Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1-2/2019

01-06-2019

Intracellular pH dynamics and charge-changing somatic mutations in cancer

Authors: Katharine A. White, Kyle Kisor, Diane L. Barber

Published in: Cancer and Metastasis Reviews | Issue 1-2/2019

Login to get access

Abstract

An unresolved question critical for understanding cancer is how recurring somatic mutations are retained and how selective pressures drive retention. Increased intracellular pH (pHi) is common to most cancers and is an early event in cancer development. Recent work shows that recurrent somatic mutations can confer an adaptive gain in pH sensing to mutant proteins, enhancing tumorigenic phenotypes specifically at the increased pHi of cancer. Newly identified amino acid mutation signatures in cancer suggest charge-changing mutations define and shape the mutational landscape of cancer. Taken together, these results support a new perspective on the functional significance of somatic mutations in cancer. In this review, we explore existing data and new directions for better understanding how changes in dynamic pH sensing by somatic mutation might be conferring a fitness advantage to the high pH of cancer.
Literature
1.
go back to reference Webb, B. A., Chimenti, M., Jacobson, M. P., & Barber, D. L. (2011). Dysregulated pH: a perfect storm for cancer progression. Nature Reviews Cancer, 11, 671–677.CrossRefPubMed Webb, B. A., Chimenti, M., Jacobson, M. P., & Barber, D. L. (2011). Dysregulated pH: a perfect storm for cancer progression. Nature Reviews Cancer, 11, 671–677.CrossRefPubMed
2.
go back to reference White, K. A., Grillo-Hill, B. K., & Barber, D. L. (2017). Cancer cell behaviors mediated by dysregulated pH dynamics at a glance. Journal of Cell Science, 130, 663–669.CrossRefPubMedPubMedCentral White, K. A., Grillo-Hill, B. K., & Barber, D. L. (2017). Cancer cell behaviors mediated by dysregulated pH dynamics at a glance. Journal of Cell Science, 130, 663–669.CrossRefPubMedPubMedCentral
3.
go back to reference Pedersen, S. F., & Stock, C. (2013). Ion channels and transporters in cancer: pathophysiology, regulation, and clinical potential. Cancer Research, 73, 1658–1661.CrossRefPubMed Pedersen, S. F., & Stock, C. (2013). Ion channels and transporters in cancer: pathophysiology, regulation, and clinical potential. Cancer Research, 73, 1658–1661.CrossRefPubMed
4.
go back to reference Parks, S. K., Chiche, J., & Pouyssegur, J. (2013). Disrupting proton dynamics and energy metabolism for cancer therapy. Nature Reviews Cancer, 13, 611–623.CrossRefPubMed Parks, S. K., Chiche, J., & Pouyssegur, J. (2013). Disrupting proton dynamics and energy metabolism for cancer therapy. Nature Reviews Cancer, 13, 611–623.CrossRefPubMed
5.
go back to reference Reshkin, S. J., et al. (2000). Na+/H+ exchanger-dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the development of subsequent transformation-associated phenotypes. The FASEB Journal, 14, 2185–2197.CrossRefPubMed Reshkin, S. J., et al. (2000). Na+/H+ exchanger-dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the development of subsequent transformation-associated phenotypes. The FASEB Journal, 14, 2185–2197.CrossRefPubMed
6.
go back to reference Grillo-Hill, B. K., Choi, C., Jimenez-Vidal, M., & Barber, D. L. (2015). Increased H(+) efflux is sufficient to induce dysplasia and necessary for viability with oncogene expression. Elife, 4. Grillo-Hill, B. K., Choi, C., Jimenez-Vidal, M., & Barber, D. L. (2015). Increased H(+) efflux is sufficient to induce dysplasia and necessary for viability with oncogene expression. Elife, 4.
7.
9.
go back to reference Gillies, R. J., Verduzco, D., & Gatenby, R. A. (2012). Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nature Reviews Cancer, 12, 487–493.CrossRefPubMedPubMedCentral Gillies, R. J., Verduzco, D., & Gatenby, R. A. (2012). Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nature Reviews Cancer, 12, 487–493.CrossRefPubMedPubMedCentral
10.
go back to reference Ward, S. G., & Mrsny, R. (2009). New insights into mechanisms of gastrointestinal inflammation and cancer. Current Opinion in Pharmacology, 9, 677–679.CrossRefPubMed Ward, S. G., & Mrsny, R. (2009). New insights into mechanisms of gastrointestinal inflammation and cancer. Current Opinion in Pharmacology, 9, 677–679.CrossRefPubMed
11.
go back to reference Ramachandran, S., Ient, J., Gottgens, E. L., Krieg, A. J., & Hammond, E. M. (2015). Epigenetic therapy for solid tumors: highlighting the impact of tumor hypoxia. Genes Basel, 6, 935–956.CrossRefPubMedPubMedCentral Ramachandran, S., Ient, J., Gottgens, E. L., Krieg, A. J., & Hammond, E. M. (2015). Epigenetic therapy for solid tumors: highlighting the impact of tumor hypoxia. Genes Basel, 6, 935–956.CrossRefPubMedPubMedCentral
12.
go back to reference Brahimi-Horn, M. C., Bellot, G., & Pouyssegur, J. (2011). Hypoxia and energetic tumour metabolism. Current Opinion in Genetics & Development, 21, 67–72.CrossRef Brahimi-Horn, M. C., Bellot, G., & Pouyssegur, J. (2011). Hypoxia and energetic tumour metabolism. Current Opinion in Genetics & Development, 21, 67–72.CrossRef
13.
14.
go back to reference Su, A. I., et al. (2001). Molecular classification of human carcinomas by use of gene expression signatures. Cancer Research, 61, 7388–7393.PubMed Su, A. I., et al. (2001). Molecular classification of human carcinomas by use of gene expression signatures. Cancer Research, 61, 7388–7393.PubMed
15.
go back to reference Wood, L. D., Parsons, D. W., Jones, S., Lin, J., Sjoblom, T., Leary, R. J., Shen, D., Boca, S. M., Barber, T., Ptak, J., Silliman, N., Szabo, S., Dezso, Z., Ustyanksky, V., Nikolskaya, T., Nikolsky, Y., Karchin, R., Wilson, P. A., Kaminker, J. S., Zhang, Z., Croshaw, R., Willis, J., Dawson, D., Shipitsin, M., Willson, J. K. V., Sukumar, S., Polyak, K., Park, B. H., Pethiyagoda, C. L., Pant, P. V. K., Ballinger, D. G., Sparks, A. B., Hartigan, J., Smith, D. R., Suh, E., Papadopoulos, N., Buckhaults, P., Markowitz, S. D., Parmigiani, G., Kinzler, K. W., Velculescu, V. E., & Vogelstein, B. (2007). The genomic landscapes of human breast and colorectal cancers. Science, 318, 1108–1113.CrossRefPubMed Wood, L. D., Parsons, D. W., Jones, S., Lin, J., Sjoblom, T., Leary, R. J., Shen, D., Boca, S. M., Barber, T., Ptak, J., Silliman, N., Szabo, S., Dezso, Z., Ustyanksky, V., Nikolskaya, T., Nikolsky, Y., Karchin, R., Wilson, P. A., Kaminker, J. S., Zhang, Z., Croshaw, R., Willis, J., Dawson, D., Shipitsin, M., Willson, J. K. V., Sukumar, S., Polyak, K., Park, B. H., Pethiyagoda, C. L., Pant, P. V. K., Ballinger, D. G., Sparks, A. B., Hartigan, J., Smith, D. R., Suh, E., Papadopoulos, N., Buckhaults, P., Markowitz, S. D., Parmigiani, G., Kinzler, K. W., Velculescu, V. E., & Vogelstein, B. (2007). The genomic landscapes of human breast and colorectal cancers. Science, 318, 1108–1113.CrossRefPubMed
17.
go back to reference Watanabe, N., Okochi, E., Mochizuki, M., Sugimura, T., & Ushijima, T. (2001). The presence of single nucleotide instability in human breast cancer cell lines. Cancer Research, 61, 7739–7742.PubMed Watanabe, N., Okochi, E., Mochizuki, M., Sugimura, T., & Ushijima, T. (2001). The presence of single nucleotide instability in human breast cancer cell lines. Cancer Research, 61, 7739–7742.PubMed
18.
go back to reference Bignell, G. R., Greenman, C. D., Davies, H., Butler, A. P., Edkins, S., Andrews, J. M., Buck, G., Chen, L., Beare, D., Latimer, C., Widaa, S., Hinton, J., Fahey, C., Fu, B., Swamy, S., Dalgliesh, G. L., Teh, B. T., Deloukas, P., Yang, F., Campbell, P. J., Futreal, P. A., & Stratton, M. R. (2010). Signatures of mutation and selection in the cancer genome. Nature, 463, 893–898.CrossRefPubMedPubMedCentral Bignell, G. R., Greenman, C. D., Davies, H., Butler, A. P., Edkins, S., Andrews, J. M., Buck, G., Chen, L., Beare, D., Latimer, C., Widaa, S., Hinton, J., Fahey, C., Fu, B., Swamy, S., Dalgliesh, G. L., Teh, B. T., Deloukas, P., Yang, F., Campbell, P. J., Futreal, P. A., & Stratton, M. R. (2010). Signatures of mutation and selection in the cancer genome. Nature, 463, 893–898.CrossRefPubMedPubMedCentral
19.
go back to reference Szpiech, Z. A., Strauli, N. B., White, K. A., Ruiz, D. G., Jacobson, M. P., Barber, D. L., & Hernandez, R. D. (2017). Prominent features of the amino acid mutation landscape in cancer. PLoS One, 12, e0183273.CrossRefPubMedPubMedCentral Szpiech, Z. A., Strauli, N. B., White, K. A., Ruiz, D. G., Jacobson, M. P., Barber, D. L., & Hernandez, R. D. (2017). Prominent features of the amino acid mutation landscape in cancer. PLoS One, 12, e0183273.CrossRefPubMedPubMedCentral
20.
go back to reference Anoosha, P., Sakthivel, R., & Michael Gromiha, M. (2016). Exploring preferred amino acid mutations in cancer genes: applications to identify potential drug targets. Biochimica et Biophysica Acta, 1862, 155–165.CrossRefPubMed Anoosha, P., Sakthivel, R., & Michael Gromiha, M. (2016). Exploring preferred amino acid mutations in cancer genes: applications to identify potential drug targets. Biochimica et Biophysica Acta, 1862, 155–165.CrossRefPubMed
21.
go back to reference Tan, H., Bao, J., & Zhou, X. (2015). Genome-wide mutational spectra analysis reveals significant cancer-specific heterogeneity. Scientific Reports, 5, 12566.CrossRefPubMedPubMedCentral Tan, H., Bao, J., & Zhou, X. (2015). Genome-wide mutational spectra analysis reveals significant cancer-specific heterogeneity. Scientific Reports, 5, 12566.CrossRefPubMedPubMedCentral
23.
go back to reference Pollock, D. D., Thiltgen, G., & Goldstein, R. A. (2012). Amino acid coevolution induces an evolutionary stokes shift. Proceedings of the National Academy of Sciences, 109, E1352–E1359.CrossRef Pollock, D. D., Thiltgen, G., & Goldstein, R. A. (2012). Amino acid coevolution induces an evolutionary stokes shift. Proceedings of the National Academy of Sciences, 109, E1352–E1359.CrossRef
24.
go back to reference White, K. A., Ruiz, D. G., Szpiech, Z. A., Strauli, N. B., Hernandez, R. D., Jacobson, M. P., & Barber, D. L. (2017). Cancer-associated arginine-to-histidine mutations confer a gain in pH sensing to mutant proteins. Science Signaling, 10, eaam9931.CrossRefPubMedPubMedCentral White, K. A., Ruiz, D. G., Szpiech, Z. A., Strauli, N. B., Hernandez, R. D., Jacobson, M. P., & Barber, D. L. (2017). Cancer-associated arginine-to-histidine mutations confer a gain in pH sensing to mutant proteins. Science Signaling, 10, eaam9931.CrossRefPubMedPubMedCentral
25.
go back to reference Frantz, C., Barreiro, G., Dominguez, L., Chen, X., Eddy, R., Condeelis, J., Kelly, M. J. S., Jacobson, M. P., & Barber, D. L. (2008). Cofilin is a pH sensor for actin free barbed end formation: role of phosphoinositide binding. The Journal of Cell Biology, 183, 865–879.CrossRefPubMedPubMedCentral Frantz, C., Barreiro, G., Dominguez, L., Chen, X., Eddy, R., Condeelis, J., Kelly, M. J. S., Jacobson, M. P., & Barber, D. L. (2008). Cofilin is a pH sensor for actin free barbed end formation: role of phosphoinositide binding. The Journal of Cell Biology, 183, 865–879.CrossRefPubMedPubMedCentral
26.
go back to reference Srivastava, J., Barreiro, G., Groscurth, S., Gingras, A. R., Goult, B. T., Critchley, D. R., Kelly, M. J. S., Jacobson, M. P., & Barber, D. L. (2008). Structural model and functional significance of pH-dependent talin-actin binding for focal adhesion remodeling. Proceedings of the National Academy of Sciences of the United States of America, 105, 14436–14441.CrossRefPubMedPubMedCentral Srivastava, J., Barreiro, G., Groscurth, S., Gingras, A. R., Goult, B. T., Critchley, D. R., Kelly, M. J. S., Jacobson, M. P., & Barber, D. L. (2008). Structural model and functional significance of pH-dependent talin-actin binding for focal adhesion remodeling. Proceedings of the National Academy of Sciences of the United States of America, 105, 14436–14441.CrossRefPubMedPubMedCentral
27.
go back to reference Yun, C. H., Boggon, T. J., Li, Y., Woo, M. S., Greulich, H., Meyerson, M., & Eck, M. J. (2007). Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell, 11, 217–227.CrossRefPubMedPubMedCentral Yun, C. H., Boggon, T. J., Li, Y., Woo, M. S., Greulich, H., Meyerson, M., & Eck, M. J. (2007). Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell, 11, 217–227.CrossRefPubMedPubMedCentral
28.
go back to reference Forbes, S. A., Beare, D., Boutselakis, H., Bamford, S., Bindal, N., Tate, J., Cole, C. G., Ward, S., Dawson, E., Ponting, L., Stefancsik, R., Harsha, B., Kok, C. Y., Jia, M., Jubb, H., Sondka, Z., Thompson, S., de, T., & Campbell, P. J. (2017). COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Research, 45, D777–D783.CrossRefPubMed Forbes, S. A., Beare, D., Boutselakis, H., Bamford, S., Bindal, N., Tate, J., Cole, C. G., Ward, S., Dawson, E., Ponting, L., Stefancsik, R., Harsha, B., Kok, C. Y., Jia, M., Jubb, H., Sondka, Z., Thompson, S., de, T., & Campbell, P. J. (2017). COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Research, 45, D777–D783.CrossRefPubMed
29.
go back to reference Joerger, A. C., & Fersht, A. R. (2010). The tumor suppressor p53: from structures to drug discovery. Cold Spring Harbor Perspectives in Biology, 2, a000919.CrossRefPubMedPubMedCentral Joerger, A. C., & Fersht, A. R. (2010). The tumor suppressor p53: from structures to drug discovery. Cold Spring Harbor Perspectives in Biology, 2, a000919.CrossRefPubMedPubMedCentral
30.
go back to reference Shi, Y., & Massagué, J. (2003). Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell, 113, 685–700.CrossRefPubMed Shi, Y., & Massagué, J. (2003). Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell, 113, 685–700.CrossRefPubMed
31.
go back to reference Singh, P., Srinivasan, R., & Wig, J. D. (2012). SMAD4 genetic alterations predict a worse prognosis in patients with pancreatic ductal adenocarcinoma. Pancreas, 41, 541–546.CrossRefPubMed Singh, P., Srinivasan, R., & Wig, J. D. (2012). SMAD4 genetic alterations predict a worse prognosis in patients with pancreatic ductal adenocarcinoma. Pancreas, 41, 541–546.CrossRefPubMed
32.
go back to reference Papageorgis, P., Cheng, K., Ozturk, S., Gong, Y., Lambert, A. W., Abdolmaleky, H. M., Zhou, J. R., & Thiagalingam, S. (2011). Smad4 inactivation promotes malignancy and drug resistance of colon cancer. Cancer Research, 71, 998–1008.CrossRefPubMedPubMedCentral Papageorgis, P., Cheng, K., Ozturk, S., Gong, Y., Lambert, A. W., Abdolmaleky, H. M., Zhou, J. R., & Thiagalingam, S. (2011). Smad4 inactivation promotes malignancy and drug resistance of colon cancer. Cancer Research, 71, 998–1008.CrossRefPubMedPubMedCentral
33.
go back to reference Schiro, M. M., Stauber, S. E., Peterson, T. L., Krueger, C., Darnell, S. J., Satyshur, K. A., Drinkwater, N. R., Newton, M. A., & Hoffmann, F. M. (2011). Mutations in protein-binding hot-spots on the hub protein Smad3 differentially affect its protein interactions and Smad3-regulated gene expression. PLoS One, 6, e25021.CrossRefPubMedPubMedCentral Schiro, M. M., Stauber, S. E., Peterson, T. L., Krueger, C., Darnell, S. J., Satyshur, K. A., Drinkwater, N. R., Newton, M. A., & Hoffmann, F. M. (2011). Mutations in protein-binding hot-spots on the hub protein Smad3 differentially affect its protein interactions and Smad3-regulated gene expression. PLoS One, 6, e25021.CrossRefPubMedPubMedCentral
34.
go back to reference Linder, P., & Jankowsky, E. (2011). From unwinding to clamping—the DEAD box RNA helicase family. Nature Reviews Molecular Cell Biology, 12, 505–516.CrossRefPubMed Linder, P., & Jankowsky, E. (2011). From unwinding to clamping—the DEAD box RNA helicase family. Nature Reviews Molecular Cell Biology, 12, 505–516.CrossRefPubMed
35.
go back to reference Northcott, P. A., Jones, D. T. W., Kool, M., Robinson, G. W., Gilbertson, R. J., Cho, Y. J., Pomeroy, S. L., Korshunov, A., Lichter, P., Taylor, M. D., & Pfister, S. M. (2012). Medulloblastomics: the end of the beginning. Nature Reviews. Cancer, 12, 818–834.CrossRefPubMedPubMedCentral Northcott, P. A., Jones, D. T. W., Kool, M., Robinson, G. W., Gilbertson, R. J., Cho, Y. J., Pomeroy, S. L., Korshunov, A., Lichter, P., Taylor, M. D., & Pfister, S. M. (2012). Medulloblastomics: the end of the beginning. Nature Reviews. Cancer, 12, 818–834.CrossRefPubMedPubMedCentral
36.
go back to reference Floor, S. N., Condon, K. J., Sharma, D., Jankowsky, E., & Doudna, J. A. (2016). Autoinhibitory Interdomain interactions and subfamily-specific extensions redefine the catalytic core of the human DEAD-box protein DDX3. The Journal of Biological Chemistry, 291, 2412–2421.CrossRefPubMed Floor, S. N., Condon, K. J., Sharma, D., Jankowsky, E., & Doudna, J. A. (2016). Autoinhibitory Interdomain interactions and subfamily-specific extensions redefine the catalytic core of the human DEAD-box protein DDX3. The Journal of Biological Chemistry, 291, 2412–2421.CrossRefPubMed
37.
go back to reference Sengoku, T., Nureki, O., Nakamura, A., Kobayashi, S., & Yokoyama, S. (2006). Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell, 125, 287–300.CrossRefPubMed Sengoku, T., Nureki, O., Nakamura, A., Kobayashi, S., & Yokoyama, S. (2006). Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell, 125, 287–300.CrossRefPubMed
38.
go back to reference Valentin-Vega, Y. A., Wang, Y. D., Parker, M., Patmore, D. M., Kanagaraj, A., Moore, J., Rusch, M., Finkelstein, D., Ellison, D. W., Gilbertson, R. J., Zhang, J., Kim, H. J., & Taylor, J. P. (2016). Cancer-associated DDX3X mutations drive stress granule assembly and impair global translation. Scientific Reports, 6. Valentin-Vega, Y. A., Wang, Y. D., Parker, M., Patmore, D. M., Kanagaraj, A., Moore, J., Rusch, M., Finkelstein, D., Ellison, D. W., Gilbertson, R. J., Zhang, J., Kim, H. J., & Taylor, J. P. (2016). Cancer-associated DDX3X mutations drive stress granule assembly and impair global translation. Scientific Reports, 6.
39.
go back to reference Jones, R. G., & Thompson, C. B. (2009). Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes & Development, 23, 537–548.CrossRef Jones, R. G., & Thompson, C. B. (2009). Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes & Development, 23, 537–548.CrossRef
40.
go back to reference Welcker, M., & Clurman, B. E. (2008). FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nature Reviews Cancer, 8, 83–93.CrossRefPubMed Welcker, M., & Clurman, B. E. (2008). FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nature Reviews Cancer, 8, 83–93.CrossRefPubMed
41.
go back to reference Akhoondi, S., Sun, D., von der Lehr, N., Apostolidou, S., Klotz, K., Maljukova, A., Cepeda, D., Fiegl, H., Dofou, D., Marth, C., Mueller-Holzner, E., Corcoran, M., Dagnell, M., Nejad, S. Z., Nayer, B. N., Zali, M. R., Hansson, J., Egyhazi, S., Petersson, F., Sangfelt, P., Nordgren, H., Grander, D., Reed, S. I., Widschwendter, M., Sangfelt, O., & Spruck, C. (2007). FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Research, 67, 9006–9012.CrossRefPubMed Akhoondi, S., Sun, D., von der Lehr, N., Apostolidou, S., Klotz, K., Maljukova, A., Cepeda, D., Fiegl, H., Dofou, D., Marth, C., Mueller-Holzner, E., Corcoran, M., Dagnell, M., Nejad, S. Z., Nayer, B. N., Zali, M. R., Hansson, J., Egyhazi, S., Petersson, F., Sangfelt, P., Nordgren, H., Grander, D., Reed, S. I., Widschwendter, M., Sangfelt, O., & Spruck, C. (2007). FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Research, 67, 9006–9012.CrossRefPubMed
42.
go back to reference White, K. A., Grillo-Hill, B. K., Esquivel, M., Peralta, J., Bui, V. N., Chire, I., & Barber, D. L. (2018). β-Catenin is a pH sensor with decreased stability at higher intracellular pH. The Journal of Cell Biology, 217, 3965–3976.CrossRefPubMedPubMedCentral White, K. A., Grillo-Hill, B. K., Esquivel, M., Peralta, J., Bui, V. N., Chire, I., & Barber, D. L. (2018). β-Catenin is a pH sensor with decreased stability at higher intracellular pH. The Journal of Cell Biology, 217, 3965–3976.CrossRefPubMedPubMedCentral
43.
go back to reference Isom, D. G., Castaneda, C. A., Cannon, B. R., & Garcia-Moreno, B. (2011). Large shifts in pKa values of lysine residues buried inside a protein. Proceedings of the National Academy of Sciences of the United States of America, 108, 5260–5265.CrossRefPubMedPubMedCentral Isom, D. G., Castaneda, C. A., Cannon, B. R., & Garcia-Moreno, B. (2011). Large shifts in pKa values of lysine residues buried inside a protein. Proceedings of the National Academy of Sciences of the United States of America, 108, 5260–5265.CrossRefPubMedPubMedCentral
44.
go back to reference Castaneda, C. A., et al. (2009). Molecular determinants of the pKa values of Asp and Glu residues in staphylococcal nuclease. Proteins, 77, 570–588.CrossRefPubMed Castaneda, C. A., et al. (2009). Molecular determinants of the pKa values of Asp and Glu residues in staphylococcal nuclease. Proteins, 77, 570–588.CrossRefPubMed
45.
go back to reference Fang, Y., Liu, Z., Chen, Z., Xu, X., Xiao, M., Yu, Y., Zhang, Y., Zhang, X., du, Y., Jiang, C., Zhao, Y., Wang, Y., Fan, B., Terheyden-Keighley, D., Liu, Y., Shi, L., Hui, Y., Zhang, X., Zhang, B., Feng, H., Ma, L., Zhang, Q., Jin, G., Yang, Y., Xiang, B., Liu, L., & Zhang, X. (2017). Smad5 acts as an intracellular pH messenger and maintains bioenergetic homeostasis. Cell Research, 27, 1083–1099.CrossRefPubMedPubMedCentral Fang, Y., Liu, Z., Chen, Z., Xu, X., Xiao, M., Yu, Y., Zhang, Y., Zhang, X., du, Y., Jiang, C., Zhao, Y., Wang, Y., Fan, B., Terheyden-Keighley, D., Liu, Y., Shi, L., Hui, Y., Zhang, X., Zhang, B., Feng, H., Ma, L., Zhang, Q., Jin, G., Yang, Y., Xiang, B., Liu, L., & Zhang, X. (2017). Smad5 acts as an intracellular pH messenger and maintains bioenergetic homeostasis. Cell Research, 27, 1083–1099.CrossRefPubMedPubMedCentral
46.
go back to reference Vercoulen, Y., Kondo, Y., Iwig, J. S., Janssen, A. B., White, K. A., Amini, M., Barber, D. L., Kuriyan, J., & Roose, J. P. (2017). A histidine pH sensor regulates activation of the Ras-specific guanine nucleotide exchange factor RasGRP1. Elife, 6, e29002.CrossRefPubMedPubMedCentral Vercoulen, Y., Kondo, Y., Iwig, J. S., Janssen, A. B., White, K. A., Amini, M., Barber, D. L., Kuriyan, J., & Roose, J. P. (2017). A histidine pH sensor regulates activation of the Ras-specific guanine nucleotide exchange factor RasGRP1. Elife, 6, e29002.CrossRefPubMedPubMedCentral
47.
go back to reference Isakoff, S. J., Engelman, J. A., Irie, H. Y., Luo, J., Brachmann, S. M., Pearline, R. V., Cantley, L. C., & Brugge, J. S. (2005). Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Research, 65, 10992–11000.CrossRefPubMed Isakoff, S. J., Engelman, J. A., Irie, H. Y., Luo, J., Brachmann, S. M., Pearline, R. V., Cantley, L. C., & Brugge, J. S. (2005). Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Research, 65, 10992–11000.CrossRefPubMed
49.
go back to reference Huang, C. H., Mandelker, D., Gabelli, S. B., & Amzel, L. M. (2008). Insights into the oncogenic effects of PIK3CA mutations from the structure of p110alpha/p85alpha. Cell Cycle, 7, 1151–1156.CrossRefPubMed Huang, C. H., Mandelker, D., Gabelli, S. B., & Amzel, L. M. (2008). Insights into the oncogenic effects of PIK3CA mutations from the structure of p110alpha/p85alpha. Cell Cycle, 7, 1151–1156.CrossRefPubMed
50.
go back to reference Mandelker, D., Gabelli, S. B., Schmidt-Kittler, O., Zhu, J., Cheong, I., Huang, C. H., Kinzler, K. W., Vogelstein, B., & Amzel, L. M. (2009). A frequent kinase domain mutation that changes the interaction between PI3Kalpha and the membrane. Proceedings of the National Academy of Sciences of the United States of America, 106, 16996–17001.CrossRefPubMedPubMedCentral Mandelker, D., Gabelli, S. B., Schmidt-Kittler, O., Zhu, J., Cheong, I., Huang, C. H., Kinzler, K. W., Vogelstein, B., & Amzel, L. M. (2009). A frequent kinase domain mutation that changes the interaction between PI3Kalpha and the membrane. Proceedings of the National Academy of Sciences of the United States of America, 106, 16996–17001.CrossRefPubMedPubMedCentral
51.
go back to reference Miled, N., Yan, Y., Hon, W. C., Perisic, O., Zvelebil, M., Inbar, Y., Schneidman-Duhovny, D., Wolfson, H. J., Backer, J. M., & Williams, R. L. (2007). Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science, 317, 239–242.CrossRefPubMed Miled, N., Yan, Y., Hon, W. C., Perisic, O., Zvelebil, M., Inbar, Y., Schneidman-Duhovny, D., Wolfson, H. J., Backer, J. M., & Williams, R. L. (2007). Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science, 317, 239–242.CrossRefPubMed
52.
go back to reference Zhao, L., & Vogt, P. K. (2010). Hot-spot mutations in p110alpha of phosphatidylinositol 3-kinase (pI3K): differential interactions with the regulatory subunit p85 and with RAS. Cell Cycle, 9, 596–600.CrossRefPubMed Zhao, L., & Vogt, P. K. (2010). Hot-spot mutations in p110alpha of phosphatidylinositol 3-kinase (pI3K): differential interactions with the regulatory subunit p85 and with RAS. Cell Cycle, 9, 596–600.CrossRefPubMed
53.
go back to reference Hatsell, S. J., Idone, V., Wolken, D. M. A., Huang, L., Kim, H. J., Wang, L., Wen, X., Nannuru, K. C., Jimenez, J., Xie, L., Das, N., Makhoul, G., Chernomorsky, R., D’Ambrosio, D., Corpina, R. A., Schoenherr, C. J., Feeley, K., Yu, P. B., Yancopoulos, G. D., Murphy, A. J., & Economides, A. N. (2015). ACVR1R206H receptor mutation causes fibrodysplasia ossificans progressiva by imparting responsiveness to activin A. Science Translational Medicine, 7, 303ra137–303ra137.CrossRefPubMedPubMedCentral Hatsell, S. J., Idone, V., Wolken, D. M. A., Huang, L., Kim, H. J., Wang, L., Wen, X., Nannuru, K. C., Jimenez, J., Xie, L., Das, N., Makhoul, G., Chernomorsky, R., D’Ambrosio, D., Corpina, R. A., Schoenherr, C. J., Feeley, K., Yu, P. B., Yancopoulos, G. D., Murphy, A. J., & Economides, A. N. (2015). ACVR1R206H receptor mutation causes fibrodysplasia ossificans progressiva by imparting responsiveness to activin A. Science Translational Medicine, 7, 303ra137–303ra137.CrossRefPubMedPubMedCentral
54.
go back to reference Haupt, J., Stanley, A., McLeod, C. M., Cosgrove, B. D., Culbert, A. L., Wang, L., Mourkioti, F., Mauck, R. L., & Shore, E. M. (2018). ACVR1R206H FOP mutation alters mechanosensing and tissue stiffness during heterotopic ossification. Molecular Biology of the Cell (MBoC), 30, 17–29. https://doi.org/10.1091/mbc.E18-05-0311.CrossRef Haupt, J., Stanley, A., McLeod, C. M., Cosgrove, B. D., Culbert, A. L., Wang, L., Mourkioti, F., Mauck, R. L., & Shore, E. M. (2018). ACVR1R206H FOP mutation alters mechanosensing and tissue stiffness during heterotopic ossification. Molecular Biology of the Cell (MBoC), 30, 17–29. https://​doi.​org/​10.​1091/​mbc.​E18-05-0311.CrossRef
55.
go back to reference Buczkowicz, P., Hoeman, C., Rakopoulos, P., Pajovic, S., Letourneau, L., Dzamba, M., Morrison, A., Lewis, P., Bouffet, E., Bartels, U., Zuccaro, J., Agnihotri, S., Ryall, S., Barszczyk, M., Chornenkyy, Y., Bourgey, M., Bourque, G., Montpetit, A., Cordero, F., Castelo-Branco, P., Mangerel, J., Tabori, U., Ho, K. C., Huang, A., Taylor, K. R., Mackay, A., Bendel, A. E., Nazarian, J., Fangusaro, J. R., Karajannis, M. A., Zagzag, D., Foreman, N. K., Donson, A., Hegert, J. V., Smith, A., Chan, J., Lafay-Cousin, L., Dunn, S., Hukin, J., Dunham, C., Scheinemann, K., Michaud, J., Zelcer, S., Ramsay, D., Cain, J., Brennan, C., Souweidane, M. M., Jones, C., Allis, C. D., Brudno, M., Becher, O., & Hawkins, C. (2014). Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nature Genetics, 46, 451–456.CrossRefPubMedPubMedCentral Buczkowicz, P., Hoeman, C., Rakopoulos, P., Pajovic, S., Letourneau, L., Dzamba, M., Morrison, A., Lewis, P., Bouffet, E., Bartels, U., Zuccaro, J., Agnihotri, S., Ryall, S., Barszczyk, M., Chornenkyy, Y., Bourgey, M., Bourque, G., Montpetit, A., Cordero, F., Castelo-Branco, P., Mangerel, J., Tabori, U., Ho, K. C., Huang, A., Taylor, K. R., Mackay, A., Bendel, A. E., Nazarian, J., Fangusaro, J. R., Karajannis, M. A., Zagzag, D., Foreman, N. K., Donson, A., Hegert, J. V., Smith, A., Chan, J., Lafay-Cousin, L., Dunn, S., Hukin, J., Dunham, C., Scheinemann, K., Michaud, J., Zelcer, S., Ramsay, D., Cain, J., Brennan, C., Souweidane, M. M., Jones, C., Allis, C. D., Brudno, M., Becher, O., & Hawkins, C. (2014). Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nature Genetics, 46, 451–456.CrossRefPubMedPubMedCentral
56.
go back to reference Papadopoulos, T., Schemm, R., Grubmüller, H., & Brose, N. (2015). Lipid binding defects and perturbed synaptogenic activity of a collybistin R290H mutant that causes epilepsy and intellectual disability. The Journal of Biological Chemistry, 290, 8256–8270.CrossRefPubMedPubMedCentral Papadopoulos, T., Schemm, R., Grubmüller, H., & Brose, N. (2015). Lipid binding defects and perturbed synaptogenic activity of a collybistin R290H mutant that causes epilepsy and intellectual disability. The Journal of Biological Chemistry, 290, 8256–8270.CrossRefPubMedPubMedCentral
Metadata
Title
Intracellular pH dynamics and charge-changing somatic mutations in cancer
Authors
Katharine A. White
Kyle Kisor
Diane L. Barber
Publication date
01-06-2019
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1-2/2019
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-019-09791-8

Other articles of this Issue 1-2/2019

Cancer and Metastasis Reviews 1-2/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine