Skip to main content
Top
Published in: BMC Cancer 1/2014

Open Access 01-12-2014 | Research article

The effect of ROCK-1 activity change on the adhesive and invasive ability of Y79 retinoblastoma cells

Authors: Jing Wang, Xiao-Hong Liu, Zi-Jian Yang, Bing Xie, Yi-Sheng Zhong

Published in: BMC Cancer | Issue 1/2014

Login to get access

Abstract

Background

Retinoblastoma (Rb) is the most common intraocular tumor in childhood worldwide. It is a deadly pediatric eye cancer. The main cause of death in Rb patients is intracranial and systemic metastasis. ROCK is the main downstream effector of Ras-homologous (Rho) family of GTPases which are involved in many cellular functions, such as cell proliferation, invasion and metastasis. Overexpression of ROCK promotes invasion and metastasis of many solid tumors. However, the effect of ROCK in Rb is largely unknown.

Methods

ROCK-1 and ROCK-2 mRNA expression in Y79 cell lines were examined by RT-PCR. Protein expression in the Y79 cell line were examined by western blot analyses. ROCK-1 and ROCK-2 siRNA were transfected into Y79 cells with Lipofectamine 2000. Cell proliferation was evaluated by CCK-8 assay after exposure to ROCK inhibitor (Y-27632). We examined the effect of ROCK inhibitors (Y-27632, ROCK-1 and ROCK-2 siRNA) on Y79 cell adhesive capacity by cell adhesion assay. Cell invasion assay through matrigel was used to study the effect of ROCK inhibitors on Y79 cell invasive capacity.

Results

The expression of mRNA of ROCK-1 was more than that of ROCK-2 in the Y79 cell line. The protein expression levels of ROCK-1 and ROCK-2 were downregulated in the cells transfected with siRNA. Y-27632 treatment didn’t lead to any changes of Y79 cells proliferation. Adhesive ability of Y79 cells was enhanced following Y-27632 or ROCK-1 siRNA treatment. The invasive capacity of Y79 cells showed an inverse relationship with increasing Y-27632 concentration. Invasiveness of Y79 cells also decreased in Y79 cells transfected with ROCK-1 siRNA. However, there was no change in adhesive ability or invasive capacity in Y79 cells transfected with siRNA against ROCK-2.

Conclusions

The findings of this study demonstrate that ROCK-1 protein plays a key role in regulating metastasis and invasion of Y79 cells, suggesting that the ROCK-1 dependent pathway may be a potential target for therapy of Rb.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jabbour P, Chalouhi N, Tjoumakaris S, Gonzalez LF, Dumont AS, Chitale R, Rosenwasser R, Bianciotto CG, Shields C: Pearls and pitfalls of intraarterial chemotherapy for retinoblastoma. J Neurosurg Pediatr. 2012, 10 (3): 175-181. 10.3171/2012.5.PEDS1277.CrossRefPubMed Jabbour P, Chalouhi N, Tjoumakaris S, Gonzalez LF, Dumont AS, Chitale R, Rosenwasser R, Bianciotto CG, Shields C: Pearls and pitfalls of intraarterial chemotherapy for retinoblastoma. J Neurosurg Pediatr. 2012, 10 (3): 175-181. 10.3171/2012.5.PEDS1277.CrossRefPubMed
2.
go back to reference Abramson DH: Retinoblastoma: diagnosis and management. CA Cancer J Clin. 1982, 32 (3): 130-140. 10.3322/canjclin.32.3.130.CrossRefPubMed Abramson DH: Retinoblastoma: diagnosis and management. CA Cancer J Clin. 1982, 32 (3): 130-140. 10.3322/canjclin.32.3.130.CrossRefPubMed
3.
go back to reference Lawler K, Foran E, O’Sullivan G, Long A, Kenny D: Mobility and invasiveness of metastatic esophageal cancer are potentiated by shear stress in a ROCK- and Ras-dependent manner. Am J Physiol Cell Physiol. 2006, 291 (4): C668-C677. 10.1152/ajpcell.00626.2005.CrossRefPubMed Lawler K, Foran E, O’Sullivan G, Long A, Kenny D: Mobility and invasiveness of metastatic esophageal cancer are potentiated by shear stress in a ROCK- and Ras-dependent manner. Am J Physiol Cell Physiol. 2006, 291 (4): C668-C677. 10.1152/ajpcell.00626.2005.CrossRefPubMed
4.
go back to reference Schofield AV, Steel R, Bernard O: Rho-associated Coiled-coil Kinase (ROCK) protein controls microtubule dynamics in a novel signaling pathway that regulates cell migration. J Biol Chem. 2012, 287 (52): 43620-43629. 10.1074/jbc.M112.394965.CrossRefPubMedPubMedCentral Schofield AV, Steel R, Bernard O: Rho-associated Coiled-coil Kinase (ROCK) protein controls microtubule dynamics in a novel signaling pathway that regulates cell migration. J Biol Chem. 2012, 287 (52): 43620-43629. 10.1074/jbc.M112.394965.CrossRefPubMedPubMedCentral
5.
go back to reference Nakagawa H, Yoshioka K, Miyahara E, Fukushima Y, Tamura M, Itoh K: Intrathecal administration of Y-27632, a specific Rho-associated kinase inhibitor, for rat neoplastic meningitis. Mol Cancer Res. 2005, 3 (8): 425-433. 10.1158/1541-7786.MCR-05-0002.CrossRefPubMed Nakagawa H, Yoshioka K, Miyahara E, Fukushima Y, Tamura M, Itoh K: Intrathecal administration of Y-27632, a specific Rho-associated kinase inhibitor, for rat neoplastic meningitis. Mol Cancer Res. 2005, 3 (8): 425-433. 10.1158/1541-7786.MCR-05-0002.CrossRefPubMed
6.
go back to reference Riento K, Ridley AJ: Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol. 2003, 4 (6): 446-456. 10.1038/nrm1128.CrossRefPubMed Riento K, Ridley AJ: Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol. 2003, 4 (6): 446-456. 10.1038/nrm1128.CrossRefPubMed
7.
go back to reference Shimada T, Nishimura Y, Nishiuma T, Rikitake Y, Hirase T, Yokoyama M: Adenoviral transfer of rho family proteins to lung cancer cells ameliorates cell proliferation and motility and increases apoptotic change. Kobe J Med Sci. 2007, 53 (3): 125-134.PubMed Shimada T, Nishimura Y, Nishiuma T, Rikitake Y, Hirase T, Yokoyama M: Adenoviral transfer of rho family proteins to lung cancer cells ameliorates cell proliferation and motility and increases apoptotic change. Kobe J Med Sci. 2007, 53 (3): 125-134.PubMed
8.
go back to reference Ro¨sel D, Bra’bek J, Tolde O, Mierke CT, Zitterbart DP, Raupach C, Bicanova’ K, Kollmannsberger P, Pankova’ D, Vesely P, et al: Up-regulation of Rho/ROCK signaling in sarcoma cells drives invasion and increased generation of protrusive forces. Mol Cancer Res. 2008, 6 (9): 1410-1420. 10.1158/1541-7786.MCR-07-2174.CrossRef Ro¨sel D, Bra’bek J, Tolde O, Mierke CT, Zitterbart DP, Raupach C, Bicanova’ K, Kollmannsberger P, Pankova’ D, Vesely P, et al: Up-regulation of Rho/ROCK signaling in sarcoma cells drives invasion and increased generation of protrusive forces. Mol Cancer Res. 2008, 6 (9): 1410-1420. 10.1158/1541-7786.MCR-07-2174.CrossRef
9.
go back to reference Xue F, Takahara T, Yata Y, Xia Q, Nonome K, Shinno E, Kanayama M, Takahara S, Sugiyama T: Blockade of Rho/Rho-associated coiled coil-forming kinase signaling can prevent progression of hepatocellular carcinoma in matrix metalloproteinase-dependent manner. Hepatol Res. 2008, 38 (8): 810-817. 10.1111/j.1872-034X.2008.00333.x.CrossRefPubMed Xue F, Takahara T, Yata Y, Xia Q, Nonome K, Shinno E, Kanayama M, Takahara S, Sugiyama T: Blockade of Rho/Rho-associated coiled coil-forming kinase signaling can prevent progression of hepatocellular carcinoma in matrix metalloproteinase-dependent manner. Hepatol Res. 2008, 38 (8): 810-817. 10.1111/j.1872-034X.2008.00333.x.CrossRefPubMed
10.
go back to reference Vishnubhotla R, Sun S, Huq J, Bulic M, Ramesh A, Guzman G, Cho M, Glover SC: ROCK-II mediates colon cancer invasion via regulation of MMP-2 and MMP-13 at the site of invadopodia as revealed by multiphoton imaging. Lab Invest. 2007, 87 (11): 1149-1158. 10.1038/labinvest.3700674.CrossRefPubMed Vishnubhotla R, Sun S, Huq J, Bulic M, Ramesh A, Guzman G, Cho M, Glover SC: ROCK-II mediates colon cancer invasion via regulation of MMP-2 and MMP-13 at the site of invadopodia as revealed by multiphoton imaging. Lab Invest. 2007, 87 (11): 1149-1158. 10.1038/labinvest.3700674.CrossRefPubMed
11.
go back to reference Lane J, Martin TA, Watkins G, Mansel RE, Jiang WG: The expression and prognostic value of ROCK I and ROCK II and their role in human breast cancer. Int J Oncol. 2008, 33 (3): 585-593.PubMed Lane J, Martin TA, Watkins G, Mansel RE, Jiang WG: The expression and prognostic value of ROCK I and ROCK II and their role in human breast cancer. Int J Oncol. 2008, 33 (3): 585-593.PubMed
12.
go back to reference Ishizaki T, Uehata M, Tamechika I, Keel J, Nonomura K, Maekawa M, Narumiya S: Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol Pharmacol. 2000, 57 (5): 976-983.PubMed Ishizaki T, Uehata M, Tamechika I, Keel J, Nonomura K, Maekawa M, Narumiya S: Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol Pharmacol. 2000, 57 (5): 976-983.PubMed
13.
go back to reference Routhier A, Astuccio M, Lahey D, Monfredo N, Johnson A, Callahan W, Partington A, Fellows K, Ouellette L, Zhidro S, et al: Pharmacological inhibition of Rho-kinase signaling with Y-27632 blocks melanoma tumor growth. Oncol Rep. 2010, 23 (3): 861-867.PubMed Routhier A, Astuccio M, Lahey D, Monfredo N, Johnson A, Callahan W, Partington A, Fellows K, Ouellette L, Zhidro S, et al: Pharmacological inhibition of Rho-kinase signaling with Y-27632 blocks melanoma tumor growth. Oncol Rep. 2010, 23 (3): 861-867.PubMed
14.
go back to reference Itoh K, Yoshioka K, Akedo H, Uehata M, Ishizaki T, Narumiya S: An essential part for Rho-associated kinase in the transcellular invasion of tumor cells. Nat Med. 1999, 5 (2): 221-225. 10.1038/5587.CrossRefPubMed Itoh K, Yoshioka K, Akedo H, Uehata M, Ishizaki T, Narumiya S: An essential part for Rho-associated kinase in the transcellular invasion of tumor cells. Nat Med. 1999, 5 (2): 221-225. 10.1038/5587.CrossRefPubMed
15.
go back to reference Kruger NJ: The Bradford method for protein quantitation. Methods Mol Biol. 1994, 32: 9-15.PubMed Kruger NJ: The Bradford method for protein quantitation. Methods Mol Biol. 1994, 32: 9-15.PubMed
16.
go back to reference Ishizaki T, Maekawa M, Fujisawa K, Okawa K, Iwamatsu A, Fujita A, Watanabe N, Saito Y, Kakizuka A, Morii N, et al: The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J. 1996, 15 (8): 1885-1893.PubMedPubMedCentral Ishizaki T, Maekawa M, Fujisawa K, Okawa K, Iwamatsu A, Fujita A, Watanabe N, Saito Y, Kakizuka A, Morii N, et al: The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J. 1996, 15 (8): 1885-1893.PubMedPubMedCentral
17.
go back to reference Nakagawa O, Fujisawa K, Ishizaki T, Saito Y, Nakao K, Narumiya S: ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett. 1996, 392 (2): 189-193. 10.1016/0014-5793(96)00811-3.CrossRefPubMed Nakagawa O, Fujisawa K, Ishizaki T, Saito Y, Nakao K, Narumiya S: ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett. 1996, 392 (2): 189-193. 10.1016/0014-5793(96)00811-3.CrossRefPubMed
18.
go back to reference Scott RW, Olson MF: LIM. kinases: function, regulation and association with human disease. J Mol Med. 2007, 85 (6): 555-568. 10.1007/s00109-007-0165-6.CrossRefPubMed Scott RW, Olson MF: LIM. kinases: function, regulation and association with human disease. J Mol Med. 2007, 85 (6): 555-568. 10.1007/s00109-007-0165-6.CrossRefPubMed
19.
go back to reference Ohashi K, Nagata K, Maekawa M, Ishizaki T, Narumiya S, Mizuno K: Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop. J Biol Chem. 2000, 275 (5): 3577-3582. 10.1074/jbc.275.5.3577.CrossRefPubMed Ohashi K, Nagata K, Maekawa M, Ishizaki T, Narumiya S, Mizuno K: Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop. J Biol Chem. 2000, 275 (5): 3577-3582. 10.1074/jbc.275.5.3577.CrossRefPubMed
20.
go back to reference Sumi T, Matsumoto K, Nakamura T: Specific activation of LIM kinase 2 via phosphorylation of threonine 505 by ROCK, a Rho-dependent protein kinase. J Biol Chem. 2001, 276 (1): 670-676.CrossRefPubMed Sumi T, Matsumoto K, Nakamura T: Specific activation of LIM kinase 2 via phosphorylation of threonine 505 by ROCK, a Rho-dependent protein kinase. J Biol Chem. 2001, 276 (1): 670-676.CrossRefPubMed
22.
go back to reference Worthylake RA, Lemoine S, Watson JM, Burridge K: RhoA is required for monocyte tail retraction during transendothelial migration. J Cell Biol. 2001, 154 (1): 147-160. 10.1083/jcb.200103048.CrossRefPubMedPubMedCentral Worthylake RA, Lemoine S, Watson JM, Burridge K: RhoA is required for monocyte tail retraction during transendothelial migration. J Cell Biol. 2001, 154 (1): 147-160. 10.1083/jcb.200103048.CrossRefPubMedPubMedCentral
23.
go back to reference Somlyo AV, Bradshaw D, Ramos S, Murphy C, Myers CE, Somlyo AP: Rho-kinase inhibitor retards migration and in vivo dissemination of human prostate cancer cells. Biochem Biophys Res Commun. 2000, 269 (3): 652-659. 10.1006/bbrc.2000.2343.CrossRefPubMed Somlyo AV, Bradshaw D, Ramos S, Murphy C, Myers CE, Somlyo AP: Rho-kinase inhibitor retards migration and in vivo dissemination of human prostate cancer cells. Biochem Biophys Res Commun. 2000, 269 (3): 652-659. 10.1006/bbrc.2000.2343.CrossRefPubMed
24.
go back to reference Worthylake RA, Burridge K: RhoA and ROCK promote migration by limiting membrane protrusions. J Biol Chem. 2003, 278 (15): 13578-13584. 10.1074/jbc.M211584200.CrossRefPubMed Worthylake RA, Burridge K: RhoA and ROCK promote migration by limiting membrane protrusions. J Biol Chem. 2003, 278 (15): 13578-13584. 10.1074/jbc.M211584200.CrossRefPubMed
25.
go back to reference Dawe HR, Minamide LS, Bamburg JR, Cramer LP: ADF/cofilin controls cell polarity during fibroblast migration. Curr Biol. 2003, 13 (3): 252-257. 10.1016/S0960-9822(03)00040-X.CrossRefPubMed Dawe HR, Minamide LS, Bamburg JR, Cramer LP: ADF/cofilin controls cell polarity during fibroblast migration. Curr Biol. 2003, 13 (3): 252-257. 10.1016/S0960-9822(03)00040-X.CrossRefPubMed
Metadata
Title
The effect of ROCK-1 activity change on the adhesive and invasive ability of Y79 retinoblastoma cells
Authors
Jing Wang
Xiao-Hong Liu
Zi-Jian Yang
Bing Xie
Yi-Sheng Zhong
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2014
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-14-89

Other articles of this Issue 1/2014

BMC Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine