, R. D. (1987). Effects of protein deficiency on the teratogenicity of cytochalasins in mice. Teratology, 35(1), 87–93.PubMedCrossRef
416.
go back to reference Hagmar, B., & Ryd, W. (1977). Tumor cell locomotiona factor in metastasis formation? Influence of cytochalasin B on a tumor dissemination pattern. International Journal of Cancer, 19(49), 576–580.PubMedCrossRef Hagmar, B., & Ryd, W. (1977). Tumor cell locomotiona factor in metastasis formation? Influence of cytochalasin B on a tumor dissemination pattern. International Journal of Cancer, 19(49), 576–580.PubMedCrossRef
417.
go back to reference Bousquet, P. F., Paulsen, L. A., Fondy, C., Lipski, K. M., Loucy, K. J., & Fondy, T. P. (1990). Effects of cytochalasin B in culture and in vivo on murine Madison 109 lung carcinoma and on B16 melanoma. Cancer Research, 50(5), 1431–1439.PubMed Bousquet, P. F., Paulsen, L. A., Fondy, C., Lipski, K. M., Loucy, K. J., & Fondy, T. P. (1990). Effects of cytochalasin B in culture and in vivo on murine Madison 109 lung carcinoma and on B16 melanoma. Cancer Research, 50(5), 1431–1439.PubMed
418.
go back to reference Hart, I. R., Raz, A., & Fidler, I. J. (1980). Effect of cytoskeleton-disrupting agents on the metastatic behavior of melanoma cells. Journal of the National Cancer Institute, 64(4), 891–900.PubMed Hart, I. R., Raz, A., & Fidler, I. J. (1980). Effect of cytoskeleton-disrupting agents on the metastatic behavior of melanoma cells. Journal of the National Cancer Institute, 64(4), 891–900.PubMed
419.
go back to reference Bogyo, D., Fondy, S. R., Finster, L., Fondy, C., Patil, S., & Fondy, T. P. (1991). Cytochalasin-B-induced immunosuppression of murine allogeneic anti-tumor response and the effect of recombinant human interleukin-2. Cancer Immunology and Immunotherapy, 32(6), 400–405.PubMedCrossRef Bogyo, D., Fondy, S. R., Finster, L., Fondy, C., Patil, S., & Fondy, T. P. (1991). Cytochalasin-B-induced immunosuppression of murine allogeneic anti-tumor response and the effect of recombinant human interleukin-2. Cancer Immunology and Immunotherapy, 32(6), 400–405.PubMedCrossRef
420.
go back to reference Yarmola, E. G., Somasundaram, T., Boring, T. A., Spector, I., & Bubb, M. R. (2000). Actin-latrunculin A structure and function. Differential modulation of actin-binding protein function by latrunculin A. Journal of Biological Chemistry, 275(36), 28120–28127.CrossRef Yarmola, E. G., Somasundaram, T., Boring, T. A., Spector, I., & Bubb, M. R. (2000). Actin-latrunculin A structure and function. Differential modulation of actin-binding protein function by latrunculin A. Journal of Biological Chemistry, 275(36), 28120–28127.CrossRef
421.
go back to reference Coué, M., Brenner, S. L., Spector, I., & Korn, E. D. (1987). Inhibition of actin polymerization by latrunculin A. FEBS Letters, 213(2), 316–318.PubMedCrossRef Coué, M., Brenner, S. L., Spector, I., & Korn, E. D. (1987). Inhibition of actin polymerization by latrunculin A. FEBS Letters, 213(2), 316–318.PubMedCrossRef
422.
go back to reference Ayscough, K. R., Stryker, J., Pokala, N., Sanders, M., Crews, P., & Drubin, D. G. (1997). High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. Journal of Cell Biology, 137(2), 399–416.CrossRef Ayscough, K. R., Stryker, J., Pokala, N., Sanders, M., Crews, P., & Drubin, D. G. (1997). High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. Journal of Cell Biology, 137(2), 399–416.CrossRef
423.
go back to reference Spector, I., Shochet, N. R., Kashman, Y., & Groweiss, A. (1983). Latrunculins: novel marine Toxins that disrupt microfilament organization in cultured cells. Science, 219(4584), 493–495.PubMedCrossRef Spector, I., Shochet, N. R., Kashman, Y., & Groweiss, A. (1983). Latrunculins: novel marine Toxins that disrupt microfilament organization in cultured cells. Science, 219(4584), 493–495.PubMedCrossRef
424.
go back to reference Spector, I., Shochet, N. R., Blasberger, D., & Kashman, Y. (1989). Latrunculins - novel marine macrolides that disrupt microfilament organization and affect cell growth: I. Comparison With cytochalasin D. Cell Motility and the Cytoskeleton, 13(3), 127–144.PubMedCrossRef Spector, I., Shochet, N. R., Blasberger, D., & Kashman, Y. (1989). Latrunculins - novel marine macrolides that disrupt microfilament organization and affect cell growth: I. Comparison With cytochalasin D. Cell Motility and the Cytoskeleton, 13(3), 127–144.PubMedCrossRef
425.
go back to reference Ayscough, K. (1998). Use of latrunculin-A, an actin monomer binding drug. Methods in Enzymology, 298, 18–25.PubMedCrossRef Ayscough, K. (1998). Use of latrunculin-A, an actin monomer binding drug. Methods in Enzymology, 298, 18–25.PubMedCrossRef
426.
go back to reference Morton, W. M., Ayscough, K. R., & McLaughlin, P. J. (2000). Latrunculin alters the actin-monomer subunit interface to prevent polymerization. Nature Cell Biology, 2(6), 376–378.PubMedCrossRef Morton, W. M., Ayscough, K. R., & McLaughlin, P. J. (2000). Latrunculin alters the actin-monomer subunit interface to prevent polymerization. Nature Cell Biology, 2(6), 376–378.PubMedCrossRef
427.
go back to reference Nummela, P., Yin, M., Kielosto, M., Leaner, V., Birrer, M. J., & Hölttä, E. (2006). Thymosin beta4 is a determinant of the transformed phenotype and invasiveness of S-adenosylmethionine decarboxylase-transfected fibroblasts. Cancer Research, 66(2), 701–712.PubMedCrossRef Nummela, P., Yin, M., Kielosto, M., Leaner, V., Birrer, M. J., & Hölttä, E. (2006). Thymosin beta4 is a determinant of the transformed phenotype and invasiveness of S-adenosylmethionine decarboxylase-transfected fibroblasts. Cancer Research, 66(2), 701–712.PubMedCrossRef
428.
go back to reference Tolde, O., Rösel, D., Mierke, C. T., Panková, D., Folk, P., Vesely, P., et al. (2010). Neoplastic progression of the human breast cancer cell line G3S1 is associated with elevation of cytoskeletal dynamics and upregulation of MT1-MMP. International Journal of Oncology, 36(4), 833–839.PubMed Tolde, O., Rösel, D., Mierke, C. T., Panková, D., Folk, P., Vesely, P., et al. (2010). Neoplastic progression of the human breast cancer cell line G3S1 is associated with elevation of cytoskeletal dynamics and upregulation of MT1-MMP. International Journal of Oncology, 36(4), 833–839.PubMed
429.
go back to reference Amornphimoltham, P., Rechache, K., Thompson, J., Masedunskas, A., Leelahavanichkul, K., Patel, V., et al. (2013). Rab25 regulates invasion and metastasis in head and neck cancer. Clinical Cancer Research, 19(6), 1375–1388.PubMedPubMedCentralCrossRef Amornphimoltham, P., Rechache, K., Thompson, J., Masedunskas, A., Leelahavanichkul, K., Patel, V., et al. (2013). Rab25 regulates invasion and metastasis in head and neck cancer. Clinical Cancer Research, 19(6), 1375–1388.PubMedPubMedCentralCrossRef
430.
go back to reference Konishi, H., Kikuchi, S., Ochiai, T., Ikoma, H., Kubota, T., Ichikawa, D., et al. (2009). Latrunculin a has a strong anticancer effect in a peritoneal dissemination model of human gastric cancer in mice. Anticancer Research, 29(6), 2091–2097.PubMed Konishi, H., Kikuchi, S., Ochiai, T., Ikoma, H., Kubota, T., Ichikawa, D., et al. (2009). Latrunculin a has a strong anticancer effect in a peritoneal dissemination model of human gastric cancer in mice. Anticancer Research, 29(6), 2091–2097.PubMed
431.
go back to reference Khanfar, M. A., Youssef, D. T., & El Sayed, K. A. (2010). Semisynthetic latrunculin derivatives as inhibitors of metastatic breast cancer: biological evaluations, preliminary structure-activity relationship and molecular modeling studies. ChemMedChem, 5(2), 274–285.PubMedPubMedCentralCrossRef Khanfar, M. A., Youssef, D. T., & El Sayed, K. A. (2010). Semisynthetic latrunculin derivatives as inhibitors of metastatic breast cancer: biological evaluations, preliminary structure-activity relationship and molecular modeling studies. ChemMedChem, 5(2), 274–285.PubMedPubMedCentralCrossRef
432.
go back to reference Sayed, K. A., Khanfar, M. A., Shallal, H. M., Muralidharan, A., Awate, B., Youssef, D. T. A., et al. (2008). Latrunculin A and its C-17-O-carbamates inhibit prostate tumor cell invasion and HIF-1 activation in breast tumor cells. Journal of Natural Products, 71(3), 396–402.PubMedPubMedCentralCrossRef Sayed, K. A., Khanfar, M. A., Shallal, H. M., Muralidharan, A., Awate, B., Youssef, D. T. A., et al. (2008). Latrunculin A and its C-17-O-carbamates inhibit prostate tumor cell invasion and HIF-1 activation in breast tumor cells. Journal of Natural Products, 71(3), 396–402.PubMedPubMedCentralCrossRef
433.
go back to reference Kitigawa, I., Kobayashi, M., Katori, T., & Yamashita, M. (1990). Absolute stereostructure of swinholide A, a potent cytotoxic macrolide, from the Okinawan marine sponge Theonella swinhoei. Journal of the American Chemical Society, 112(9), 3710–3712.CrossRef Kitigawa, I., Kobayashi, M., Katori, T., & Yamashita, M. (1990). Absolute stereostructure of swinholide A, a potent cytotoxic macrolide, from the Okinawan marine sponge Theonella swinhoei. Journal of the American Chemical Society, 112(9), 3710–3712.CrossRef
434.
go back to reference Bubb, M. R., Spector, I., Bershadsky, A. D., & Korn, E. D. (1995). Swinholide A is a microfilament disrupting marine toxin that stabilizes actin dimers and severs actin filaments. Journal of Biological Chemistry, 270(8), 3463–3466.CrossRef Bubb, M. R., Spector, I., Bershadsky, A. D., & Korn, E. D. (1995). Swinholide A is a microfilament disrupting marine toxin that stabilizes actin dimers and severs actin filaments. Journal of Biological Chemistry, 270(8), 3463–3466.CrossRef
435.
go back to reference Saito, S. Y., Watabe, S., Ozaki, H., Kobayashi, M., Suzuki, T., Kobayashi, H., et al. (1998). Actin depolymerising effect of dimeric macrolides, bistheonellide A and swinholide A. Journal of Biochemistry, 123(4), 571–578.PubMedCrossRef Saito, S. Y., Watabe, S., Ozaki, H., Kobayashi, M., Suzuki, T., Kobayashi, H., et al. (1998). Actin depolymerising effect of dimeric macrolides, bistheonellide A and swinholide A. Journal of Biochemistry, 123(4), 571–578.PubMedCrossRef
436.
go back to reference Sakai, R., Higa, T., & Kashman, Y. (1986). (1986). Misakinolide-A, anantitumor macrolide from the marine sponge Theonella sp. Chem. Lett., 15(9), 1499–1415.CrossRef Sakai, R., Higa, T., & Kashman, Y. (1986). (1986). Misakinolide-A, anantitumor macrolide from the marine sponge Theonella sp. Chem. Lett., 15(9), 1499–1415.CrossRef
437.
go back to reference Terry, D. R., Spector, I., Higa, T., & Bubb, M. R. (1997). Misakinolide A is a marine macrolide that caps but does not sever filamentous actin. Journal of Biological Chemistry, 272(12), 7841–7845.CrossRef Terry, D. R., Spector, I., Higa, T., & Bubb, M. R. (1997). Misakinolide A is a marine macrolide that caps but does not sever filamentous actin. Journal of Biological Chemistry, 272(12), 7841–7845.CrossRef
438.
go back to reference Smith, C. D., Carmeli, S., Moore, R. E., & Patterson, G. M. (1993). Scytophycins, novel microfilament-depolymerizing agents which circumvent P-glycoprotein-mediated multidrug resistance. Cancer Research, 53(6), 1343–1347.PubMed Smith, C. D., Carmeli, S., Moore, R. E., & Patterson, G. M. (1993). Scytophycins, novel microfilament-depolymerizing agents which circumvent P-glycoprotein-mediated multidrug resistance. Cancer Research, 53(6), 1343–1347.PubMed
439.
go back to reference Fusetani, N., Yasumuro, K., Matsunaga, S., & Hashimoto, K. (1989). Mycalolides-A-C, hybrid macrolides of Ulapualides and Halichondramide from a sponde of the genus Mycale. Tetrahedron Letters, 30(21), 2809–2812.CrossRef Fusetani, N., Yasumuro, K., Matsunaga, S., & Hashimoto, K. (1989). Mycalolides-A-C, hybrid macrolides of Ulapualides and Halichondramide from a sponde of the genus Mycale. Tetrahedron Letters, 30(21), 2809–2812.CrossRef
440.
go back to reference Saito, S., Watabe, S., Ozaki, H., Fusetani, N., & Karaki, H. (1994). Mycalolide B, a novel actin depolymerizing agent. Journal of Biological Chemistry, 269(47), 29710–29714.CrossRef Saito, S., Watabe, S., Ozaki, H., Fusetani, N., & Karaki, H. (1994). Mycalolide B, a novel actin depolymerizing agent. Journal of Biological Chemistry, 269(47), 29710–29714.CrossRef
441.
go back to reference Saito, S., & Karaki, H. (1996). A family of novel actin-inhibiting marine toxins. Clinical Experimental Pharmacology and Physiology, 23(8), 743–746.CrossRef Saito, S., & Karaki, H. (1996). A family of novel actin-inhibiting marine toxins. Clinical Experimental Pharmacology and Physiology, 23(8), 743–746.CrossRef
442.
go back to reference Wada, S., Matsunaga, S., Saito, S., Fusetani, N., & Watabe, S. (1998). Actin-binding specificity of marine macrolide toxins,mycalolide B and kabiramide D. Journal of Biochemistry, 123(5), 946–952.PubMedCrossRef Wada, S., Matsunaga, S., Saito, S., Fusetani, N., & Watabe, S. (1998). Actin-binding specificity of marine macrolide toxins,mycalolide B and kabiramide D. Journal of Biochemistry, 123(5), 946–952.PubMedCrossRef
443.
go back to reference Straight, A. F. (2003). Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor. Science, 299(5613), 1743–1747.PubMedCrossRef Straight, A. F. (2003). Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor. Science, 299(5613), 1743–1747.PubMedCrossRef
444.
go back to reference Allingham, J. S., Smith, R., & Rayment, I. (2005). The structural basis of blebbistatin inhibition and specificity for myosin II. Nature Structural & Molecular Biology, 12(4), 378–379.CrossRef Allingham, J. S., Smith, R., & Rayment, I. (2005). The structural basis of blebbistatin inhibition and specificity for myosin II. Nature Structural & Molecular Biology, 12(4), 378–379.CrossRef
445.
go back to reference Coureux, P. D., Wells, A. L., Ménétrey, J., Csizmadia, A., & Sellers, J. R. (2004). Mechanism of blebbistatin inhibition of myosin II. Journal of Biological Chemistry, 279(34), 35557–35563.CrossRef Coureux, P. D., Wells, A. L., Ménétrey, J., Csizmadia, A., & Sellers, J. R. (2004). Mechanism of blebbistatin inhibition of myosin II. Journal of Biological Chemistry, 279(34), 35557–35563.CrossRef
446.
go back to reference Ramamurthy, B., Yengo, C. M., Straight, A. F., Mitchison, T. J., & Sweeney, H. L. (2004). Kinetic mechanism of blebbistatin inhibition of nonmuscle myosin IIb. Biochemistry, 43(46), 14832–14839.PubMedCrossRef Ramamurthy, B., Yengo, C. M., Straight, A. F., Mitchison, T. J., & Sweeney, H. L. (2004). Kinetic mechanism of blebbistatin inhibition of nonmuscle myosin IIb. Biochemistry, 43(46), 14832–14839.PubMedCrossRef
447.
go back to reference Limouze, J., Straight, A. F., Mitchison, T., & Sellers, J. R. (2004). Specificity of blebbistatin, an inhibitor of myosin II. Journal of Muscle Research and Cellular Motility, 25(4–5), 337–334.CrossRef Limouze, J., Straight, A. F., Mitchison, T., & Sellers, J. R. (2004). Specificity of blebbistatin, an inhibitor of myosin II. Journal of Muscle Research and Cellular Motility, 25(4–5), 337–334.CrossRef
448.
go back to reference Kolega, J. (2004). Phototoxicity and photoinactivation of blebbistatin in UV and visible light. Biochemical and Biophysical Research Communictaions, 320(3), 1020–1025.CrossRef Kolega, J. (2004). Phototoxicity and photoinactivation of blebbistatin in UV and visible light. Biochemical and Biophysical Research Communictaions, 320(3), 1020–1025.CrossRef
449.
go back to reference Gavin, C. F., Rubio, M. D., Young, E., Miller, C., & Rumbaugh, G. (2012). Myosin II motor activity in the lateral amygdala is required for fear memory consolidation. Learning & Memory, 19(1), 9–14.CrossRef Gavin, C. F., Rubio, M. D., Young, E., Miller, C., & Rumbaugh, G. (2012). Myosin II motor activity in the lateral amygdala is required for fear memory consolidation. Learning & Memory, 19(1), 9–14.CrossRef
450.
go back to reference Moore, C. C., Lakner, A. M., Yengo, C. M., & Schrum, L. W. (2011). Nonmuscle myosin II regulates migration but not contraction in rat hepatic stellate cells. World Journal of Hepatology, 3(7), 184–197.PubMedPubMedCentralCrossRef Moore, C. C., Lakner, A. M., Yengo, C. M., & Schrum, L. W. (2011). Nonmuscle myosin II regulates migration but not contraction in rat hepatic stellate cells. World Journal of Hepatology, 3(7), 184–197.PubMedPubMedCentralCrossRef
451.
go back to reference Kim, J. H., Wang, A., Conti, M. A., & Adelstein, R. S. (2012). Nonmuscle myosin II is required for internalization of the epidermal growth factor receptor and modulation of downstream signaling. Journal of Biological Chemistry, 287(33), 27345–27358.CrossRef Kim, J. H., Wang, A., Conti, M. A., & Adelstein, R. S. (2012). Nonmuscle myosin II is required for internalization of the epidermal growth factor receptor and modulation of downstream signaling. Journal of Biological Chemistry, 287(33), 27345–27358.CrossRef
452.
go back to reference Perry, C. G., Kane, D. A., Lin, C. T., Kozy, R., Cathey, B. L., & Lark, D. S. (2011). Inhibiting myosin-ATPase reveals a dynamic range of mitochondrial respiratory control in skeletal muscle. Biochemical Journal, 437(2), 215–222.CrossRef Perry, C. G., Kane, D. A., Lin, C. T., Kozy, R., Cathey, B. L., & Lark, D. S. (2011). Inhibiting myosin-ATPase reveals a dynamic range of mitochondrial respiratory control in skeletal muscle. Biochemical Journal, 437(2), 215–222.CrossRef
453.
go back to reference Matsui, Y., Nakayama, Y., Okamoto, M., Fukumoto, Y., & Yamaguchi, N. (2012). Enrichment of cell populations in metaphase, anaphase, and telophase by synchronization using nocodazole and blebbistatin: a novel method suitable for examining dynamic changes in proteins during mitotic progression. Europena Journal of Cell Biology, 91(5), 413–419.CrossRef Matsui, Y., Nakayama, Y., Okamoto, M., Fukumoto, Y., & Yamaguchi, N. (2012). Enrichment of cell populations in metaphase, anaphase, and telophase by synchronization using nocodazole and blebbistatin: a novel method suitable for examining dynamic changes in proteins during mitotic progression. Europena Journal of Cell Biology, 91(5), 413–419.CrossRef
454.
go back to reference Duxbury, M. S., Ashley, S. W., & Whang, E. E. (2004). Inhibition of pancreatic adenocarcinoma cellularinvasiveness by blebbistatin: a novelmyosin II inhibitor. Biochemical and Biophysical Research Communications, 313(4), 992–997.PubMedCrossRef Duxbury, M. S., Ashley, S. W., & Whang, E. E. (2004). Inhibition of pancreatic adenocarcinoma cellularinvasiveness by blebbistatin: a novelmyosin II inhibitor. Biochemical and Biophysical Research Communications, 313(4), 992–997.PubMedCrossRef
455.
go back to reference Wilkinson, S., Paterson, H. F., & Marshall, C. J. (2005). Cdc42-MRCK and Rho-ROCK signalling cooperate in myosin phosphorylation and cell invasion. Nature Cell Biology, 7(3), 255–261.PubMedCrossRef Wilkinson, S., Paterson, H. F., & Marshall, C. J. (2005). Cdc42-MRCK and Rho-ROCK signalling cooperate in myosin phosphorylation and cell invasion. Nature Cell Biology, 7(3), 255–261.PubMedCrossRef
456.
go back to reference Derycke, L., Stove, C., Vercoutter-Edouart, A. S., De Wever, O., Dollé, L., & Colpaert, N. (2011). The role of non-muscle myosin IIA in aggregation and invasion of human MCF-7 breast cancer cells. International Journal of Developmental Biology, 55(7-9), 835–840.CrossRef Derycke, L., Stove, C., Vercoutter-Edouart, A. S., De Wever, O., Dollé, L., & Colpaert, N. (2011). The role of non-muscle myosin IIA in aggregation and invasion of human MCF-7 breast cancer cells. International Journal of Developmental Biology, 55(7-9), 835–840.CrossRef
457.
go back to reference Kim, J. H., & Adelstein, R. S. (2011). LPA(1)-induced migration requires non muscle myosin II light chain phosphorylation in breast cancer cells. Journal of Cellular Physiology, 226(11), 2881–2893.PubMedPubMedCentralCrossRef Kim, J. H., & Adelstein, R. S. (2011). LPA(1)-induced migration requires non muscle myosin II light chain phosphorylation in breast cancer cells. Journal of Cellular Physiology, 226(11), 2881–2893.PubMedPubMedCentralCrossRef
458.
go back to reference Arozarena, I., Sanchez-Laorden, B., Packer, L., Hidalgo-Carcedo, C., Hayward, R., Viros, A., et al. (2011). Oncogenic BRAF induces melanoma cell invasion by downregulating the cGMP-specific phosphodiesterase PDE5A. Cancer Cell, 19(1), 45–57.PubMedCrossRef Arozarena, I., Sanchez-Laorden, B., Packer, L., Hidalgo-Carcedo, C., Hayward, R., Viros, A., et al. (2011). Oncogenic BRAF induces melanoma cell invasion by downregulating the cGMP-specific phosphodiesterase PDE5A. Cancer Cell, 19(1), 45–57.PubMedCrossRef
459.
go back to reference Kosla, J., Paňková, D., Plachý, J., Tolde, O., Bicanová, K., Dvořák, M., et al. (2013). Metastasis of aggressive amoeboid sarcoma cells is dependent on Rho/ROCK/MLC signaling. Cell Communication and Signaling, 11, 51.PubMedPubMedCentralCrossRef Kosla, J., Paňková, D., Plachý, J., Tolde, O., Bicanová, K., Dvořák, M., et al. (2013). Metastasis of aggressive amoeboid sarcoma cells is dependent on Rho/ROCK/MLC signaling. Cell Communication and Signaling, 11, 51.PubMedPubMedCentralCrossRef
460.
go back to reference Seifert, S., & Sontheimer, H. (2014). Bradykinin enhances invasion of malignant glioma into the brain parenchyma by inducing cells to undergo amoeboid migration. Journal of Physiology, 592(22), 5109–5127.CrossRef Seifert, S., & Sontheimer, H. (2014). Bradykinin enhances invasion of malignant glioma into the brain parenchyma by inducing cells to undergo amoeboid migration. Journal of Physiology, 592(22), 5109–5127.CrossRef
461.
go back to reference Cheung, A., Dantzig, J. A., Hollingworth, S., Baylor, S. M., Goldman, Y. E., & Mitchison, T. J. (2002). A small-molecule inhibitor of skeletal muscle myosin II. Nature Cell Biology, 4(1), 83–88.PubMedCrossRef Cheung, A., Dantzig, J. A., Hollingworth, S., Baylor, S. M., Goldman, Y. E., & Mitchison, T. J. (2002). A small-molecule inhibitor of skeletal muscle myosin II. Nature Cell Biology, 4(1), 83–88.PubMedCrossRef
462.
go back to reference Herrmann, C., Wray, J., Travers, F., & Barman, T. (1992). Effect of 2,3-Butanedione monoxime on myosin and myofibrillar ATPases. An example of an uncompetitive inhibitor. Biochemistry, 31(48), 12227–12232.PubMedCrossRef Herrmann, C., Wray, J., Travers, F., & Barman, T. (1992). Effect of 2,3-Butanedione monoxime on myosin and myofibrillar ATPases. An example of an uncompetitive inhibitor. Biochemistry, 31(48), 12227–12232.PubMedCrossRef
463.
go back to reference Dou, Y., Andersson-Lendahl, M., & Arner, A. (2008). Structure and function of skeletal muscle in zebrafish early larvae. Journal of General Physiology, 131(5), 445–453.CrossRef Dou, Y., Andersson-Lendahl, M., & Arner, A. (2008). Structure and function of skeletal muscle in zebrafish early larvae. Journal of General Physiology, 131(5), 445–453.CrossRef
464.
go back to reference Sellin, L. C., & McArdle, J. J. (1994). Multiple effects of 2,3-Butanedione monoxime. Pharmacology and Toxicology, 74(6), 305–313.PubMedCrossRef Sellin, L. C., & McArdle, J. J. (1994). Multiple effects of 2,3-Butanedione monoxime. Pharmacology and Toxicology, 74(6), 305–313.PubMedCrossRef
465.
go back to reference Stapleton, M. T., Fuchsbauer, C. M., & Allshire, A. P. (1998). BDM drives protein dephosphorylation and inhibits adenine nucleotide exchange in cardiomyocytes. American Journal of Physiology, 275((4) Pt 2), H1260–H1266. Stapleton, M. T., Fuchsbauer, C. M., & Allshire, A. P. (1998). BDM drives protein dephosphorylation and inhibits adenine nucleotide exchange in cardiomyocytes. American Journal of Physiology, 275((4) Pt 2), H1260–H1266.
466.
go back to reference Wu, X., Sun, Z., Foskett, A., Trzeciakowski, J. P., Meininger, G. A., & Muthuchamy, M. (2010). Cardiomyocyte contractile status is associated with differences in fibronectin and integrin interactions. American Journal Physiology Heart and Circulatory Physiology, 298(6), H2071–H2081.CrossRef Wu, X., Sun, Z., Foskett, A., Trzeciakowski, J. P., Meininger, G. A., & Muthuchamy, M. (2010). Cardiomyocyte contractile status is associated with differences in fibronectin and integrin interactions. American Journal Physiology Heart and Circulatory Physiology, 298(6), H2071–H2081.CrossRef
467.
go back to reference Thum, T., & Borlak, J. (2001). Butanedione monoxime cardiomyocytes in primary cultures. Cardiovascular Toxicology, 1(1), 61–72.PubMedCrossRef Thum, T., & Borlak, J. (2001). Butanedione monoxime cardiomyocytes in primary cultures. Cardiovascular Toxicology, 1(1), 61–72.PubMedCrossRef
468.
go back to reference Kabaeva, Z., Zhao, M., & Michele, D. E. (2008). Blebbistatin extends culture life of adult mouse cardiac myocytes and allows efficient and stable transgene expression. American Journal Physiology Heart and Circulatory Physiology, 294(4), H1667–H1674.CrossRef Kabaeva, Z., Zhao, M., & Michele, D. E. (2008). Blebbistatin extends culture life of adult mouse cardiac myocytes and allows efficient and stable transgene expression. American Journal Physiology Heart and Circulatory Physiology, 294(4), H1667–H1674.CrossRef
469.
go back to reference Pisarenko, O. I., Shul’zhenko, V. S., & Studneva, I. M. (2009). The effect of myosin ATPase inhibition on metabolic and functional recovery of isolated rat heart after global ischemia. Biomeditsinskaya Khimiya, 55(4), 451–461. Pisarenko, O. I., Shul’zhenko, V. S., & Studneva, I. M. (2009). The effect of myosin ATPase inhibition on metabolic and functional recovery of isolated rat heart after global ischemia. Biomeditsinskaya Khimiya, 55(4), 451–461.
470.
go back to reference Thum, T., & Borlak, J. (2001). Reprogramming of gene expression in cultured cardiomyocytes and in explanted hearts by the myosin ATPase inhibitor Butanedione monoxime. Transplantation, 71(4), 543–552.PubMedCrossRef Thum, T., & Borlak, J. (2001). Reprogramming of gene expression in cultured cardiomyocytes and in explanted hearts by the myosin ATPase inhibitor Butanedione monoxime. Transplantation, 71(4), 543–552.PubMedCrossRef
471.
go back to reference Chinthalapudi, K., Taft, M. H., Martin, R., Heissler, S. M., Preller, M., Hartmann, F. K., et al. (2011). Mechanism and specificity of pentachloropseudilin-mediated inhibition of myosin motor activity. Journal of Biological Chemistry, 286(34), 29700–29708.CrossRef Chinthalapudi, K., Taft, M. H., Martin, R., Heissler, S. M., Preller, M., Hartmann, F. K., et al. (2011). Mechanism and specificity of pentachloropseudilin-mediated inhibition of myosin motor activity. Journal of Biological Chemistry, 286(34), 29700–29708.CrossRef
472.
go back to reference Preller, M., Chinthalapudi, K., & Martin, R. (1966). Production of a pyrrole antibiotic by a marine bacterium. Applied Microbiology, 14(4), 649–653.CrossRef Preller, M., Chinthalapudi, K., & Martin, R. (1966). Production of a pyrrole antibiotic by a marine bacterium. Applied Microbiology, 14(4), 649–653.CrossRef
473.
go back to reference Martin, R., Jäger, A., Böhl, M., et al. (2009). Total synthesis of pentabromo- and pentachloropseudilin, and synthetic analogues–allosteric inhibitors of myosin ATPase. Angewandte Chemie International, 48(43), 8042–8046.CrossRef Martin, R., Jäger, A., Böhl, M., et al. (2009). Total synthesis of pentabromo- and pentachloropseudilin, and synthetic analogues–allosteric inhibitors of myosin ATPase. Angewandte Chemie International, 48(43), 8042–8046.CrossRef
474.
go back to reference Heissler, S. M., Selvadurai, J., Bond, L. M., Fedorov, R., Kendrick-Jones, J., Buss, F., et al. (2012). Kinetic properties and small-molecule inhibition of human myosin VI. FEBS Letters, 586(19), 3208–3214.PubMedPubMedCentralCrossRef Heissler, S. M., Selvadurai, J., Bond, L. M., Fedorov, R., Kendrick-Jones, J., Buss, F., et al. (2012). Kinetic properties and small-molecule inhibition of human myosin VI. FEBS Letters, 586(19), 3208–3214.PubMedPubMedCentralCrossRef
475.
go back to reference Coombes, J. D., Schevzov, G., Kan, C. Y., Petti, C., Maritz, M. F., Whittaker, S., et al. (2015). Ras transformation overrides a proliferation defect induced by Tpm3.1 knockout. Cellular and Molecular Biology Letters, 20(4), 626–646.PubMedCrossRef Coombes, J. D., Schevzov, G., Kan, C. Y., Petti, C., Maritz, M. F., Whittaker, S., et al. (2015). Ras transformation overrides a proliferation defect induced by Tpm3.1 knockout. Cellular and Molecular Biology Letters, 20(4), 626–646.PubMedCrossRef
476.
go back to reference Kee, A. J., Chagan, J., Chan, J. Y., Bryce, N. S., Lucas, C. A., Zeng, J., et al. (2018). On-target action of anti tropomyosin drugs regulates glucose metabolism. Science Reports, 8(1), 4604.CrossRef Kee, A. J., Chagan, J., Chan, J. Y., Bryce, N. S., Lucas, C. A., Zeng, J., et al. (2018). On-target action of anti tropomyosin drugs regulates glucose metabolism. Science Reports, 8(1), 4604.CrossRef
477.
go back to reference Bonello, T. T., Janco, M., Hook, J., Byun, A., Appaduray, M., Dedova, I., et al. (2016). A small molecule inhibitor of tropomyosin dissociates actin binding from tropomyosin-directed regulation of actin dynamics. Science Reports, 25(6), 19816.CrossRef Bonello, T. T., Janco, M., Hook, J., Byun, A., Appaduray, M., Dedova, I., et al. (2016). A small molecule inhibitor of tropomyosin dissociates actin binding from tropomyosin-directed regulation of actin dynamics. Science Reports, 25(6), 19816.CrossRef
478.
go back to reference Arous, C., & Halban, P. A. (2015). The skeleton in the closet: actin cytoskeletal remodeling in β-cell function. American Journal of Physiology, Endocrinology and Metabolism, 309(7), E611–E620.PubMedCrossRef Arous, C., & Halban, P. A. (2015). The skeleton in the closet: actin cytoskeletal remodeling in β-cell function. American Journal of Physiology, Endocrinology and Metabolism, 309(7), E611–E620.PubMedCrossRef
479.
go back to reference Klip, A., Sun, Y., Chiu, T. T., & Foley, K. P. (2014). Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation. American Journal of Physiology, Endocrinology and Metabolism, 306(10), C879–C886. Klip, A., Sun, Y., Chiu, T. T., & Foley, K. P. (2014). Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation. American Journal of Physiology, Endocrinology and Metabolism, 306(10), C879–C886.
480.
go back to reference Uehata, M., Ishizaki, T., Satoh, H., Ono, T., Kawahara, T., Morishita, T., et al. (1997). Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature, 389(6654), 990–994.PubMedCrossRef Uehata, M., Ishizaki, T., Satoh, H., Ono, T., Kawahara, T., Morishita, T., et al. (1997). Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature, 389(6654), 990–994.PubMedCrossRef
481.
go back to reference Itoh, K., Yoshioka, K., Akedo, H., Uehata, M., Ishizaki, T., & Narumiya, S. (1999). An essential part for Rho-associated kinase in the transcellular invasion of tumor cells. Nature Medicine, 5(2), 221–225.PubMedCrossRef Itoh, K., Yoshioka, K., Akedo, H., Uehata, M., Ishizaki, T., & Narumiya, S. (1999). An essential part for Rho-associated kinase in the transcellular invasion of tumor cells. Nature Medicine, 5(2), 221–225.PubMedCrossRef
482.
go back to reference Takamura, M., Sakamoto, M., Genda, T., Ichida, T., Asakura, H., & Hirohashi, S. (2001). Inhibition of intrahepatic metastasis of human hepatocellular carcinoma by Rho-associated protein kinase inhibitor Y-27632. Hepatology, 33(3), 577–581.PubMedCrossRef Takamura, M., Sakamoto, M., Genda, T., Ichida, T., Asakura, H., & Hirohashi, S. (2001). Inhibition of intrahepatic metastasis of human hepatocellular carcinoma by Rho-associated protein kinase inhibitor Y-27632. Hepatology, 33(3), 577–581.PubMedCrossRef
483.
go back to reference Matsubara, M., & Bissell, M. J. (2016). Inhibitors of Rho kinase (ROCK) signaling revert the malignant phenotype of breast cancer cells in 3D context. Oncotarget, 7(22), 31602–31622.PubMedPubMedCentralCrossRef Matsubara, M., & Bissell, M. J. (2016). Inhibitors of Rho kinase (ROCK) signaling revert the malignant phenotype of breast cancer cells in 3D context. Oncotarget, 7(22), 31602–31622.PubMedPubMedCentralCrossRef
484.
go back to reference Sahai, E., & Marshall, C. J. (2003). Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nature Cell Biolgy, 5(8), 711–719.CrossRef Sahai, E., & Marshall, C. J. (2003). Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nature Cell Biolgy, 5(8), 711–719.CrossRef
485.
go back to reference Saurin, J. C., Fallavier, M., Sordat, B., Gevrey, J. C., Chayvialle, J. A., & Abello, J. (2002). Bombesin stimulates invasion and migration of Isreco1 colon carcinoma cells in a Rho-dependent manner. Cancer research, 62(16), 4829–4835.PubMed Saurin, J. C., Fallavier, M., Sordat, B., Gevrey, J. C., Chayvialle, J. A., & Abello, J. (2002). Bombesin stimulates invasion and migration of Isreco1 colon carcinoma cells in a Rho-dependent manner. Cancer research, 62(16), 4829–4835.PubMed
486.
go back to reference Wang, D. S., Dou, K. F., Li, K. Z., & Song, Z. S. (2004). Enhancement of migration and invasion of hepatoma cells via a Rho GTPase signaling pathway. World journal of gastroenterology, 10(2), 299–302.PubMedPubMedCentralCrossRef Wang, D. S., Dou, K. F., Li, K. Z., & Song, Z. S. (2004). Enhancement of migration and invasion of hepatoma cells via a Rho GTPase signaling pathway. World journal of gastroenterology, 10(2), 299–302.PubMedPubMedCentralCrossRef
487.
go back to reference Jeong, K. J., Park, S. Y., Cho, K. H., Sohn, J. S., Lee, J., Kim, Y. K., et al. (2019). The Rho/ROCK pathway for lysophosphatidic acid-induced proteolytic enzyme expression and ovarian cancer cell invasion. Oncogene, 38(25), 5108–5110.PubMedCrossRef Jeong, K. J., Park, S. Y., Cho, K. H., Sohn, J. S., Lee, J., Kim, Y. K., et al. (2019). The Rho/ROCK pathway for lysophosphatidic acid-induced proteolytic enzyme expression and ovarian cancer cell invasion. Oncogene, 38(25), 5108–5110.PubMedCrossRef
488.
go back to reference Lawler, K., Foran, E., O'Sullivan, G., Long, A., & Kenny, D. (2006). Mobility and invasiveness of metastatic esophageal cancer are potentiated by shear stress in a ROCK- and Ras-dependent manner. American journal of physiology. Cell physiology, 291(4), C668–C677.PubMedCrossRef Lawler, K., Foran, E., O'Sullivan, G., Long, A., & Kenny, D. (2006). Mobility and invasiveness of metastatic esophageal cancer are potentiated by shear stress in a ROCK- and Ras-dependent manner. American journal of physiology. Cell physiology, 291(4), C668–C677.PubMedCrossRef
489.
go back to reference Hakuma, N., Kinoshita, I., Shimizu, Y., Yamazaki, K., Yoshida, K., Nishimura, M., & Dosaka-Akita, H. (2005). E1AF/PEA3 activates the Rho/Rho-associated kinase pathway to increase the malignancy potential of non-small-cell lung cancer cells. Cancer research, 65(23), 10776–10782.PubMedCrossRef Hakuma, N., Kinoshita, I., Shimizu, Y., Yamazaki, K., Yoshida, K., Nishimura, M., & Dosaka-Akita, H. (2005). E1AF/PEA3 activates the Rho/Rho-associated kinase pathway to increase the malignancy potential of non-small-cell lung cancer cells. Cancer research, 65(23), 10776–10782.PubMedCrossRef
490.
go back to reference Routhier, A., Astuccio, M., Lahey, D., Monfredo, N., Johnson, A., Callahan, W., et al. (2010). Pharmacological inhibition of Rho-kinase signaling with Y-27632 blocks melanoma tumor growth. Oncology reports, 23(3), 861–867.PubMed Routhier, A., Astuccio, M., Lahey, D., Monfredo, N., Johnson, A., Callahan, W., et al. (2010). Pharmacological inhibition of Rho-kinase signaling with Y-27632 blocks melanoma tumor growth. Oncology reports, 23(3), 861–867.PubMed
491.
go back to reference Zhong, W. B., Liang, Y. C., Wang, C. Y., Chang, T. C., & Lee, & W.S. (2005). Lovastatin suppresses invasiveness of anaplastic thyroid cancer cells by inhibiting Rho geranylgeranylation and RhoA/ROCK signaling. Endocrine-related cancer, 12(3), 615–629.PubMedCrossRef Zhong, W. B., Liang, Y. C., Wang, C. Y., Chang, T. C., & Lee, & W.S. (2005). Lovastatin suppresses invasiveness of anaplastic thyroid cancer cells by inhibiting Rho geranylgeranylation and RhoA/ROCK signaling. Endocrine-related cancer, 12(3), 615–629.PubMedCrossRef
492.
493.
go back to reference Wang, J., Liu, X. H., Yang, Z. J., Xie, B., & Zhong, Y. S. (2014). The effect of ROCK-1 activity change on the adhesive and invasive ability of Y79 retinoblastoma cells. BMC cancer, 14, 89.PubMedPubMedCentralCrossRef Wang, J., Liu, X. H., Yang, Z. J., Xie, B., & Zhong, Y. S. (2014). The effect of ROCK-1 activity change on the adhesive and invasive ability of Y79 retinoblastoma cells. BMC cancer, 14, 89.PubMedPubMedCentralCrossRef
494.
go back to reference Wang, Z. M., Yang, D. S., Liu, J., Liu, H. B., Ye, M., & Zhang, Y. F. (2016). ROCK inhibitor Y-27632 inhibits the growth, migration, and invasion of Tca8113 and CAL-27 cells in tongue squamous cell carcinoma. Tumour biology, 37(3), 3757–3764.PubMedCrossRef Wang, Z. M., Yang, D. S., Liu, J., Liu, H. B., Ye, M., & Zhang, Y. F. (2016). ROCK inhibitor Y-27632 inhibits the growth, migration, and invasion of Tca8113 and CAL-27 cells in tongue squamous cell carcinoma. Tumour biology, 37(3), 3757–3764.PubMedCrossRef
495.
go back to reference Zhao, M., Xu, H., He, X., Hua, H., Luo, Y., & Zuo, L. (2013). Expression of serum response factor in gastric carcinoma and its molecular mechanisms involved in the regulation of the invasion and migration of SGC-7901 cells. Cancer biotherapy & radiopharmaceuticals, 28(2), 146–152.CrossRef Zhao, M., Xu, H., He, X., Hua, H., Luo, Y., & Zuo, L. (2013). Expression of serum response factor in gastric carcinoma and its molecular mechanisms involved in the regulation of the invasion and migration of SGC-7901 cells. Cancer biotherapy & radiopharmaceuticals, 28(2), 146–152.CrossRef
496.
go back to reference de Toledo, M., Anguille, C., Roger, L., Roux, P., & Gadea, G. (2012). Cooperative anti-invasive effect of Cdc42/Rac1 activation and ROCK inhibition in SW620 colorectal cancer cells with elevated blebbing activity. PloS one, 7(11), e48344.PubMedPubMedCentralCrossRef de Toledo, M., Anguille, C., Roger, L., Roux, P., & Gadea, G. (2012). Cooperative anti-invasive effect of Cdc42/Rac1 activation and ROCK inhibition in SW620 colorectal cancer cells with elevated blebbing activity. PloS one, 7(11), e48344.PubMedPubMedCentralCrossRef
497.
go back to reference Zhang, L. L., Liu, J., Lei, S., Zhang, J., Zhou, W., & Yu, H. G. (2014). PTEN inhibits the invasion and metastasis of gastric cancer via downregulation of FAK expression. Cellular signalling, 26(5), 1011–1020.PubMedCrossRef Zhang, L. L., Liu, J., Lei, S., Zhang, J., Zhou, W., & Yu, H. G. (2014). PTEN inhibits the invasion and metastasis of gastric cancer via downregulation of FAK expression. Cellular signalling, 26(5), 1011–1020.PubMedCrossRef
498.
go back to reference Somlyo, A. V., Bradshaw, D., Ramos, S., Murphy, C., Myers, C. E., & Somlyo, A. P. (2000). Rho-kinase inhibitor retards migration and in vivo dissemination of human prostate cancer cells. Biochemical and biophysical research communications, 269(3), 652–659.PubMedCrossRef Somlyo, A. V., Bradshaw, D., Ramos, S., Murphy, C., Myers, C. E., & Somlyo, A. P. (2000). Rho-kinase inhibitor retards migration and in vivo dissemination of human prostate cancer cells. Biochemical and biophysical research communications, 269(3), 652–659.PubMedCrossRef
499.
go back to reference Xue, F., Takahara, T., Yata, Y., Xia, Q., Nonome, K., Shinno, E., et al. (2008). Blockade of Rho/Rho-associated coiled coil-forming kinase signaling can prevent progression of hepatocellular carcinoma in matrix metalloproteinase-dependent manner. Hepatology research : the official journal of the Japan Society of Hepatology, 38(8), 810–817.CrossRef Xue, F., Takahara, T., Yata, Y., Xia, Q., Nonome, K., Shinno, E., et al. (2008). Blockade of Rho/Rho-associated coiled coil-forming kinase signaling can prevent progression of hepatocellular carcinoma in matrix metalloproteinase-dependent manner. Hepatology research : the official journal of the Japan Society of Hepatology, 38(8), 810–817.CrossRef
500.
go back to reference Voorneveld, P. W., Kodach, L. L., Jacobs, R. J., Liv, N., Zonnevylle, A. C., Hoogenboom, J. P., et al. (2014). Loss of SMAD4 alters BMP signaling to promote colorectal cancer cell metastasis via activation of Rho and ROCK. Gastroenterology, 147(1), 196–208.e13.PubMedCrossRef Voorneveld, P. W., Kodach, L. L., Jacobs, R. J., Liv, N., Zonnevylle, A. C., Hoogenboom, J. P., et al. (2014). Loss of SMAD4 alters BMP signaling to promote colorectal cancer cell metastasis via activation of Rho and ROCK. Gastroenterology, 147(1), 196–208.e13.PubMedCrossRef
501.
go back to reference Adachi, S., Yasuda, I., Nakashima, M., Yamauchi, T., Yoshioka, T., Okano, Y., et al. (2011). Rho-kinase inhibitor upregulate smigration by altering focal adhesion formation via the Akt pathway in colon cancer cells. European Journal of Pharmacology, 650(1), 145–150.PubMedCrossRef Adachi, S., Yasuda, I., Nakashima, M., Yamauchi, T., Yoshioka, T., Okano, Y., et al. (2011). Rho-kinase inhibitor upregulate smigration by altering focal adhesion formation via the Akt pathway in colon cancer cells. European Journal of Pharmacology, 650(1), 145–150.PubMedCrossRef
502.
go back to reference Vishnubhotla, R., Bharadwaj, S., Sun, S., Metlushko, V., & Glover, S. C. (2012). Treatment with Y-27632, a ROCK inhibitor, increases the proinvasive nature of SW620 cells on 3D collagentype 1 matrix. International Journal of Cell Biology, 2012, 259142.PubMedPubMedCentralCrossRef Vishnubhotla, R., Bharadwaj, S., Sun, S., Metlushko, V., & Glover, S. C. (2012). Treatment with Y-27632, a ROCK inhibitor, increases the proinvasive nature of SW620 cells on 3D collagentype 1 matrix. International Journal of Cell Biology, 2012, 259142.PubMedPubMedCentralCrossRef
504.
go back to reference Chang, F., Zhang, Y., Mi, J., Zhou, Q., Bai, F., Xu, X., et al. (2018). ROCK inhibitor enhances the growth and migration of BRAF-mutant skin melanoma cells. Cancer Science, 109(11), 3428–3437.PubMedPubMedCentralCrossRef Chang, F., Zhang, Y., Mi, J., Zhou, Q., Bai, F., Xu, X., et al. (2018). ROCK inhibitor enhances the growth and migration of BRAF-mutant skin melanoma cells. Cancer Science, 109(11), 3428–3437.PubMedPubMedCentralCrossRef
505.
go back to reference Nakashima, M., Adachi, S., Yasuda, I., Yamauchi, T., Kawaguchi, J., Hanamatsu, T., et al. (2011). Inhibition of Rho-associated coiled-coil containing protein kinase enhances the activation of epidermal growth factor receptor in pancreatic cancer cells. Molecular Cancer, 3(10), 79.CrossRef Nakashima, M., Adachi, S., Yasuda, I., Yamauchi, T., Kawaguchi, J., Hanamatsu, T., et al. (2011). Inhibition of Rho-associated coiled-coil containing protein kinase enhances the activation of epidermal growth factor receptor in pancreatic cancer cells. Molecular Cancer, 3(10), 79.CrossRef
506.
go back to reference Nagumo, H., Sasaki, Y., Ono, Y., Okamoto, H., Seto, M., & Takuwa, Y. (2000). Rho kinase inhibitor HA-1077 prevents Rho-mediated myosin phosphatase inhibition in smooth muscle cells. American journal of physiology. Cell physiology, 278(1), C57–C65.PubMedCrossRef Nagumo, H., Sasaki, Y., Ono, Y., Okamoto, H., Seto, M., & Takuwa, Y. (2000). Rho kinase inhibitor HA-1077 prevents Rho-mediated myosin phosphatase inhibition in smooth muscle cells. American journal of physiology. Cell physiology, 278(1), C57–C65.PubMedCrossRef
507.
go back to reference Nakashima, S., Tabuchi, K., Shimokawa, S., Fukuyama, K., Mineta, T., & Abe, M. (1998). Combination therapy of fasudil hydrochloride and ozagrel sodium for cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Neurologia medico-chirurgica, 38(12), 805–811.PubMedCrossRef Nakashima, S., Tabuchi, K., Shimokawa, S., Fukuyama, K., Mineta, T., & Abe, M. (1998). Combination therapy of fasudil hydrochloride and ozagrel sodium for cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Neurologia medico-chirurgica, 38(12), 805–811.PubMedCrossRef
508.
go back to reference Zhu, F., Zhang, Z., Wu, G., Li, Z., Zhang, R., Ren, J., & Nong, L. (2011). Rho kinase inhibitor fasudil suppresses migration and invasion though down-regulating the expression of VEGF in lung cancer cell line A549. Medical oncology, 28(2), 565–571.PubMedCrossRef Zhu, F., Zhang, Z., Wu, G., Li, Z., Zhang, R., Ren, J., & Nong, L. (2011). Rho kinase inhibitor fasudil suppresses migration and invasion though down-regulating the expression of VEGF in lung cancer cell line A549. Medical oncology, 28(2), 565–571.PubMedCrossRef
509.
go back to reference Yang, X., Zhang, Y., Wang, S., & Shi, W. (2010). Effect of fasudil on growth, adhesion, invasion, and migration of 95D lung carcinoma cells in vitro. Canadian journal of physiology and pharmacology, 88(9), 874–879.PubMedCrossRef Yang, X., Zhang, Y., Wang, S., & Shi, W. (2010). Effect of fasudil on growth, adhesion, invasion, and migration of 95D lung carcinoma cells in vitro. Canadian journal of physiology and pharmacology, 88(9), 874–879.PubMedCrossRef
510.
go back to reference Yang X., Di, J., Zhang, Y., Zhang, S., Lu, J., Liu, J., & Shi, W. (2012). The Rho-kinase inhibitor inhibits proliferation and metastasis of small cell lung cancer. Biomedicine & pharmacotherapy, 66(3), 221–227.CrossRef Yang X., Di, J., Zhang, Y., Zhang, S., Lu, J., Liu, J., & Shi, W. (2012). The Rho-kinase inhibitor inhibits proliferation and metastasis of small cell lung cancer. Biomedicine & pharmacotherapy, 66(3), 221–227.CrossRef
511.
go back to reference Hu, K., Wang, Z., & Tao, Y. (2014). Suppression of hepatocellular carcinoma invasion and metastasis by Rho-kinase inhibitor Fasudil through inhibition of BTBD7-ROCK2 signaling pathway. Journal of Central South University. Medical sciences, 39(12), 1221–1227. Hu, K., Wang, Z., & Tao, Y. (2014). Suppression of hepatocellular carcinoma invasion and metastasis by Rho-kinase inhibitor Fasudil through inhibition of BTBD7-ROCK2 signaling pathway. Journal of Central South University. Medical sciences, 39(12), 1221–1227.
512.
go back to reference Moreira Carboni, S., Rodrigues Lima, N. A., Pinheiro, N. M., Tavares-Murta, B. M., & Crema, V. O. (2015). HA-1077 inhibits cell migration/invasion of oral squamous cell carcinoma. Anti-cancer drugs, 26(9), 923–930.CrossRef Moreira Carboni, S., Rodrigues Lima, N. A., Pinheiro, N. M., Tavares-Murta, B. M., & Crema, V. O. (2015). HA-1077 inhibits cell migration/invasion of oral squamous cell carcinoma. Anti-cancer drugs, 26(9), 923–930.CrossRef
513.
go back to reference Ying, H., Biroc, S. L., Li, W. W., Alicke, B., Xuan, J. A., Pagila, R., et al. (2006). The Rho kinase inhibitor fasudil inhibits tumor progression in human and rat tumor models. Molecular cancer therapeutics, 5(9), 2158–2164.PubMedCrossRef Ying, H., Biroc, S. L., Li, W. W., Alicke, B., Xuan, J. A., Pagila, R., et al. (2006). The Rho kinase inhibitor fasudil inhibits tumor progression in human and rat tumor models. Molecular cancer therapeutics, 5(9), 2158–2164.PubMedCrossRef
514.
go back to reference Deng, L., Li, G., Li, R., Liu, Q., He, Q., & Zhang, J. (2010). Rho-kinase inhibitor, fasudil, suppresses glioblastoma cell line progression in vitro and in vivo. Cancer biology & therapy, 9(11), 875–884.CrossRef Deng, L., Li, G., Li, R., Liu, Q., He, Q., & Zhang, J. (2010). Rho-kinase inhibitor, fasudil, suppresses glioblastoma cell line progression in vitro and in vivo. Cancer biology & therapy, 9(11), 875–884.CrossRef
515.
go back to reference Ogata, S., Morishige, K., Sawada, K., Hashimoto, K., Mabuchi, S., Kawase, C., et al. (2009). Fasudil inhibits lysophosphatidic acid-induced invasiveness of human ovarian cancer cells. International journal of gynecological cancer, 19(9), 1473–1480.PubMedCrossRef Ogata, S., Morishige, K., Sawada, K., Hashimoto, K., Mabuchi, S., Kawase, C., et al. (2009). Fasudil inhibits lysophosphatidic acid-induced invasiveness of human ovarian cancer cells. International journal of gynecological cancer, 19(9), 1473–1480.PubMedCrossRef
516.
go back to reference Rath, N., Munro, J., Cutiongco, M. F., Jagiełło, A., Gadegaard, N., McGarry, L., et al. (2018). Rho Kinase Inhibition by AT13148 Blocks Pancreatic Ductal Adenocarcinoma Invasion and Tumor Growth. Cancer research, 78(12), 3321–3336.PubMedPubMedCentralCrossRef Rath, N., Munro, J., Cutiongco, M. F., Jagiełło, A., Gadegaard, N., McGarry, L., et al. (2018). Rho Kinase Inhibition by AT13148 Blocks Pancreatic Ductal Adenocarcinoma Invasion and Tumor Growth. Cancer research, 78(12), 3321–3336.PubMedPubMedCentralCrossRef
517.
go back to reference Ikenoya, M., Hidaka, H., Hosoya, T., Suzuki, M., Yamamoto, N., & Sasaki, Y. (2002). Inhibition of rho-kinase-induced myristoylated alanine-rich C kinase substrate (MARCKS) phosphorylation in human neuronal cells by H-1152, a novel and specific Rho-kinase inhibitor. Journal of neurochemistry, 81(1), 9–16.PubMedCrossRef Ikenoya, M., Hidaka, H., Hosoya, T., Suzuki, M., Yamamoto, N., & Sasaki, Y. (2002). Inhibition of rho-kinase-induced myristoylated alanine-rich C kinase substrate (MARCKS) phosphorylation in human neuronal cells by H-1152, a novel and specific Rho-kinase inhibitor. Journal of neurochemistry, 81(1), 9–16.PubMedCrossRef
518.
go back to reference Fagan-Solis, K. D., Schneider, S. S., Pentecost, B. T., Bentley, B. A., Otis, C. N., Gierthy, J. F., & Arcaro, K. F. (2013). The RhoA pathway mediates MMP-2 and MMP-9-independent invasive behavior in a triple-negative breast cancer cell line. Journal of cellular biochemistry, 114(6), 1385–1394.PubMedCrossRef Fagan-Solis, K. D., Schneider, S. S., Pentecost, B. T., Bentley, B. A., Otis, C. N., Gierthy, J. F., & Arcaro, K. F. (2013). The RhoA pathway mediates MMP-2 and MMP-9-independent invasive behavior in a triple-negative breast cancer cell line. Journal of cellular biochemistry, 114(6), 1385–1394.PubMedCrossRef
519.
go back to reference Patel, R. A., Forinash, K. D., Pireddu, R., Sun, Y., Sun, N., Martin, M. P., et al. (2012). RKI-1447 is a potent inhibitor of the Rho-associated ROCK kinases with anti-invasive and antitumor activities in breast cancer. Cancer research, 72(19), 5025–5034.PubMedPubMedCentralCrossRef Patel, R. A., Forinash, K. D., Pireddu, R., Sun, Y., Sun, N., Martin, M. P., et al. (2012). RKI-1447 is a potent inhibitor of the Rho-associated ROCK kinases with anti-invasive and antitumor activities in breast cancer. Cancer research, 72(19), 5025–5034.PubMedPubMedCentralCrossRef
520.
go back to reference Patel, R. A., Liu, Y., Wang, B., Li, R., & Sebti, S. M. (2014). Identification of novel ROCK inhibitors with anti-migratory and anti-invasive activities. Oncogene, 33(5), 550–555.PubMedCrossRef Patel, R. A., Liu, Y., Wang, B., Li, R., & Sebti, S. M. (2014). Identification of novel ROCK inhibitors with anti-migratory and anti-invasive activities. Oncogene, 33(5), 550–555.PubMedCrossRef
521.
go back to reference Tsai, C. C., Liu, H. F., Hsu, K. C., Yang, J. M., Chen, C., Liu, K. K., et al. (2011). 7-Chloro-6-piperidin-1-yl-quinoline-5,8-dione (PT-262), a novel ROCK inhibitor blocks cytoskeleton function and cell migration. Biochemical pharmacology, 81(7), 856–865.PubMedCrossRef Tsai, C. C., Liu, H. F., Hsu, K. C., Yang, J. M., Chen, C., Liu, K. K., et al. (2011). 7-Chloro-6-piperidin-1-yl-quinoline-5,8-dione (PT-262), a novel ROCK inhibitor blocks cytoskeleton function and cell migration. Biochemical pharmacology, 81(7), 856–865.PubMedCrossRef
522.
go back to reference Vigil, D., Kim, T. Y., Plachco, A., Garton, A. J., Castaldo, L., Pachter, J. A., et al. (2012). ROCK1 and ROCK2 are required for non-small cell lung cancer anchorage-independent growth and invasion. Cancer research, 72(20), 5338–5347.PubMedCrossRef Vigil, D., Kim, T. Y., Plachco, A., Garton, A. J., Castaldo, L., Pachter, J. A., et al. (2012). ROCK1 and ROCK2 are required for non-small cell lung cancer anchorage-independent growth and invasion. Cancer research, 72(20), 5338–5347.PubMedCrossRef
523.
go back to reference Sadok, A., McCarthy, A., Caldwell, J., Collins, I., Garrett, M. D., Yeo, M., et al. (2015). Rho kinase inhibitors block melanoma cell migration and inhibit metastasis. Cancer research, 75(11), 2272–2284.PubMedCrossRef Sadok, A., McCarthy, A., Caldwell, J., Collins, I., Garrett, M. D., Yeo, M., et al. (2015). Rho kinase inhibitors block melanoma cell migration and inhibit metastasis. Cancer research, 75(11), 2272–2284.PubMedCrossRef
524.
go back to reference Yap, T. A., Walton, M. I., Grimshaw, K. M., Te Poele, R. H., Eve, P. D., Valenti, M. R., et al. (2012). AT13148 is a novel, oral multi-AGC kinase inhibitor with potent pharmacodynamic and antitumor activity. Clinical cancer research, 18(14), 3912–3923.PubMedCrossRef Yap, T. A., Walton, M. I., Grimshaw, K. M., Te Poele, R. H., Eve, P. D., Valenti, M. R., et al. (2012). AT13148 is a novel, oral multi-AGC kinase inhibitor with potent pharmacodynamic and antitumor activity. Clinical cancer research, 18(14), 3912–3923.PubMedCrossRef
525.
go back to reference Kumar, R., Mateo, J., Smith, A. D., Khan, K. H., Ruddle, R., Swales, K. E., et al. (2014). First-in-human, first-in-class phase 1 study of a novel oral multi-AGC kinase inhibitor AT13148 in patients (pts) with advanced solid tumors. Journal of Clinical Oncology, 32(15), 2554–2554.CrossRef Kumar, R., Mateo, J., Smith, A. D., Khan, K. H., Ruddle, R., Swales, K. E., et al. (2014). First-in-human, first-in-class phase 1 study of a novel oral multi-AGC kinase inhibitor AT13148 in patients (pts) with advanced solid tumors. Journal of Clinical Oncology, 32(15), 2554–2554.CrossRef
526.
go back to reference Nakajima, M., Hayashi, K., Egi, Y., Katayama, K., Amano, Y., Uehata, M., et al. (2003). Effect of Wf-536, a novel ROCK inhibitor, against metastasis of B16 melanoma. Cancer chemotherapy and pharmacology, 52(4), 319–324.PubMedCrossRef Nakajima, M., Hayashi, K., Egi, Y., Katayama, K., Amano, Y., Uehata, M., et al. (2003). Effect of Wf-536, a novel ROCK inhibitor, against metastasis of B16 melanoma. Cancer chemotherapy and pharmacology, 52(4), 319–324.PubMedCrossRef
527.
go back to reference Wei, L., Surma, M., Shi, S., Lambert-Cheatham, N., & Shi, J. (2016). Novel Insights into the Roles of Rho Kinase in Cancer. Archivum immunologiae et therapiae experimentalis, 64(4), 259–278.PubMedPubMedCentralCrossRef Wei, L., Surma, M., Shi, S., Lambert-Cheatham, N., & Shi, J. (2016). Novel Insights into the Roles of Rho Kinase in Cancer. Archivum immunologiae et therapiae experimentalis, 64(4), 259–278.PubMedPubMedCentralCrossRef
528.
go back to reference Kale, V. P., Hengst, J. A., Desai, D. H., Amin, S. G., & Yun, J. K. (2015). The regulatory roles of ROCK and MRCK kinases in the plasticity of cancer cell migration. Cancer letters, 361(2), 185–196.PubMedCrossRef Kale, V. P., Hengst, J. A., Desai, D. H., Amin, S. G., & Yun, J. K. (2015). The regulatory roles of ROCK and MRCK kinases in the plasticity of cancer cell migration. Cancer letters, 361(2), 185–196.PubMedCrossRef
529.
go back to reference Castro, D. J., Maurer, J., Hebbard, L., & Oshima, R. G. (2013). ROCK1 inhibition promotes the self-renewal of a novel mouse mammary cancer stem cell. Stem cells, 31(1), 12–22.PubMedPubMedCentralCrossRef Castro, D. J., Maurer, J., Hebbard, L., & Oshima, R. G. (2013). ROCK1 inhibition promotes the self-renewal of a novel mouse mammary cancer stem cell. Stem cells, 31(1), 12–22.PubMedPubMedCentralCrossRef
530.
go back to reference Ohata, H., Ishiguro, T., Aihara, Y., Sato, A., Sakai, H., Sekine, S., et al. (2012). Induction of the stem-like cell regulator CD44 by Rho kinase inhibition contributes to the maintenance of colon cancer-initiating cells. Cancer research, 72(19), 5101–5110.PubMedCrossRef Ohata, H., Ishiguro, T., Aihara, Y., Sato, A., Sakai, H., Sekine, S., et al. (2012). Induction of the stem-like cell regulator CD44 by Rho kinase inhibition contributes to the maintenance of colon cancer-initiating cells. Cancer research, 72(19), 5101–5110.PubMedCrossRef
531.
go back to reference Zhao, Z., & Manser, E. (2015). Myotonic dystrophy kinase-related Cdc42-binding kinases (MRCK), the ROCK-like effectors of Cdc42 and Rac1. Small GTPases, 6(2), 81–88.PubMedPubMedCentralCrossRef Zhao, Z., & Manser, E. (2015). Myotonic dystrophy kinase-related Cdc42-binding kinases (MRCK), the ROCK-like effectors of Cdc42 and Rac1. Small GTPases, 6(2), 81–88.PubMedPubMedCentralCrossRef
532.
go back to reference Leroux, A. E., Schulze, J. O., & Biondi, R. M. (2018). AGC kinases, mechanisms of regulation and innovative drug development. Seminars in cancer biology, 48, 1–17.PubMedCrossRef Leroux, A. E., Schulze, J. O., & Biondi, R. M. (2018). AGC kinases, mechanisms of regulation and innovative drug development. Seminars in cancer biology, 48, 1–17.PubMedCrossRef
533.
go back to reference Unbekandt, M., & Olson, M. F. (2014). The actin-myosin regulatory MRCK kinases: regulation, biological functions and associations with human cancer. Journal of molecular medicine, 92(3), 217–225.PubMedCrossRef Unbekandt, M., & Olson, M. F. (2014). The actin-myosin regulatory MRCK kinases: regulation, biological functions and associations with human cancer. Journal of molecular medicine, 92(3), 217–225.PubMedCrossRef
534.
go back to reference Wilkinson, S., Paterson, H. F., & Marshall, C. J. (2005). Cdc42-MRCK and Rho-ROCK signalling cooperate in myosin phosphorylation and cell invasion. Nature cell biology, 7(3), 255–261.PubMedCrossRef Wilkinson, S., Paterson, H. F., & Marshall, C. J. (2005). Cdc42-MRCK and Rho-ROCK signalling cooperate in myosin phosphorylation and cell invasion. Nature cell biology, 7(3), 255–261.PubMedCrossRef
535.
go back to reference Kale, V. P., Hengst, J. A., Desai, D. H., Dick, T. E., Choe, K. N., Colledge, A. L., et al. (2014). A novel selective multikinase inhibitor of ROCK and MRCK effectively blocks cancer cell migration and invasion. Cancer letters, 354(2), 299–310.PubMedPubMedCentralCrossRef Kale, V. P., Hengst, J. A., Desai, D. H., Dick, T. E., Choe, K. N., Colledge, A. L., et al. (2014). A novel selective multikinase inhibitor of ROCK and MRCK effectively blocks cancer cell migration and invasion. Cancer letters, 354(2), 299–310.PubMedPubMedCentralCrossRef
536.
go back to reference Unbekandt, M., Belshaw, S., Bower, J., Clarke, M., Cordes, J., Crighton, D., et al. (2018). Discovery of Potent and Selective MRCK Inhibitors with Therapeutic Effect on Skin Cancer. Cancer research, 78(8), 2096–2114.PubMedPubMedCentralCrossRef Unbekandt, M., Belshaw, S., Bower, J., Clarke, M., Cordes, J., Crighton, D., et al. (2018). Discovery of Potent and Selective MRCK Inhibitors with Therapeutic Effect on Skin Cancer. Cancer research, 78(8), 2096–2114.PubMedPubMedCentralCrossRef
537.
go back to reference Gu, L. Z., Hu, W. Y., Antic, N., Mehta, R., Turner, J. R., & de Lanerolle, P. (2006). Inhibiting myosin light chain kinase retards the growth of mammary and prostate cancer cells. European journal of cancer, 42(7), 948–957.PubMedCrossRef Gu, L. Z., Hu, W. Y., Antic, N., Mehta, R., Turner, J. R., & de Lanerolle, P. (2006). Inhibiting myosin light chain kinase retards the growth of mammary and prostate cancer cells. European journal of cancer, 42(7), 948–957.PubMedCrossRef
538.
go back to reference Jordan, M. A., & Wilson, L. (2004). Microtubules as a target for anticancer drugs. Nature Reviews Cancer, 4(4), 253–265.PubMedCrossRef Jordan, M. A., & Wilson, L. (2004). Microtubules as a target for anticancer drugs. Nature Reviews Cancer, 4(4), 253–265.PubMedCrossRef
539.
go back to reference Kavallaris, M. (2010). Microtubules and resistance to tubulin-binding agents. Nature Reviews Cancer, 10(3), 194–204.PubMedCrossRef Kavallaris, M. (2010). Microtubules and resistance to tubulin-binding agents. Nature Reviews Cancer, 10(3), 194–204.PubMedCrossRef
540.
go back to reference Gan, P. P., Pasquier, E., & Kavallaris, M. (2007). Class III beta-tubulin mediates sensitivity to chemotherapeutic drugs in non small cell lung cancer. Cancer research, 67(19), 9356–9363.PubMedCrossRef Gan, P. P., Pasquier, E., & Kavallaris, M. (2007). Class III beta-tubulin mediates sensitivity to chemotherapeutic drugs in non small cell lung cancer. Cancer research, 67(19), 9356–9363.PubMedCrossRef
541.
go back to reference McCarroll, J. A., Gan, P. P., Liu, M., & Kavallaris, M. (2010). betaIII-tubulin is a multifunctional protein involved in drug sensitivity and tumorigenesis in non-small cell lung cancer. Cancer research, 70(12), 4995–5003.PubMedCrossRef McCarroll, J. A., Gan, P. P., Liu, M., & Kavallaris, M. (2010). betaIII-tubulin is a multifunctional protein involved in drug sensitivity and tumorigenesis in non-small cell lung cancer. Cancer research, 70(12), 4995–5003.PubMedCrossRef
542.
go back to reference Jiang, H., Yu, X. M., Zhou, X. M., Wang, X. H., & Su, D. (2013). Correlation between microtubule-associated gene expression and chemosensitivity of patients with stage II non-small cell lung cancer. Experimental and therapeutic medicine, 5(5), 1506–1510.PubMedPubMedCentralCrossRef Jiang, H., Yu, X. M., Zhou, X. M., Wang, X. H., & Su, D. (2013). Correlation between microtubule-associated gene expression and chemosensitivity of patients with stage II non-small cell lung cancer. Experimental and therapeutic medicine, 5(5), 1506–1510.PubMedPubMedCentralCrossRef
543.
go back to reference Akhshi, T. K., Wernike, D., & Piekny, A. (2014). Microtubules and actin crosstalk in cell migration and division. Cytoskeleton, 71(1), 1–23.PubMedCrossRef Akhshi, T. K., Wernike, D., & Piekny, A. (2014). Microtubules and actin crosstalk in cell migration and division. Cytoskeleton, 71(1), 1–23.PubMedCrossRef
544.
go back to reference Etienne-Manneville, S., & Hall, A. (2001). Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKC zeta. Cell, 106(4), 489–498.PubMedCrossRef Etienne-Manneville, S., & Hall, A. (2001). Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKC zeta. Cell, 106(4), 489–498.PubMedCrossRef
545.
go back to reference Palazzo, A. F., Cook, T. A., Alberts, A. S., & Gundersen, G. G. (2001). mDia mediates Rho-regulated formation and orientation of stable microtubules. Nature Cell Biology, 3(8), 723–729.PubMedCrossRef Palazzo, A. F., Cook, T. A., Alberts, A. S., & Gundersen, G. G. (2001). mDia mediates Rho-regulated formation and orientation of stable microtubules. Nature Cell Biology, 3(8), 723–729.PubMedCrossRef
546.
go back to reference Tzima, E., Kiosses, W. B., delPozo, M. A., & Schwartz, M. A. (2003). Localized cdc42 activation, detected using a novel assay, mediates microtubule organizing center positioning in endothelial cells in response to fluid shear stress. Journal of Biological Chemistry, 278(33), 31020–31023.CrossRef Tzima, E., Kiosses, W. B., delPozo, M. A., & Schwartz, M. A. (2003). Localized cdc42 activation, detected using a novel assay, mediates microtubule organizing center positioning in endothelial cells in response to fluid shear stress. Journal of Biological Chemistry, 278(33), 31020–31023.CrossRef
547.
go back to reference Vaughan, S., & Dawe, H. R. (2011). Common themes in centriole and centrosome movements. Trends in Cell Biology, 21(1), 57–66.PubMedCrossRef Vaughan, S., & Dawe, H. R. (2011). Common themes in centriole and centrosome movements. Trends in Cell Biology, 21(1), 57–66.PubMedCrossRef
548.
549.
go back to reference Yoon, S. O., Shin, S., & Mercurio, A. M. (2005). Hypoxia stimulates carcinoma invasion by stabilizing microtubules and promoting the Rab11 trafficking of the alpha 6 beta 4 integrin. Cancer research, 65(7), 2761–2769.PubMedCrossRef Yoon, S. O., Shin, S., & Mercurio, A. M. (2005). Hypoxia stimulates carcinoma invasion by stabilizing microtubules and promoting the Rab11 trafficking of the alpha 6 beta 4 integrin. Cancer research, 65(7), 2761–2769.PubMedCrossRef
550.
go back to reference Morrison, E. E. (2007). Action and interactions at microtubule ends. Cellular and molecular life sciences, 64(3), 307–317.PubMedCrossRef Morrison, E. E. (2007). Action and interactions at microtubule ends. Cellular and molecular life sciences, 64(3), 307–317.PubMedCrossRef
551.
go back to reference Schuyler, S. C., & Pellman, D. (2001). Microtubule "plus-end-tracking proteins": The end is just the beginning. Cell, 105(4), 421–424.PubMedCrossRef Schuyler, S. C., & Pellman, D. (2001). Microtubule "plus-end-tracking proteins": The end is just the beginning. Cell, 105(4), 421–424.PubMedCrossRef
552.
go back to reference Dong, X., Liu, F., Sun, L., Li, D., Su, D., Zhu, Z., et al. (2010). Oncogenic function of microtubule end-binding protein 1 in breast cancer. Journal of Pathology, 220(3), 361–369.CrossRef Dong, X., Liu, F., Sun, L., Li, D., Su, D., Zhu, Z., et al. (2010). Oncogenic function of microtubule end-binding protein 1 in breast cancer. Journal of Pathology, 220(3), 361–369.CrossRef
553.
go back to reference Wen, Y., Eng, C. H., Schmoranzer, J., Cabrera-Poch, N., Morris, E. J., Chen, M., et al. (2004). EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nature cell biology, 6(9), 820–830.PubMedCrossRef Wen, Y., Eng, C. H., Schmoranzer, J., Cabrera-Poch, N., Morris, E. J., Chen, M., et al. (2004). EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nature cell biology, 6(9), 820–830.PubMedCrossRef
554.
go back to reference Molina, A., Velot, L., Ghouinem, L., Abdelkarim, M., Bouchet, B. P., Luissint, A. C., et al. (2013). ATIP3, a novel prognostic marker of breast cancer patient survival, limits cancer cell migration and slows metastatic progression by regulating microtubule dynamics. Cancer research, 73(9), 2905–2915.PubMedCrossRef Molina, A., Velot, L., Ghouinem, L., Abdelkarim, M., Bouchet, B. P., Luissint, A. C., et al. (2013). ATIP3, a novel prognostic marker of breast cancer patient survival, limits cancer cell migration and slows metastatic progression by regulating microtubule dynamics. Cancer research, 73(9), 2905–2915.PubMedCrossRef
555.
go back to reference Rodrigues-Ferreira, S., Di Tommaso, A., Dimitrov, A., Cazaubon, S., Gruel, N., Colasson, H., et al. (2009). 8p22 MTUS1 gene product ATIP3 is a novel anti-mitotic protein underexpressed in invasive breast carcinoma of poor prognosis. PloS one, 4(10), e7239.PubMedPubMedCentralCrossRef Rodrigues-Ferreira, S., Di Tommaso, A., Dimitrov, A., Cazaubon, S., Gruel, N., Colasson, H., et al. (2009). 8p22 MTUS1 gene product ATIP3 is a novel anti-mitotic protein underexpressed in invasive breast carcinoma of poor prognosis. PloS one, 4(10), e7239.PubMedPubMedCentralCrossRef
556.
go back to reference Rodrigues-Ferreira, S., Nehlig, A., Monchecourt, C., Nasr, S., Fuhrmann, L., Lacroix-Triki, M., et al. (2019). Combinatorial expression of microtubule-associated EB1 and ATIP3 biomarkers improves breast cancer prognosis. Breast cancer research and treatment, 173(3), 573–583.PubMedCrossRef Rodrigues-Ferreira, S., Nehlig, A., Monchecourt, C., Nasr, S., Fuhrmann, L., Lacroix-Triki, M., et al. (2019). Combinatorial expression of microtubule-associated EB1 and ATIP3 biomarkers improves breast cancer prognosis. Breast cancer research and treatment, 173(3), 573–583.PubMedCrossRef
557.
go back to reference Omary, M. B., Coulombe, P. A., & McLean, W. H. (2004). Intermediate filament proteins and their associated diseases. New England Journal of Medicine, 351(20), 2087–2100.CrossRef Omary, M. B., Coulombe, P. A., & McLean, W. H. (2004). Intermediate filament proteins and their associated diseases. New England Journal of Medicine, 351(20), 2087–2100.CrossRef
558.
go back to reference Kokkinos, M. I., Wafai, R., Wong, M. K., Newgreen, D. F., Thompson, E. W., & Waltham, M. (2007). Vimentin and epithelial-mesenchymal transition in human breast cancer--observations in vitro and in vivotadokoro. Cells, tissues, organs, 185(1-3), 191–203.PubMedCrossRef Kokkinos, M. I., Wafai, R., Wong, M. K., Newgreen, D. F., Thompson, E. W., & Waltham, M. (2007). Vimentin and epithelial-mesenchymal transition in human breast cancer--observations in vitro and in vivotadokoro. Cells, tissues, organs, 185(1-3), 191–203.PubMedCrossRef
559.
go back to reference Satelli, A., & Li, S. (2011). Vimentin in cancer and its potential as a molecular target for cancer therapy. Cellular and molecular life sciences, 68(18), 3033–3046.PubMedCrossRef Satelli, A., & Li, S. (2011). Vimentin in cancer and its potential as a molecular target for cancer therapy. Cellular and molecular life sciences, 68(18), 3033–3046.PubMedCrossRef
560.
go back to reference Karantza, V. (2011). Keratins in health and cancer: more than mere epithelial cell markers. Oncogene, 30(2), 127–138.PubMedCrossRef Karantza, V. (2011). Keratins in health and cancer: more than mere epithelial cell markers. Oncogene, 30(2), 127–138.PubMedCrossRef
561.
go back to reference Esue, O., Carson, A. A., Tseng, Y., & Wirtz, D. (2006). A direct interaction between actin and vimentin filaments mediated by the tail domain of vimentin. The Journal of biological chemistry, 281(41), 30393–30399.PubMedCrossRef Esue, O., Carson, A. A., Tseng, Y., & Wirtz, D. (2006). A direct interaction between actin and vimentin filaments mediated by the tail domain of vimentin. The Journal of biological chemistry, 281(41), 30393–30399.PubMedCrossRef
562.
go back to reference Hookway, C., Ding, L., Davidson, M. W., Rappoport, J. Z., Danuser, G., & Gelfand, V. I. (2015). Microtubule-dependent transport and dynamics of vimentin intermediate filaments. Molecular biology of the cell, 26(9), 1675–1686.PubMedPubMedCentralCrossRef Hookway, C., Ding, L., Davidson, M. W., Rappoport, J. Z., Danuser, G., & Gelfand, V. I. (2015). Microtubule-dependent transport and dynamics of vimentin intermediate filaments. Molecular biology of the cell, 26(9), 1675–1686.PubMedPubMedCentralCrossRef
563.
go back to reference Schoumacher, M., Goldman, R. D., Louvard, D., & Vignjevic, D. M. (2010). Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia. The Journal of cell biology, 189(3), 541–556.PubMedPubMedCentralCrossRef Schoumacher, M., Goldman, R. D., Louvard, D., & Vignjevic, D. M. (2010). Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia. The Journal of cell biology, 189(3), 541–556.PubMedPubMedCentralCrossRef
564.
go back to reference De Pascalis, C., Pérez-González, C., Seetharaman, S., Boëda, B., Vianay, B., Burute, M., et al. (2018). Intermediate filaments control collective migration by restricting traction forces and sustaining cell-cell contacts. The Journal of cell biology, 217(9), 3031–3044.PubMedPubMedCentralCrossRef De Pascalis, C., Pérez-González, C., Seetharaman, S., Boëda, B., Vianay, B., Burute, M., et al. (2018). Intermediate filaments control collective migration by restricting traction forces and sustaining cell-cell contacts. The Journal of cell biology, 217(9), 3031–3044.PubMedPubMedCentralCrossRef
565.
go back to reference Chu, Y. W., Seftor, E. A., Romer, L. H., & Hendrix, M. J. (1996). Experimental coexpression of vimentin and keratin intermediate filaments in human melanoma cells augments motility. The American journal of pathology, 148(1), 63–69.PubMedPubMedCentral Chu, Y. W., Seftor, E. A., Romer, L. H., & Hendrix, M. J. (1996). Experimental coexpression of vimentin and keratin intermediate filaments in human melanoma cells augments motility. The American journal of pathology, 148(1), 63–69.PubMedPubMedCentral
566.
go back to reference Havel, L. S., Kline, E. R., Salgueiro, A. M., & Marcus, A. I. (2015). Vimentin regulates lung cancer cell adhesion through a VAV2-Rac1 pathway to control focal adhesion kinase activity. Oncogene, 34(15), 1979–1990.PubMedCrossRef Havel, L. S., Kline, E. R., Salgueiro, A. M., & Marcus, A. I. (2015). Vimentin regulates lung cancer cell adhesion through a VAV2-Rac1 pathway to control focal adhesion kinase activity. Oncogene, 34(15), 1979–1990.PubMedCrossRef
567.
go back to reference Tadokoro, A., Kanaji, N., Liu, D., Yokomise, H., Haba, R., Ishii, T., et al. (2016). Vimentin Regulates Invasiveness and Is a Poor Prognostic Marker in Non-small Cell Lung Cancer. Anticancer research, 36(4), 1545–1551.PubMed Tadokoro, A., Kanaji, N., Liu, D., Yokomise, H., Haba, R., Ishii, T., et al. (2016). Vimentin Regulates Invasiveness and Is a Poor Prognostic Marker in Non-small Cell Lung Cancer. Anticancer research, 36(4), 1545–1551.PubMed
568.
go back to reference Dmello, C., Sawant, S., Alam, H., Gangadaran, P., Tiwari, R., Dongre, H., et al. (2016). Vimentin-mediated regulation of cell motility through modulation of beta4 integrin protein levels in oral tumor derived cells. The international journal of biochemistry & cell biology, 70, 161–172.CrossRef Dmello, C., Sawant, S., Alam, H., Gangadaran, P., Tiwari, R., Dongre, H., et al. (2016). Vimentin-mediated regulation of cell motility through modulation of beta4 integrin protein levels in oral tumor derived cells. The international journal of biochemistry & cell biology, 70, 161–172.CrossRef
569.
go back to reference Virtakoivu, R., Mai, A., Mattila, E., De Franceschi, N., Imanishi, S. Y., Corthals, G., et al. (2015). Vimentin-ERK Signaling Uncouples Slug Gene Regulatory Function. Cancer research, 75(11), 2349–2362.PubMedCrossRef Virtakoivu, R., Mai, A., Mattila, E., De Franceschi, N., Imanishi, S. Y., Corthals, G., et al. (2015). Vimentin-ERK Signaling Uncouples Slug Gene Regulatory Function. Cancer research, 75(11), 2349–2362.PubMedCrossRef
570.
go back to reference Vuoriluoto, K., Haugen, H., Kiviluoto, S., Mpindi, J. P., Nevo, J., Gjerdrum, C., et al. (2011). Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene, 30(12), 1436–1448.PubMedCrossRef Vuoriluoto, K., Haugen, H., Kiviluoto, S., Mpindi, J. P., Nevo, J., Gjerdrum, C., et al. (2011). Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene, 30(12), 1436–1448.PubMedCrossRef
571.
go back to reference Colburn, Z. T., & Jones, J. (2018). Complexes of α6β4 integrin and vimentin act as signaling hubs to regulate epithelial cell migration. Journal of cell science, 131(14), jcs214593.PubMedPubMedCentralCrossRef Colburn, Z. T., & Jones, J. (2018). Complexes of α6β4 integrin and vimentin act as signaling hubs to regulate epithelial cell migration. Journal of cell science, 131(14), jcs214593.PubMedPubMedCentralCrossRef
572.
go back to reference Zhu, Q. S., Rosenblatt, K., Huang, K. L., Lahat, G., Brobey, R., Bolshakov, S., et al. (2011). Vimentin is a novel AKT1 target mediating motility and invasion. Oncogene, 30(4), 457–470.PubMedCrossRef Zhu, Q. S., Rosenblatt, K., Huang, K. L., Lahat, G., Brobey, R., Bolshakov, S., et al. (2011). Vimentin is a novel AKT1 target mediating motility and invasion. Oncogene, 30(4), 457–470.PubMedCrossRef
573.
go back to reference Yang, C. Y., Chang, P. W., Hsu, W. H., Chang, H. C., Chen, C. L., Lai, C. C., Chiu, W. T., & Chen, H. C. (2019). Src and SHP2 coordinately regulate the dynamics and organization of vimentin filaments during cell migration. Oncogene, 38(21), 4075–4094.PubMedPubMedCentralCrossRef Yang, C. Y., Chang, P. W., Hsu, W. H., Chang, H. C., Chen, C. L., Lai, C. C., Chiu, W. T., & Chen, H. C. (2019). Src and SHP2 coordinately regulate the dynamics and organization of vimentin filaments during cell migration. Oncogene, 38(21), 4075–4094.PubMedPubMedCentralCrossRef
574.
go back to reference Liu, S., Liu, L., Ye, W., Ye, D., Wang, T., Guo, W., et al. (2016). High Vimentin Expression Associated with Lymph Node Metastasis and Predicated a Poor Prognosis in Oral Squamous Cell Carcinoma. Scientific reports, 6, 38834.PubMedPubMedCentralCrossRef Liu, S., Liu, L., Ye, W., Ye, D., Wang, T., Guo, W., et al. (2016). High Vimentin Expression Associated with Lymph Node Metastasis and Predicated a Poor Prognosis in Oral Squamous Cell Carcinoma. Scientific reports, 6, 38834.PubMedPubMedCentralCrossRef
575.
go back to reference Richardson, A. M., Havel, L. S., Koyen, A. E., Konen, J. M., Shupe, J., Wiles 4th, W. G., et al. (2018). Vimentin Is Required for Lung Adenocarcinoma Metastasis via Heterotypic Tumor Cell-Cancer-Associated Fibroblast Interactions during Collective Invasion. Clinical cancer research, 24(2), 420–432.PubMedCrossRef Richardson, A. M., Havel, L. S., Koyen, A. E., Konen, J. M., Shupe, J., Wiles 4th, W. G., et al. (2018). Vimentin Is Required for Lung Adenocarcinoma Metastasis via Heterotypic Tumor Cell-Cancer-Associated Fibroblast Interactions during Collective Invasion. Clinical cancer research, 24(2), 420–432.PubMedCrossRef
576.
go back to reference Seltmann, K., Fritsch, A. W., Käs, J. A., & Magin, T. M. (2013). Keratins significantly contribute to cell stiffness and impact invasive behavior. Proceedings of the National Academy of Sciences of the United States of America, 110(46), 18507–18512.PubMedPubMedCentralCrossRef Seltmann, K., Fritsch, A. W., Käs, J. A., & Magin, T. M. (2013). Keratins significantly contribute to cell stiffness and impact invasive behavior. Proceedings of the National Academy of Sciences of the United States of America, 110(46), 18507–18512.PubMedPubMedCentralCrossRef
577.
go back to reference Cheung, K. J., Gabrielson, E., Werb, Z., & Ewald, A. J. (2013). Collective invasion in breast cancer requires a conserved basal epithelial program. Cell, 155(7), 1639–1651.PubMedPubMedCentralCrossRef Cheung, K. J., Gabrielson, E., Werb, Z., & Ewald, A. J. (2013). Collective invasion in breast cancer requires a conserved basal epithelial program. Cell, 155(7), 1639–1651.PubMedPubMedCentralCrossRef
578.
go back to reference Gao, X. L., Wu, J. S., Cao, M. X., Gao, S. Y., Cen, X., Jiang, Y. P., et al. (2017). Cytokeratin-14 contributes to collective invasion of salivary adenoid cystic carcinoma. PloS one, 12(2), e0171341.PubMedPubMedCentralCrossRef Gao, X. L., Wu, J. S., Cao, M. X., Gao, S. Y., Cen, X., Jiang, Y. P., et al. (2017). Cytokeratin-14 contributes to collective invasion of salivary adenoid cystic carcinoma. PloS one, 12(2), e0171341.PubMedPubMedCentralCrossRef
579.
go back to reference Ju, J. H., Yang, W., Lee, K. M., Oh, S., Nam, K., Shim, S., et al. (2013). Regulation of cell proliferation and migration by keratin19-induced nuclear import of early growth response-1 in breast cancer cells. Clinical cancer research, 19(16), 4335–4346.PubMedCrossRef Ju, J. H., Yang, W., Lee, K. M., Oh, S., Nam, K., Shim, S., et al. (2013). Regulation of cell proliferation and migration by keratin19-induced nuclear import of early growth response-1 in breast cancer cells. Clinical cancer research, 19(16), 4335–4346.PubMedCrossRef
580.
go back to reference Crowe, D. L., Milo, G. E., & Shuler, C. F. (1999). Keratin 19 downregulation by oral squamous cell carcinoma lines increases invasive potential. Journal of dental research, 78(6), 1256–1263.PubMedCrossRef Crowe, D. L., Milo, G. E., & Shuler, C. F. (1999). Keratin 19 downregulation by oral squamous cell carcinoma lines increases invasive potential. Journal of dental research, 78(6), 1256–1263.PubMedCrossRef
581.
go back to reference Tang, J., Zhuo, H., Zhang, X., Jiang, R., Ji, J., Deng, L., Qian, X., Zhang, F., & Sun, B. (2014). A novel biomarker Linc00974 interacting with KRT19 promotes proliferation and metastasis in hepatocellular carcinoma. Cell death & disease, 5(12), e1549.CrossRef Tang, J., Zhuo, H., Zhang, X., Jiang, R., Ji, J., Deng, L., Qian, X., Zhang, F., & Sun, B. (2014). A novel biomarker Linc00974 interacting with KRT19 promotes proliferation and metastasis in hepatocellular carcinoma. Cell death & disease, 5(12), e1549.CrossRef
582.
go back to reference Alix-Panabières, C., Vendrell, J. P., Slijper, M., Pellé, O., Barbotte, E., Mercier, G., et al. (2009). Full-length cytokeratin-19 is released by human tumor cells: a potential role in metastatic progression of breast cancer. Breast cancer research, 11(3), R39.PubMedPubMedCentralCrossRef Alix-Panabières, C., Vendrell, J. P., Slijper, M., Pellé, O., Barbotte, E., Mercier, G., et al. (2009). Full-length cytokeratin-19 is released by human tumor cells: a potential role in metastatic progression of breast cancer. Breast cancer research, 11(3), R39.PubMedPubMedCentralCrossRef
583.
go back to reference Ding, S. J., Li, Y., Tan, Y. X., Jiang, M. R., Tian, B., Liu, Y. K., et al. (2004). From proteomic analysis to clinical significance: overexpression of cytokeratin 19 correlates with hepatocellular carcinoma metastasis. Molecular & cellular proteomics, 3(1), 73–81.CrossRef Ding, S. J., Li, Y., Tan, Y. X., Jiang, M. R., Tian, B., Liu, Y. K., et al. (2004). From proteomic analysis to clinical significance: overexpression of cytokeratin 19 correlates with hepatocellular carcinoma metastasis. Molecular & cellular proteomics, 3(1), 73–81.CrossRef
584.
go back to reference Kabir, N. N., Rönnstrand, L., & Kazi, J. U. (2014). Keratin 19 expression correlates with poor prognosis in breast cancer. Molecular biology reports, 41(12), 7729–7735.PubMedCrossRef Kabir, N. N., Rönnstrand, L., & Kazi, J. U. (2014). Keratin 19 expression correlates with poor prognosis in breast cancer. Molecular biology reports, 41(12), 7729–7735.PubMedCrossRef
585.
go back to reference Kim, H., Choi, G. H., Na, D. C., Ahn, E. Y., Kim, G. I., Lee, J. E., et al. (2011). Human hepatocellular carcinomas with "Stemness"-related marker expression: keratin 19 expression and a poor prognosis. Hepatology, 54(5), 1707–1717.PubMedCrossRef Kim, H., Choi, G. H., Na, D. C., Ahn, E. Y., Kim, G. I., Lee, J. E., et al. (2011). Human hepatocellular carcinomas with "Stemness"-related marker expression: keratin 19 expression and a poor prognosis. Hepatology, 54(5), 1707–1717.PubMedCrossRef
586.
go back to reference Saloustros, E., Perraki, M., Apostolaki, S., Kallergi, G., Xyrafas, A., Kalbakis, K., et al. (2011). Cytokeratin-19 mRNA-positive circulating tumor cells during follow-up of patients with operable breast cancer: prognostic relevance for late relapse. Breast cancer research, 13(3), R60.PubMedPubMedCentralCrossRef Saloustros, E., Perraki, M., Apostolaki, S., Kallergi, G., Xyrafas, A., Kalbakis, K., et al. (2011). Cytokeratin-19 mRNA-positive circulating tumor cells during follow-up of patients with operable breast cancer: prognostic relevance for late relapse. Breast cancer research, 13(3), R60.PubMedPubMedCentralCrossRef
587.
go back to reference Bambang, I. F., Lu, D., Li, H., Chiu, L. L., Lau, Q. C., Koay, E., & Zhang, D. (2009). Cytokeratin 19 regulates endoplasmic reticulum stress and inhibits ERp29 expression via p38 MAPK/XBP-1 signaling in breast cancer cells. Experimental cell research, 315(11), 1964–1974.PubMedCrossRef Bambang, I. F., Lu, D., Li, H., Chiu, L. L., Lau, Q. C., Koay, E., & Zhang, D. (2009). Cytokeratin 19 regulates endoplasmic reticulum stress and inhibits ERp29 expression via p38 MAPK/XBP-1 signaling in breast cancer cells. Experimental cell research, 315(11), 1964–1974.PubMedCrossRef
588.
go back to reference Woelfle, U., Sauter, G., Santjer, S., Brakenhoff, R., & Pantel, K. (2004). Down-regulated expression of cytokeratin 18 promotes progression of human breast cancer. Clinical cancer research, 10(8), 2670–2674.PubMedCrossRef Woelfle, U., Sauter, G., Santjer, S., Brakenhoff, R., & Pantel, K. (2004). Down-regulated expression of cytokeratin 18 promotes progression of human breast cancer. Clinical cancer research, 10(8), 2670–2674.PubMedCrossRef
589.
go back to reference Bordeleau, F., Galarneau, L., Gilbert, S., Loranger, A., & Marceau, N. (2010). Keratin 8/18 modulation of protein kinase C-mediated integrin-dependent adhesion and migration of liver epithelial cells. Molecular biology of the cell, 21(10), 1698–1713.PubMedPubMedCentralCrossRef Bordeleau, F., Galarneau, L., Gilbert, S., Loranger, A., & Marceau, N. (2010). Keratin 8/18 modulation of protein kinase C-mediated integrin-dependent adhesion and migration of liver epithelial cells. Molecular biology of the cell, 21(10), 1698–1713.PubMedPubMedCentralCrossRef
590.
go back to reference Fortier, A. M., Asselin, E., & Cadrin, M. (2013). Keratin 8 and 18 loss in epithelial cancer cells increases collective cell migration and cisplatin sensitivity through claudin1 up-regulation. The Journal of biological chemistry, 288(16), 11555–11571.PubMedPubMedCentralCrossRef Fortier, A. M., Asselin, E., & Cadrin, M. (2013). Keratin 8 and 18 loss in epithelial cancer cells increases collective cell migration and cisplatin sensitivity through claudin1 up-regulation. The Journal of biological chemistry, 288(16), 11555–11571.PubMedPubMedCentralCrossRef
591.
go back to reference Omary, M. B., Ku, N. O., Strnad, P., & Hanada, S. (2009). Toward unraveling the complexity of simple epithelial keratins in human disease. The Journal of clinical investigation, 119(7), 1794–1805.PubMedPubMedCentralCrossRef Omary, M. B., Ku, N. O., Strnad, P., & Hanada, S. (2009). Toward unraveling the complexity of simple epithelial keratins in human disease. The Journal of clinical investigation, 119(7), 1794–1805.PubMedPubMedCentralCrossRef
592.
go back to reference Tan, H. S., Jiang, W. H., He, Y., Wang, D. S., Wu, Z. J., Wu, D. S., et al. (2017). KRT8 upregulation promotes tumor metastasis and is predictive of a poor prognosis in clear cell renal cell carcinoma. Oncotarget, 8(44), 76189–76203.PubMedPubMedCentralCrossRef Tan, H. S., Jiang, W. H., He, Y., Wang, D. S., Wu, Z. J., Wu, D. S., et al. (2017). KRT8 upregulation promotes tumor metastasis and is predictive of a poor prognosis in clear cell renal cell carcinoma. Oncotarget, 8(44), 76189–76203.PubMedPubMedCentralCrossRef
Metadata
Title
Targeting the cytoskeleton against metastatic dissemination
Authors
Carmen Ruggiero
Enzo Lalli
Publication date
01-03-2021
Publisher
Springer US
Keyword
Metastasis
Published in
Cancer and Metastasis Reviews / Issue 1/2021
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-020-09936-0

Other articles of this Issue 1/2021

Cancer and Metastasis Reviews 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine