Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2017

01-12-2017

The ubiquitin-proteasome pathway in adult and pediatric brain tumors: biological insights and therapeutic opportunities

Authors: Wafik Zaky, Christa Manton, Claudia P. Miller, Soumen Khatua, Vidya Gopalakrishnan, Joya Chandra

Published in: Cancer and Metastasis Reviews | Issue 4/2017

Login to get access

Abstract

Nearly 20 years ago, the concept of targeting the proteasome for cancer therapy began gaining momentum. This concept was driven by increased understanding of the biology/structure and function of the 26S proteasome, insight into the role of the proteasome in transformed cells, and the synthesis of pharmacological inhibitors with clinically favorable features. Subsequent in vitro, in vivo, and clinical testing culminated in the FDA approval of three proteasome inhibitors—bortezomib, carfilzomib, and ixazomib—for specific hematological malignancies. However, despite in vitro and in vivo studies pointing towards efficacy in solid tumors, clinical responses broadly have been evasive. For brain tumors, a malignancy in dire need of new approaches both in adult and pediatric patients, this has also been the case. Elucidation of proteasome-dependent processes in specific types of brain tumors, the evolution of newer proteasome targeting strategies, and the use of proteasome inhibitors in combination strategies will clarify how these agents can be leveraged more effectively to treat central nervous system malignancies. Since brain tumors represent a heterogeneous subset of solid tumors, and in particular, pediatric brain tumors possess distinct biology from adult brain tumors, tailoring of proteasome inhibitor-based strategies to specific subtypes of these tumors will be critical for advancing care for affected patients, and will be discussed in this review.
Literature
1.
go back to reference Howlander N, Noone AM, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (2014) (eds). in National Cancer Institute, Bethesda, MD. Howlander N, Noone AM, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (2014) (eds). in National Cancer Institute, Bethesda, MD.
2.
go back to reference Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. Annual Review of Biochemistry, 67, 425–479.PubMedCrossRef Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. Annual Review of Biochemistry, 67, 425–479.PubMedCrossRef
4.
go back to reference Hough, R., Pratt, G., & Rechsteiner, M. (1987). Purification of two high molecular weight proteases from rabbit reticulocyte lysate. The Journal of Biological Chemistry, 262, 8303–8313.PubMed Hough, R., Pratt, G., & Rechsteiner, M. (1987). Purification of two high molecular weight proteases from rabbit reticulocyte lysate. The Journal of Biological Chemistry, 262, 8303–8313.PubMed
5.
go back to reference Waxman, L., Fagan, J. M., Tanaka, K., & Goldberg, A. L. (1985). A soluble ATP-dependent system for protein degradation from murine erythroleukemia cells. Evidence for a protease which requires ATP hydrolysis but not ubiquitin. The Journal of Biological Chemistry, 260, 11994–12000.PubMed Waxman, L., Fagan, J. M., Tanaka, K., & Goldberg, A. L. (1985). A soluble ATP-dependent system for protein degradation from murine erythroleukemia cells. Evidence for a protease which requires ATP hydrolysis but not ubiquitin. The Journal of Biological Chemistry, 260, 11994–12000.PubMed
6.
go back to reference Driscoll, J., & Goldberg, A. L. (1990). The proteasome (multicatalytic protease) is a component of the 1500-kDa proteolytic complex which degrades ubiquitin-conjugated proteins. The Journal of Biological Chemistry, 265, 4789–4792.PubMed Driscoll, J., & Goldberg, A. L. (1990). The proteasome (multicatalytic protease) is a component of the 1500-kDa proteolytic complex which degrades ubiquitin-conjugated proteins. The Journal of Biological Chemistry, 265, 4789–4792.PubMed
7.
go back to reference Ciechanover, A., Heller, H., Katz-Etzion, R., & Hershko, A. (1981). Activation of the heat-stable polypeptide of the ATP-dependent proteolytic system. Proceedings of the National Academy of Sciences of the United States of America, 78, 761–765.PubMedPubMedCentralCrossRef Ciechanover, A., Heller, H., Katz-Etzion, R., & Hershko, A. (1981). Activation of the heat-stable polypeptide of the ATP-dependent proteolytic system. Proceedings of the National Academy of Sciences of the United States of America, 78, 761–765.PubMedPubMedCentralCrossRef
8.
go back to reference Pickart, C. M., & Rose, I. A. (1985). Functional heterogeneity of ubiquitin carrier proteins. The Journal of Biological Chemistry, 260, 1573–1581.PubMed Pickart, C. M., & Rose, I. A. (1985). Functional heterogeneity of ubiquitin carrier proteins. The Journal of Biological Chemistry, 260, 1573–1581.PubMed
9.
go back to reference Hershko, A., Heller, H., Elias, S., & Ciechanover, A. (1983). Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. The Journal of Biological Chemistry, 258, 8206–8214.PubMed Hershko, A., Heller, H., Elias, S., & Ciechanover, A. (1983). Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. The Journal of Biological Chemistry, 258, 8206–8214.PubMed
10.
go back to reference van Nocker, S., & Vierstra, R. D. (1993). Multiubiquitin chains linked through lysine 48 are abundant in vivo and are competent intermediates in the ubiquitin proteolytic pathway. The Journal of Biological Chemistry, 268, 24766–24773.PubMed van Nocker, S., & Vierstra, R. D. (1993). Multiubiquitin chains linked through lysine 48 are abundant in vivo and are competent intermediates in the ubiquitin proteolytic pathway. The Journal of Biological Chemistry, 268, 24766–24773.PubMed
12.
go back to reference Eytan, E., Ganoth, D., Armon, T., & Hershko, A. (1989). ATP-dependent incorporation of 20S protease into the 26S complex that degrades proteins conjugated to ubiquitin. Proceedings of the National Academy of Sciences of the United States of America, 86, 7751–7755.PubMedPubMedCentralCrossRef Eytan, E., Ganoth, D., Armon, T., & Hershko, A. (1989). ATP-dependent incorporation of 20S protease into the 26S complex that degrades proteins conjugated to ubiquitin. Proceedings of the National Academy of Sciences of the United States of America, 86, 7751–7755.PubMedPubMedCentralCrossRef
13.
go back to reference Glickman, M. H., & Ciechanover, A. (2002). The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiological Reviews, 82, 373–428.PubMedCrossRef Glickman, M. H., & Ciechanover, A. (2002). The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiological Reviews, 82, 373–428.PubMedCrossRef
14.
go back to reference Glickman, M. H., et al. (1998). A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell, 94, 615–623.PubMedCrossRef Glickman, M. H., et al. (1998). A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell, 94, 615–623.PubMedCrossRef
15.
go back to reference Groll, M., et al. (1999). The catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational and crystallographic study. Proceedings of the National Academy of Sciences of the United States of America, 96, 10976–10983.PubMedPubMedCentralCrossRef Groll, M., et al. (1999). The catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational and crystallographic study. Proceedings of the National Academy of Sciences of the United States of America, 96, 10976–10983.PubMedPubMedCentralCrossRef
16.
go back to reference Orlowski, M., & Wilk, S. (2000). Catalytic activities of the 20 S proteasome, a multicatalytic proteinase complex. Archives of Biochemistry and Biophysics, 383, 1–16.PubMedCrossRef Orlowski, M., & Wilk, S. (2000). Catalytic activities of the 20 S proteasome, a multicatalytic proteinase complex. Archives of Biochemistry and Biophysics, 383, 1–16.PubMedCrossRef
17.
go back to reference Kisselev, A. F., & Goldberg, A. L. (2001). Proteasome inhibitors: from research tools to drug candidates. Chemistry & Biology, 8, 739–758.CrossRef Kisselev, A. F., & Goldberg, A. L. (2001). Proteasome inhibitors: from research tools to drug candidates. Chemistry & Biology, 8, 739–758.CrossRef
18.
go back to reference Rechsteiner, M., Realini, C., & Ustrell, V. (2000). The proteasome activator 11 S REG (PA28) and class I antigen presentation. Biochemical Journal, 345(Pt 1), 1–15.PubMedPubMedCentralCrossRef Rechsteiner, M., Realini, C., & Ustrell, V. (2000). The proteasome activator 11 S REG (PA28) and class I antigen presentation. Biochemical Journal, 345(Pt 1), 1–15.PubMedPubMedCentralCrossRef
19.
go back to reference Whitby, F. G., et al. (2000). Structural basis for the activation of 20S proteasomes by 11S regulators. Nature-London, 408, 115–120.PubMedCrossRef Whitby, F. G., et al. (2000). Structural basis for the activation of 20S proteasomes by 11S regulators. Nature-London, 408, 115–120.PubMedCrossRef
20.
go back to reference Rechsteiner, M., & Hill, C. P. (2005). Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. Trends in Cell Biology, 15, 27–33.PubMedCrossRef Rechsteiner, M., & Hill, C. P. (2005). Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. Trends in Cell Biology, 15, 27–33.PubMedCrossRef
21.
go back to reference Noda, C., Tanahashi, N., Shimbara, N., Hendil, K. B., & Tanaka, K. (2000). Tissue distribution of constitutive proteasomes, immunoproteasomes, and PA28 in rats. Biochemical and Biophysical Research Communications, 277, 348–354.PubMedCrossRef Noda, C., Tanahashi, N., Shimbara, N., Hendil, K. B., & Tanaka, K. (2000). Tissue distribution of constitutive proteasomes, immunoproteasomes, and PA28 in rats. Biochemical and Biophysical Research Communications, 277, 348–354.PubMedCrossRef
22.
go back to reference Chen, X., Barton, L. F., Chi, A., Clurman, B. E., & Roberts, J. M. (2007). Ubiquitin-independent degradation of cell-cycle inhibitors by the REGgamma proteasome. Molecular Cell, 26, 843–852.PubMedPubMedCentralCrossRef Chen, X., Barton, L. F., Chi, A., Clurman, B. E., & Roberts, J. M. (2007). Ubiquitin-independent degradation of cell-cycle inhibitors by the REGgamma proteasome. Molecular Cell, 26, 843–852.PubMedPubMedCentralCrossRef
23.
go back to reference Groettrup, M., et al. (1995). The interferon-gamma-inducible 11 S regulator (PA28) and the LMP2/LMP7 subunits govern the peptide production by the 20 S proteasome in vitro. The Journal of Biological Chemistry, 270, 23808–23815.PubMedCrossRef Groettrup, M., et al. (1995). The interferon-gamma-inducible 11 S regulator (PA28) and the LMP2/LMP7 subunits govern the peptide production by the 20 S proteasome in vitro. The Journal of Biological Chemistry, 270, 23808–23815.PubMedCrossRef
24.
go back to reference Cascio, P., Hilton, C., Kisselev, A. F., Rock, K. L., & Goldberg, A. L. (2001). 26S proteasomes and immunoproteasomes produce mainly N-extended versions of an antigenic peptide. The EMBO Journal, 20, 2357–2366.PubMedPubMedCentralCrossRef Cascio, P., Hilton, C., Kisselev, A. F., Rock, K. L., & Goldberg, A. L. (2001). 26S proteasomes and immunoproteasomes produce mainly N-extended versions of an antigenic peptide. The EMBO Journal, 20, 2357–2366.PubMedPubMedCentralCrossRef
25.
go back to reference Toes, R., et al. (2001). Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. The Journal of Experimental Medicine, 194, 1–12.PubMedPubMedCentralCrossRef Toes, R., et al. (2001). Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. The Journal of Experimental Medicine, 194, 1–12.PubMedPubMedCentralCrossRef
26.
go back to reference Piccinini, M., et al. (2005). Characterization of the 20S proteasome in human glioblastomas. Anticancer Research, 25, 3203–3210.PubMed Piccinini, M., et al. (2005). Characterization of the 20S proteasome in human glioblastomas. Anticancer Research, 25, 3203–3210.PubMed
29.
go back to reference Sturm, D., et al. (2012). Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell, 22, 425–437.PubMedCrossRef Sturm, D., et al. (2012). Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell, 22, 425–437.PubMedCrossRef
31.
go back to reference Korshunov, A., et al. (2015). Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathologica, 129, 669–678.PubMedCrossRef Korshunov, A., et al. (2015). Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathologica, 129, 669–678.PubMedCrossRef
32.
go back to reference Liang, M. L., et al. (2008). Tyrosine kinase expression in pediatric high grade astrocytoma. Journal of Neuro-Oncology, 87, 247–253.PubMedCrossRef Liang, M. L., et al. (2008). Tyrosine kinase expression in pediatric high grade astrocytoma. Journal of Neuro-Oncology, 87, 247–253.PubMedCrossRef
33.
go back to reference Puputti, M., et al. (2006). Amplification of KIT, PDGFRA, VEGFR2, and EGFR in gliomas. Molecular Cancer Research, 4, 927–934.PubMedCrossRef Puputti, M., et al. (2006). Amplification of KIT, PDGFRA, VEGFR2, and EGFR in gliomas. Molecular Cancer Research, 4, 927–934.PubMedCrossRef
34.
go back to reference Peschard, P., & Park, M. (2003). Escape from Cbl-mediated downregulation: a recurrent theme for oncogenic deregulation of receptor tyrosine kinases. Cancer Cell, 3, 519–523.PubMedCrossRef Peschard, P., & Park, M. (2003). Escape from Cbl-mediated downregulation: a recurrent theme for oncogenic deregulation of receptor tyrosine kinases. Cancer Cell, 3, 519–523.PubMedCrossRef
35.
go back to reference Kuchay, S., et al. (2013). FBXL2- and PTPL1-mediated degradation of p110-free p85beta regulatory subunit controls the PI(3)K signalling cascade. Nature Cell Biology, 15, 472–480.PubMedCrossRef Kuchay, S., et al. (2013). FBXL2- and PTPL1-mediated degradation of p110-free p85beta regulatory subunit controls the PI(3)K signalling cascade. Nature Cell Biology, 15, 472–480.PubMedCrossRef
37.
go back to reference Andrae, J., Gallini, R., & Betsholtz, C. (2008). Role of platelet-derived growth factors in physiology and medicine. Genes & Development, 22, 1276–1312.CrossRef Andrae, J., Gallini, R., & Betsholtz, C. (2008). Role of platelet-derived growth factors in physiology and medicine. Genes & Development, 22, 1276–1312.CrossRef
38.
go back to reference Assanah, M. C., et al. (2009). PDGF stimulates the massive expansion of glial progenitors in the neonatal forebrain. Glia, 57, 1835–1847.PubMedCrossRef Assanah, M. C., et al. (2009). PDGF stimulates the massive expansion of glial progenitors in the neonatal forebrain. Glia, 57, 1835–1847.PubMedCrossRef
39.
go back to reference Clarke, I. D., & Dirks, P. B. (2003). A human brain tumor-derived PDGFR-alpha deletion mutant is transforming. Oncogene, 22, 722–733.PubMedCrossRef Clarke, I. D., & Dirks, P. B. (2003). A human brain tumor-derived PDGFR-alpha deletion mutant is transforming. Oncogene, 22, 722–733.PubMedCrossRef
40.
go back to reference Paugh, B. S., et al. (2010). Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. Journal of Clinical Oncology, 28, 3061–3068.PubMedPubMedCentralCrossRef Paugh, B. S., et al. (2010). Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. Journal of Clinical Oncology, 28, 3061–3068.PubMedPubMedCentralCrossRef
41.
go back to reference Dai, C., et al. (2001). PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes & Development, 15, 1913–1925.CrossRef Dai, C., et al. (2001). PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes & Development, 15, 1913–1925.CrossRef
42.
go back to reference Maxwell, M., et al. (1990). Coexpression of platelet-derived growth factor (PDGF) and PDGF-receptor genes by primary human astrocytomas may contribute to their development and maintenance. The Journal of Clinical Investigation, 86, 131–140.PubMedPubMedCentralCrossRef Maxwell, M., et al. (1990). Coexpression of platelet-derived growth factor (PDGF) and PDGF-receptor genes by primary human astrocytomas may contribute to their development and maintenance. The Journal of Clinical Investigation, 86, 131–140.PubMedPubMedCentralCrossRef
43.
go back to reference N. Cancer Genome Atlas Research. (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455, 1061–1068.CrossRef N. Cancer Genome Atlas Research. (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455, 1061–1068.CrossRef
44.
go back to reference Thorarinsdottir, H. K., et al. (2008). Protein expression of platelet-derived growth factor receptor correlates with malignant histology and PTEN with survival in childhood gliomas. Clinical Cancer Research, 14, 3386–3394.PubMedPubMedCentralCrossRef Thorarinsdottir, H. K., et al. (2008). Protein expression of platelet-derived growth factor receptor correlates with malignant histology and PTEN with survival in childhood gliomas. Clinical Cancer Research, 14, 3386–3394.PubMedPubMedCentralCrossRef
45.
go back to reference Shamah, S. M., Stiles, C. D., & Guha, A. (1993). Dominant-negative mutants of platelet-derived growth factor revert the transformed phenotype of human astrocytoma cells. Molecular and Cellular Biology, 13, 7203–7212.PubMedPubMedCentralCrossRef Shamah, S. M., Stiles, C. D., & Guha, A. (1993). Dominant-negative mutants of platelet-derived growth factor revert the transformed phenotype of human astrocytoma cells. Molecular and Cellular Biology, 13, 7203–7212.PubMedPubMedCentralCrossRef
46.
47.
go back to reference Bredel, M., Pollack, I. F., Hamilton, R. L., & James, C. D. (1999). Epidermal growth factor receptor expression and gene amplification in high-grade non-brainstem gliomas of childhood. Clinical Cancer Research, 5, 1786–1792.PubMed Bredel, M., Pollack, I. F., Hamilton, R. L., & James, C. D. (1999). Epidermal growth factor receptor expression and gene amplification in high-grade non-brainstem gliomas of childhood. Clinical Cancer Research, 5, 1786–1792.PubMed
48.
go back to reference Frederick, L., Wang, X. Y., Eley, G., & James, C. D. (2000). Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Research, 60, 1383–1387.PubMed Frederick, L., Wang, X. Y., Eley, G., & James, C. D. (2000). Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Research, 60, 1383–1387.PubMed
49.
50.
go back to reference Hartman, Z., Zhao, H., & Agazie, Y. M. (2013). HER2 stabilizes EGFR and itself by altering autophosphorylation patterns in a manner that overcomes regulatory mechanisms and promotes proliferative and transformation signaling. Oncogene, 32, 4169–4180.PubMedCrossRef Hartman, Z., Zhao, H., & Agazie, Y. M. (2013). HER2 stabilizes EGFR and itself by altering autophosphorylation patterns in a manner that overcomes regulatory mechanisms and promotes proliferative and transformation signaling. Oncogene, 32, 4169–4180.PubMedCrossRef
51.
go back to reference Koochekpour, S., et al. (1997). Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Research, 57, 5391–5398.PubMed Koochekpour, S., et al. (1997). Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Research, 57, 5391–5398.PubMed
52.
go back to reference Mosesson, Y., et al. (2003). Endocytosis of receptor tyrosine kinases is driven by monoubiquitylation, not polyubiquitylation. The Journal of Biological Chemistry, 278, 21323–21326.PubMedCrossRef Mosesson, Y., et al. (2003). Endocytosis of receptor tyrosine kinases is driven by monoubiquitylation, not polyubiquitylation. The Journal of Biological Chemistry, 278, 21323–21326.PubMedCrossRef
53.
go back to reference Marmor, M. D., & Yarden, Y. (2004). Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases. Oncogene, 23, 2057–2070.PubMedCrossRef Marmor, M. D., & Yarden, Y. (2004). Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases. Oncogene, 23, 2057–2070.PubMedCrossRef
55.
go back to reference Zoncu, R., Efeyan, A., & Sabatini, D. M. (2011). mTOR: from growth signal integration to cancer, diabetes and ageing. Nature Reviews. Molecular Cell Biology, 12, 21–35.PubMedCrossRef Zoncu, R., Efeyan, A., & Sabatini, D. M. (2011). mTOR: from growth signal integration to cancer, diabetes and ageing. Nature Reviews. Molecular Cell Biology, 12, 21–35.PubMedCrossRef
56.
go back to reference Fang, D., & Liu, Y. C. (2001). Proteolysis-independent regulation of PI3K by Cbl-b-mediated ubiquitination in T cells. Nature Immunology, 2, 870–875.PubMedCrossRef Fang, D., & Liu, Y. C. (2001). Proteolysis-independent regulation of PI3K by Cbl-b-mediated ubiquitination in T cells. Nature Immunology, 2, 870–875.PubMedCrossRef
57.
go back to reference Fan, Q. W., & Weiss, W. A. (2012). Inhibition of PI3K-Akt-mTOR signaling in glioblastoma by mTORC1/2 inhibitors. Methods in Molecular Biology, 821, 349–359.PubMedPubMedCentralCrossRef Fan, Q. W., & Weiss, W. A. (2012). Inhibition of PI3K-Akt-mTOR signaling in glioblastoma by mTORC1/2 inhibitors. Methods in Molecular Biology, 821, 349–359.PubMedPubMedCentralCrossRef
58.
59.
go back to reference Olovnikov, I. A., Kravchenko, J. E., & Chumakov, P. M. (2009). Homeostatic functions of the p53 tumor suppressor: regulation of energy metabolism and antioxidant defense. Seminars in Cancer Biology, 19, 32–41.PubMedCrossRef Olovnikov, I. A., Kravchenko, J. E., & Chumakov, P. M. (2009). Homeostatic functions of the p53 tumor suppressor: regulation of energy metabolism and antioxidant defense. Seminars in Cancer Biology, 19, 32–41.PubMedCrossRef
60.
go back to reference Haupt, Y., Maya, R., Kazaz, A., & Oren, M. (1997). Mdm2 promotes the rapid degradation of p53. Nature, 387, 296–299.PubMedCrossRef Haupt, Y., Maya, R., Kazaz, A., & Oren, M. (1997). Mdm2 promotes the rapid degradation of p53. Nature, 387, 296–299.PubMedCrossRef
61.
go back to reference Momand, J., Zambetti, G. P., Olson, D. C., George, D., & Levine, A. J. (1992). The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell, 69, 1237–1245.PubMedCrossRef Momand, J., Zambetti, G. P., Olson, D. C., George, D., & Levine, A. J. (1992). The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell, 69, 1237–1245.PubMedCrossRef
63.
go back to reference Wang, X., & Jiang, X. (2012). Mdm2 and MdmX partner to regulate p53. FEBS Letters, 586, 1390–1396.PubMedCrossRef Wang, X., & Jiang, X. (2012). Mdm2 and MdmX partner to regulate p53. FEBS Letters, 586, 1390–1396.PubMedCrossRef
64.
go back to reference Love, I. M., & Grossman, S. R. (2012). It takes 15 to tango: making sense of the many ubiquitin ligases of p53. Genes & Cancer, 3, 249–263.CrossRef Love, I. M., & Grossman, S. R. (2012). It takes 15 to tango: making sense of the many ubiquitin ligases of p53. Genes & Cancer, 3, 249–263.CrossRef
65.
go back to reference Pomeroy, S. L. (1994). The p53 tumor suppressor gene and pediatric brain tumors. Current Opinion in Pediatrics, 6, 632–635.PubMedCrossRef Pomeroy, S. L. (1994). The p53 tumor suppressor gene and pediatric brain tumors. Current Opinion in Pediatrics, 6, 632–635.PubMedCrossRef
66.
go back to reference Zhukova, N., et al. (2013). Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. Journal of Clinical Oncology, 31, 2927–2935.PubMedPubMedCentralCrossRef Zhukova, N., et al. (2013). Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. Journal of Clinical Oncology, 31, 2927–2935.PubMedPubMedCentralCrossRef
67.
go back to reference Pollack, I. F., et al. (1997). The relationship between TP53 mutations and overexpression of p53 and prognosis in malignant gliomas of childhood. Cancer Research, 57, 304–309.PubMed Pollack, I. F., et al. (1997). The relationship between TP53 mutations and overexpression of p53 and prognosis in malignant gliomas of childhood. Cancer Research, 57, 304–309.PubMed
68.
go back to reference Kunkele, A., et al. (2012). Pharmacological activation of the p53 pathway by nutlin-3 exerts anti-tumoral effects in medulloblastomas. Neuro-Oncology, 14, 859–869.PubMedPubMedCentralCrossRef Kunkele, A., et al. (2012). Pharmacological activation of the p53 pathway by nutlin-3 exerts anti-tumoral effects in medulloblastomas. Neuro-Oncology, 14, 859–869.PubMedPubMedCentralCrossRef
69.
go back to reference Knoepfler, P. S., Cheng, P. F., & Eisenman, R. N. (2002). N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes & Development, 16, 2699–2712.CrossRef Knoepfler, P. S., Cheng, P. F., & Eisenman, R. N. (2002). N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes & Development, 16, 2699–2712.CrossRef
70.
go back to reference Korshunov, A., et al. (2012). Biological and clinical heterogeneity of MYCN-amplified medulloblastoma. Acta Neuropathologica, 123, 515–527.PubMedCrossRef Korshunov, A., et al. (2012). Biological and clinical heterogeneity of MYCN-amplified medulloblastoma. Acta Neuropathologica, 123, 515–527.PubMedCrossRef
71.
74.
go back to reference Choi, S. H., Wright, J. B., Gerber, S. A., & Cole, M. D. (2010). Myc protein is stabilized by suppression of a novel E3 ligase complex in cancer cells. Genes & Development, 24, 1236–1241.CrossRef Choi, S. H., Wright, J. B., Gerber, S. A., & Cole, M. D. (2010). Myc protein is stabilized by suppression of a novel E3 ligase complex in cancer cells. Genes & Development, 24, 1236–1241.CrossRef
75.
go back to reference Popov, N., Schulein, C., Jaenicke, L. A., & Eilers, M. (2010). Ubiquitylation of the amino terminus of Myc by SCF(beta-TrCP) antagonizes SCF(Fbw7)-mediated turnover. Nature Cell Biology, 12, 973–981.PubMedCrossRef Popov, N., Schulein, C., Jaenicke, L. A., & Eilers, M. (2010). Ubiquitylation of the amino terminus of Myc by SCF(beta-TrCP) antagonizes SCF(Fbw7)-mediated turnover. Nature Cell Biology, 12, 973–981.PubMedCrossRef
76.
go back to reference von der Lehr, N., et al. (2003). The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Molecular Cell, 11, 1189–1200.PubMedCrossRef von der Lehr, N., et al. (2003). The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Molecular Cell, 11, 1189–1200.PubMedCrossRef
77.
go back to reference Adhikary, S., et al. (2005). The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation. Cell, 123, 409–421.PubMedCrossRef Adhikary, S., et al. (2005). The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation. Cell, 123, 409–421.PubMedCrossRef
78.
go back to reference Zhao, X., et al. (2008). The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein. Nature Cell Biology, 10, 643–653.PubMedPubMedCentralCrossRef Zhao, X., et al. (2008). The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein. Nature Cell Biology, 10, 643–653.PubMedPubMedCentralCrossRef
79.
go back to reference Penas, C., Ramachandran, V., & Ayad, N. G. (2011). The APC/C ubiquitin ligase: from cell biology to tumorigenesis. Frontiers in Oncology, 1, 60.PubMed Penas, C., Ramachandran, V., & Ayad, N. G. (2011). The APC/C ubiquitin ligase: from cell biology to tumorigenesis. Frontiers in Oncology, 1, 60.PubMed
80.
go back to reference Hsu, J. Y., Reimann, J. D., Sorensen, C. S., Lukas, J., & Jackson, P. K. (2002). E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APC(Cdh1). Nature Cell Biology, 4, 358–366.PubMedCrossRef Hsu, J. Y., Reimann, J. D., Sorensen, C. S., Lukas, J., & Jackson, P. K. (2002). E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APC(Cdh1). Nature Cell Biology, 4, 358–366.PubMedCrossRef
81.
go back to reference Lehman, N. L., Verschuren, E. W., Hsu, J. Y., Cherry, A. M., & Jackson, P. K. (2006). Overexpression of the anaphase promoting complex/cyclosome inhibitor Emi1 leads to tetraploidy and genomic instability of p53-deficient cells. Cell Cycle, 5, 1569–1573.PubMedCrossRef Lehman, N. L., Verschuren, E. W., Hsu, J. Y., Cherry, A. M., & Jackson, P. K. (2006). Overexpression of the anaphase promoting complex/cyclosome inhibitor Emi1 leads to tetraploidy and genomic instability of p53-deficient cells. Cell Cycle, 5, 1569–1573.PubMedCrossRef
82.
go back to reference Margottin-Goguet, F., et al. (2003). Prophase destruction of Emi1 by the SCF(betaTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Developmental Cell, 4, 813–826.PubMedCrossRef Margottin-Goguet, F., et al. (2003). Prophase destruction of Emi1 by the SCF(betaTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Developmental Cell, 4, 813–826.PubMedCrossRef
83.
go back to reference Guardavaccaro, D., et al. (2003). Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo. Developmental Cell, 4, 799–812.PubMedCrossRef Guardavaccaro, D., et al. (2003). Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo. Developmental Cell, 4, 799–812.PubMedCrossRef
84.
go back to reference Carrano, A. C., Eytan, E., Hershko, A., & Pagano, M. (1999). SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biology, 1, 193–199.PubMedCrossRef Carrano, A. C., Eytan, E., Hershko, A., & Pagano, M. (1999). SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biology, 1, 193–199.PubMedCrossRef
85.
go back to reference Marti, A., Wirbelauer, C., Scheffner, M., & Krek, W. (1999). Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nature Cell Biology, 1, 14–19.PubMedCrossRef Marti, A., Wirbelauer, C., Scheffner, M., & Krek, W. (1999). Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nature Cell Biology, 1, 14–19.PubMedCrossRef
87.
go back to reference Visintin, R., Prinz, S., & Amon, A. (1997). CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science, 278, 460–463.PubMedCrossRef Visintin, R., Prinz, S., & Amon, A. (1997). CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science, 278, 460–463.PubMedCrossRef
88.
go back to reference Puram, S. V., & Bonni, A. (2011). Novel functions for the anaphase-promoting complex in neurobiology. Seminars in Cell & Developmental Biology, 22, 586–594.CrossRef Puram, S. V., & Bonni, A. (2011). Novel functions for the anaphase-promoting complex in neurobiology. Seminars in Cell & Developmental Biology, 22, 586–594.CrossRef
89.
go back to reference Lasorella, A., et al. (2006). Degradation of Id2 by the anaphase-promoting complex couples cell cycle exit and axonal growth. Nature, 442, 471–474.PubMedCrossRef Lasorella, A., et al. (2006). Degradation of Id2 by the anaphase-promoting complex couples cell cycle exit and axonal growth. Nature, 442, 471–474.PubMedCrossRef
90.
91.
go back to reference Schiffer, D., Cavalla, P., Fiano, V., Ghimenti, C., & Piva, R. (2002). Inverse relationship between p27/Kip.1 and the F-box protein Skp2 in human astrocytic gliomas by immunohistochemistry and Western blot. Neuroscience Letters, 328, 125–128.PubMedCrossRef Schiffer, D., Cavalla, P., Fiano, V., Ghimenti, C., & Piva, R. (2002). Inverse relationship between p27/Kip.1 and the F-box protein Skp2 in human astrocytic gliomas by immunohistochemistry and Western blot. Neuroscience Letters, 328, 125–128.PubMedCrossRef
92.
go back to reference Veeriah, S., et al. (2010). Somatic mutations of the Parkinson’s disease-associated gene PARK2 in glioblastoma and other human malignancies. Nature Genetics, 42, 77–82.PubMedCrossRef Veeriah, S., et al. (2010). Somatic mutations of the Parkinson’s disease-associated gene PARK2 in glioblastoma and other human malignancies. Nature Genetics, 42, 77–82.PubMedCrossRef
93.
go back to reference Ben-Neriah, Y., & Karin, M. (2011). Inflammation meets cancer, with NF-kappaB as the matchmaker. Nature Immunology, 12, 715–723.PubMedCrossRef Ben-Neriah, Y., & Karin, M. (2011). Inflammation meets cancer, with NF-kappaB as the matchmaker. Nature Immunology, 12, 715–723.PubMedCrossRef
94.
go back to reference Gilmore, T. D. (2006). Introduction to NF-kappaB: players, pathways, perspectives. Oncogene, 25, 6680–6684.PubMedCrossRef Gilmore, T. D. (2006). Introduction to NF-kappaB: players, pathways, perspectives. Oncogene, 25, 6680–6684.PubMedCrossRef
95.
go back to reference Harhaj, E. W., & Dixit, V. M. (2011). Deubiquitinases in the regulation of NF-kappaB signaling. Cell Research, 21, 22–39.PubMedCrossRef Harhaj, E. W., & Dixit, V. M. (2011). Deubiquitinases in the regulation of NF-kappaB signaling. Cell Research, 21, 22–39.PubMedCrossRef
97.
go back to reference Busino, L., et al. (2012). Fbxw7alpha- and GSK3-mediated degradation of p100 is a pro-survival mechanism in multiple myeloma. Nature Cell Biology, 14, 375–385.PubMedPubMedCentralCrossRef Busino, L., et al. (2012). Fbxw7alpha- and GSK3-mediated degradation of p100 is a pro-survival mechanism in multiple myeloma. Nature Cell Biology, 14, 375–385.PubMedPubMedCentralCrossRef
98.
go back to reference Fukushima, H., et al. (2012). SCF(Fbw7) modulates the NFkB signaling pathway by targeting NFkB2 for ubiquitination and destruction. Cell Reports, 1, 434–443.PubMedPubMedCentralCrossRef Fukushima, H., et al. (2012). SCF(Fbw7) modulates the NFkB signaling pathway by targeting NFkB2 for ubiquitination and destruction. Cell Reports, 1, 434–443.PubMedPubMedCentralCrossRef
99.
go back to reference Bredel, M., et al. (2011). NFKBIA deletion in glioblastomas. The New England Journal of Medicine, 364, 627–637.PubMedCrossRef Bredel, M., et al. (2011). NFKBIA deletion in glioblastomas. The New England Journal of Medicine, 364, 627–637.PubMedCrossRef
100.
go back to reference Wang, H., et al. (2004). Analysis of the activation status of Akt, NFkappaB, and Stat3 in human diffuse gliomas. Laboratory Investigation, 84, 941–951.PubMedCrossRef Wang, H., et al. (2004). Analysis of the activation status of Akt, NFkappaB, and Stat3 in human diffuse gliomas. Laboratory Investigation, 84, 941–951.PubMedCrossRef
101.
go back to reference Hussain, S. F., et al. (2006). The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro-Oncology, 8, 261–279.PubMedPubMedCentralCrossRef Hussain, S. F., et al. (2006). The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro-Oncology, 8, 261–279.PubMedPubMedCentralCrossRef
103.
go back to reference Kool, M., et al. (2012). Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathologica, 123, 473–484.PubMedPubMedCentralCrossRef Kool, M., et al. (2012). Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathologica, 123, 473–484.PubMedPubMedCentralCrossRef
104.
go back to reference DeSouza, R. M., Jones, B. R., Lowis, S. P., & Kurian, K. M. (2014). Pediatric medulloblastoma - update on molecular classification driving targeted therapies. Frontiers in Oncology, 4, 176.PubMedPubMedCentralCrossRef DeSouza, R. M., Jones, B. R., Lowis, S. P., & Kurian, K. M. (2014). Pediatric medulloblastoma - update on molecular classification driving targeted therapies. Frontiers in Oncology, 4, 176.PubMedPubMedCentralCrossRef
105.
go back to reference Schuller, U., et al. (2008). Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell, 14, 123–134.PubMedPubMedCentralCrossRef Schuller, U., et al. (2008). Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell, 14, 123–134.PubMedPubMedCentralCrossRef
107.
go back to reference Kool, M., et al. (2014). Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell, 25, 393–405.PubMedPubMedCentralCrossRef Kool, M., et al. (2014). Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell, 25, 393–405.PubMedPubMedCentralCrossRef
108.
109.
go back to reference Zurawel, R. H., Chiappa, S. A., Allen, C., & Raffel, C. (1998). Sporadic medulloblastomas contain oncogenic beta-catenin mutations. Cancer Research, 58, 896–899.PubMed Zurawel, R. H., Chiappa, S. A., Allen, C., & Raffel, C. (1998). Sporadic medulloblastomas contain oncogenic beta-catenin mutations. Cancer Research, 58, 896–899.PubMed
111.
go back to reference Rausch, T., et al. (2012). Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell, 148, 59–71.PubMedPubMedCentralCrossRef Rausch, T., et al. (2012). Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell, 148, 59–71.PubMedPubMedCentralCrossRef
113.
go back to reference Vriend, J., Ghavami, S., & Marzban, H. (2015). The role of the ubiquitin proteasome system in cerebellar development and medulloblastoma. Molecular Brain, 8, 64.PubMedPubMedCentralCrossRef Vriend, J., Ghavami, S., & Marzban, H. (2015). The role of the ubiquitin proteasome system in cerebellar development and medulloblastoma. Molecular Brain, 8, 64.PubMedPubMedCentralCrossRef
114.
go back to reference Alvarez-Rodriguez, R., Barzi, M., Berenguer, J., & Pons, S. (2007). Bone morphogenetic protein 2 opposes Shh-mediated proliferation in cerebellar granule cells through a TIEG-1-based regulation of Nmyc. The Journal of Biological Chemistry, 282, 37170–37180.PubMedCrossRef Alvarez-Rodriguez, R., Barzi, M., Berenguer, J., & Pons, S. (2007). Bone morphogenetic protein 2 opposes Shh-mediated proliferation in cerebellar granule cells through a TIEG-1-based regulation of Nmyc. The Journal of Biological Chemistry, 282, 37170–37180.PubMedCrossRef
116.
go back to reference Wodarz, A., & Nusse, R. (1998). Mechanisms of Wnt signaling in development. Annual Review of Cell and Developmental Biology, 14, 59–88.PubMedCrossRef Wodarz, A., & Nusse, R. (1998). Mechanisms of Wnt signaling in development. Annual Review of Cell and Developmental Biology, 14, 59–88.PubMedCrossRef
117.
go back to reference Mikesch, J. H., Steffen, B., Berdel, W. E., Serve, H., & Muller-Tidow, C. (2007). The emerging role of Wnt signaling in the pathogenesis of acute myeloid leukemia. Leukemia, 21, 1638–1647.PubMedCrossRef Mikesch, J. H., Steffen, B., Berdel, W. E., Serve, H., & Muller-Tidow, C. (2007). The emerging role of Wnt signaling in the pathogenesis of acute myeloid leukemia. Leukemia, 21, 1638–1647.PubMedCrossRef
118.
go back to reference Couffinhal, T., Dufourcq, P., & Duplaa, C. (2006). Beta-catenin nuclear activation: common pathway between Wnt and growth factor signaling in vascular smooth muscle cell proliferation? Circulation Research, 99, 1287–1289.PubMedCrossRef Couffinhal, T., Dufourcq, P., & Duplaa, C. (2006). Beta-catenin nuclear activation: common pathway between Wnt and growth factor signaling in vascular smooth muscle cell proliferation? Circulation Research, 99, 1287–1289.PubMedCrossRef
119.
go back to reference Northcott, P. A., et al. (2011). Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct. Acta Neuropathologica, 122, 231–240.PubMedPubMedCentralCrossRef Northcott, P. A., et al. (2011). Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct. Acta Neuropathologica, 122, 231–240.PubMedPubMedCentralCrossRef
121.
go back to reference Scotting, P. J., Walker, D. A., & Perilongo, G. (2005). Childhood solid tumours: a developmental disorder. Nature Reviews. Cancer, 5, 481–488.PubMedCrossRef Scotting, P. J., Walker, D. A., & Perilongo, G. (2005). Childhood solid tumours: a developmental disorder. Nature Reviews. Cancer, 5, 481–488.PubMedCrossRef
122.
go back to reference Yue, S., Chen, Y., & Cheng, S. Y. (2009). Hedgehog signaling promotes the degradation of tumor suppressor Sufu through the ubiquitin-proteasome pathway. Oncogene, 28, 492–499.PubMedCrossRef Yue, S., Chen, Y., & Cheng, S. Y. (2009). Hedgehog signaling promotes the degradation of tumor suppressor Sufu through the ubiquitin-proteasome pathway. Oncogene, 28, 492–499.PubMedCrossRef
123.
go back to reference Kim, J. J., et al. (2011). Suppressor of fused controls mid-hindbrain patterning and cerebellar morphogenesis via GLI3 repressor. The Journal of Neuroscience, 31, 1825–1836.PubMedCrossRef Kim, J. J., et al. (2011). Suppressor of fused controls mid-hindbrain patterning and cerebellar morphogenesis via GLI3 repressor. The Journal of Neuroscience, 31, 1825–1836.PubMedCrossRef
124.
go back to reference Gulino, A., Di Marcotullio, L., Canettieri, G., De Smaele, E., & Screpanti, I. (2012). Hedgehog/Gli control by ubiquitination/acetylation interplay. Vitamins and Hormones, 88, 211–227.PubMedCrossRef Gulino, A., Di Marcotullio, L., Canettieri, G., De Smaele, E., & Screpanti, I. (2012). Hedgehog/Gli control by ubiquitination/acetylation interplay. Vitamins and Hormones, 88, 211–227.PubMedCrossRef
125.
go back to reference Lau, A. W., Fukushima, H., & Wei, W. (2012). The Fbw7 and betaTRCP E3 ubiquitin ligases and their roles in tumorigenesis. Front Biosci (Landmark Ed), 17, 2197–2212.CrossRef Lau, A. W., Fukushima, H., & Wei, W. (2012). The Fbw7 and betaTRCP E3 ubiquitin ligases and their roles in tumorigenesis. Front Biosci (Landmark Ed), 17, 2197–2212.CrossRef
126.
go back to reference Forget, A., et al. (2014). Shh signaling protects Atoh1 from degradation mediated by the E3 ubiquitin ligase Huwe1 in neural precursors. Developmental Cell, 29, 649–661.PubMedCrossRef Forget, A., et al. (2014). Shh signaling protects Atoh1 from degradation mediated by the E3 ubiquitin ligase Huwe1 in neural precursors. Developmental Cell, 29, 649–661.PubMedCrossRef
127.
go back to reference Chen, D., et al. (2005). ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell, 121, 1071–1083.PubMedCrossRef Chen, D., et al. (2005). ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell, 121, 1071–1083.PubMedCrossRef
128.
go back to reference Zhao, H., Ayrault, O., Zindy, F., Kim, J. H., & Roussel, M. F. (2008). Post-transcriptional down-regulation of Atoh1/Math1 by bone morphogenic proteins suppresses medulloblastoma development. Genes & Development, 22, 722–727.CrossRef Zhao, H., Ayrault, O., Zindy, F., Kim, J. H., & Roussel, M. F. (2008). Post-transcriptional down-regulation of Atoh1/Math1 by bone morphogenic proteins suppresses medulloblastoma development. Genes & Development, 22, 722–727.CrossRef
129.
go back to reference Cao, Y., et al. (2014). Selective small molecule compounds increase BMP-2 responsiveness by inhibiting Smurf1-mediated Smad1/5 degradation. Scientific Reports, 4, 4965.PubMedPubMedCentralCrossRef Cao, Y., et al. (2014). Selective small molecule compounds increase BMP-2 responsiveness by inhibiting Smurf1-mediated Smad1/5 degradation. Scientific Reports, 4, 4965.PubMedPubMedCentralCrossRef
130.
go back to reference Babaei-Jadidi, R., et al. (2011). FBXW7 influences murine intestinal homeostasis and cancer, targeting Notch, Jun, and DEK for degradation. The Journal of Experimental Medicine, 208, 295–312.PubMedPubMedCentralCrossRef Babaei-Jadidi, R., et al. (2011). FBXW7 influences murine intestinal homeostasis and cancer, targeting Notch, Jun, and DEK for degradation. The Journal of Experimental Medicine, 208, 295–312.PubMedPubMedCentralCrossRef
131.
go back to reference Davis, R. J., Welcker, M., & Clurman, B. E. (2014). Tumor suppression by the Fbw7 ubiquitin ligase: mechanisms and opportunities. Cancer Cell, 26, 455–464.PubMedPubMedCentralCrossRef Davis, R. J., Welcker, M., & Clurman, B. E. (2014). Tumor suppression by the Fbw7 ubiquitin ligase: mechanisms and opportunities. Cancer Cell, 26, 455–464.PubMedPubMedCentralCrossRef
133.
go back to reference Hede, S. M., Savov, V., Weishaupt, H., Sangfelt, O., & Swartling, F. J. (2014). Oncoprotein stabilization in brain tumors. Oncogene, 33, 4709–4721.PubMedCrossRef Hede, S. M., Savov, V., Weishaupt, H., Sangfelt, O., & Swartling, F. J. (2014). Oncoprotein stabilization in brain tumors. Oncogene, 33, 4709–4721.PubMedCrossRef
134.
go back to reference Hartmann, W., et al. (2006). Phosphatidylinositol 3′-kinase/AKT signaling is activated in medulloblastoma cell proliferation and is associated with reduced expression of PTEN. Clinical Cancer Research, 12, 3019–3027.PubMedCrossRef Hartmann, W., et al. (2006). Phosphatidylinositol 3′-kinase/AKT signaling is activated in medulloblastoma cell proliferation and is associated with reduced expression of PTEN. Clinical Cancer Research, 12, 3019–3027.PubMedCrossRef
135.
go back to reference Wlodarski, P., Grajkowska, W., Lojek, M., Rainko, K., & Jozwiak, J. (2006). Activation of Akt and Erk pathways in medulloblastoma. Folia Neuropathologica, 44, 214–220.PubMed Wlodarski, P., Grajkowska, W., Lojek, M., Rainko, K., & Jozwiak, J. (2006). Activation of Akt and Erk pathways in medulloblastoma. Folia Neuropathologica, 44, 214–220.PubMed
136.
go back to reference Yang, F., et al. (2012). Bortezomib induces apoptosis and growth suppression in human medulloblastoma cells, associated with inhibition of AKT and NF-kB signaling, and synergizes with an ERK inhibitor. Cancer Biology & Therapy, 13, 349–357.CrossRef Yang, F., et al. (2012). Bortezomib induces apoptosis and growth suppression in human medulloblastoma cells, associated with inhibition of AKT and NF-kB signaling, and synergizes with an ERK inhibitor. Cancer Biology & Therapy, 13, 349–357.CrossRef
137.
go back to reference Van Waes, C. (2007). Nuclear factor-kappaB in development, prevention, and therapy of cancer. Clinical Cancer Research, 13, 1076–1082.PubMedCrossRef Van Waes, C. (2007). Nuclear factor-kappaB in development, prevention, and therapy of cancer. Clinical Cancer Research, 13, 1076–1082.PubMedCrossRef
138.
go back to reference Prasad, S., Ravindran, J., & Aggarwal, B. B. (2010). NF-kappaB and cancer: how intimate is this relationship. Molecular and Cellular Biochemistry, 336, 25–37.PubMedCrossRef Prasad, S., Ravindran, J., & Aggarwal, B. B. (2010). NF-kappaB and cancer: how intimate is this relationship. Molecular and Cellular Biochemistry, 336, 25–37.PubMedCrossRef
139.
go back to reference Northcott, P. A., Dubuc, A. M., Pfister, S., & Taylor, M. D. (2012). Molecular subgroups of medulloblastoma. Expert Review of Neurotherapeutics, 12, 871–884.PubMedPubMedCentralCrossRef Northcott, P. A., Dubuc, A. M., Pfister, S., & Taylor, M. D. (2012). Molecular subgroups of medulloblastoma. Expert Review of Neurotherapeutics, 12, 871–884.PubMedPubMedCentralCrossRef
140.
go back to reference Sunwoo, J. B., et al. (2001). Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-kappa B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clinical Cancer Research, 7, 1419–1428.PubMed Sunwoo, J. B., et al. (2001). Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-kappa B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clinical Cancer Research, 7, 1419–1428.PubMed
141.
go back to reference Adams, J. (2004). The development of proteasome inhibitors as anticancer drugs. Cancer Cell, 5, 417–421.PubMedCrossRef Adams, J. (2004). The development of proteasome inhibitors as anticancer drugs. Cancer Cell, 5, 417–421.PubMedCrossRef
142.
go back to reference Spiller, S. E., Logsdon, N. J., Deckard, L. A., & Sontheimer, H. (2011). Inhibition of nuclear factor kappa-B signaling reduces growth in medulloblastoma in vivo. BMC Cancer, 11, 136.PubMedPubMedCentralCrossRef Spiller, S. E., Logsdon, N. J., Deckard, L. A., & Sontheimer, H. (2011). Inhibition of nuclear factor kappa-B signaling reduces growth in medulloblastoma in vivo. BMC Cancer, 11, 136.PubMedPubMedCentralCrossRef
144.
go back to reference Juvekar, A., et al. (2011). Bortezomib induces nuclear translocation of IkappaBalpha resulting in gene-specific suppression of NF-kappaB—dependent transcription and induction of apoptosis in CTCL. Molecular Cancer Research, 9, 183–194.PubMedPubMedCentralCrossRef Juvekar, A., et al. (2011). Bortezomib induces nuclear translocation of IkappaBalpha resulting in gene-specific suppression of NF-kappaB—dependent transcription and induction of apoptosis in CTCL. Molecular Cancer Research, 9, 183–194.PubMedPubMedCentralCrossRef
145.
go back to reference Jariel-Encontre, I., Bossis, G., & Piechaczyk, M. (2008). Ubiquitin-independent degradation of proteins by the proteasome. Biochimica et Biophysica Acta, 1786, 153–177.PubMed Jariel-Encontre, I., Bossis, G., & Piechaczyk, M. (2008). Ubiquitin-independent degradation of proteins by the proteasome. Biochimica et Biophysica Acta, 1786, 153–177.PubMed
146.
go back to reference Pagano, M., et al. (1995). Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science, 269, 682–685.PubMedCrossRef Pagano, M., et al. (1995). Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science, 269, 682–685.PubMedCrossRef
147.
go back to reference Maddika, S., et al. (2007). Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy. Drug Resistance Updates, 10, 13–29.PubMedCrossRef Maddika, S., et al. (2007). Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy. Drug Resistance Updates, 10, 13–29.PubMedCrossRef
148.
go back to reference Epstein, F. H., Mitch, W. E., & Goldberg, A. L. (1996). Mechanisms of muscle wasting—the role of the ubiquitin–proteasome pathway. The New England Journal of Medicine, 335, 1897–1905.CrossRef Epstein, F. H., Mitch, W. E., & Goldberg, A. L. (1996). Mechanisms of muscle wasting—the role of the ubiquitin–proteasome pathway. The New England Journal of Medicine, 335, 1897–1905.CrossRef
149.
go back to reference Groll, M., Berkers, C. R., Ploegh, H. L., & Ovaa, H. (2006). Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure, 14, 451–456.PubMedCrossRef Groll, M., Berkers, C. R., Ploegh, H. L., & Ovaa, H. (2006). Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure, 14, 451–456.PubMedCrossRef
150.
go back to reference Berkers, C. R., et al. (2005). Activity probe for in vivo profiling of the specificity of proteasome inhibitor bortezomib. Nature Methods, 2, 357–362.PubMedCrossRef Berkers, C. R., et al. (2005). Activity probe for in vivo profiling of the specificity of proteasome inhibitor bortezomib. Nature Methods, 2, 357–362.PubMedCrossRef
151.
go back to reference Hideshima, T., et al. (2001). The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Research, 61, 3071–3076.PubMed Hideshima, T., et al. (2001). The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Research, 61, 3071–3076.PubMed
152.
go back to reference Jagannath, S., et al. (2004). A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. British Journal of Haematology, 127, 165–172.PubMedCrossRef Jagannath, S., et al. (2004). A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. British Journal of Haematology, 127, 165–172.PubMedCrossRef
153.
go back to reference Richardson, P. G., et al. (2007). Extended follow-up of a phase 3 trial in relapsed multiple myeloma: final time-to-event results of the APEX trial. Blood, 110, 3557–3560.PubMedCrossRef Richardson, P. G., et al. (2007). Extended follow-up of a phase 3 trial in relapsed multiple myeloma: final time-to-event results of the APEX trial. Blood, 110, 3557–3560.PubMedCrossRef
154.
go back to reference Kane, R. C., Bross, P. F., Farrell, A. T., & Pazdur, R. (2003). Velcade: U.S. FDA approval for the treatment of multiple myeloma progressing on prior therapy. The Oncologist, 8, 508–513.PubMedCrossRef Kane, R. C., Bross, P. F., Farrell, A. T., & Pazdur, R. (2003). Velcade: U.S. FDA approval for the treatment of multiple myeloma progressing on prior therapy. The Oncologist, 8, 508–513.PubMedCrossRef
155.
go back to reference Kane, R. C., Farrell, A. T., Sridhara, R., & Pazdur, R. (2006). United States Food and Drug Administration approval summary: bortezomib for the treatment of progressive multiple myeloma after one prior therapy. Clinical cancer research : an official journal of the American Association for Cancer Research, 12, 2955–2960.CrossRef Kane, R. C., Farrell, A. T., Sridhara, R., & Pazdur, R. (2006). United States Food and Drug Administration approval summary: bortezomib for the treatment of progressive multiple myeloma after one prior therapy. Clinical cancer research : an official journal of the American Association for Cancer Research, 12, 2955–2960.CrossRef
156.
go back to reference Kane, R. C., et al. (2007). Bortezomib for the treatment of mantle cell lymphoma. Clinical cancer research : an official journal of the American Association for Cancer Research, 13, 5291–5294.CrossRef Kane, R. C., et al. (2007). Bortezomib for the treatment of mantle cell lymphoma. Clinical cancer research : an official journal of the American Association for Cancer Research, 13, 5291–5294.CrossRef
157.
go back to reference Potts, B. C., et al. (2011). Marizomib, a proteasome inhibitor for all seasons: preclinical profile and a framework for clinical trials. Current Cancer Drug Targets, 11, 254–284.PubMedPubMedCentralCrossRef Potts, B. C., et al. (2011). Marizomib, a proteasome inhibitor for all seasons: preclinical profile and a framework for clinical trials. Current Cancer Drug Targets, 11, 254–284.PubMedPubMedCentralCrossRef
158.
go back to reference Millward, M., et al. (2011). Phase 1 clinical trial of the novel proteasome inhibitor marizomib with the histone deacetylase inhibitor vorinostat in patients with melanoma, pancreatic and lung cancer based on in vitro assessments of the combination. Investigational New Drugs, 30, 2303–2317.PubMedCrossRef Millward, M., et al. (2011). Phase 1 clinical trial of the novel proteasome inhibitor marizomib with the histone deacetylase inhibitor vorinostat in patients with melanoma, pancreatic and lung cancer based on in vitro assessments of the combination. Investigational New Drugs, 30, 2303–2317.PubMedCrossRef
159.
go back to reference Williams, P. G., et al. (2005). New cytotoxic salinosporamides from the marine Actinomycete Salinispora tropica. The Journal of Organic Chemistry, 70, 6196–6203.PubMedCrossRef Williams, P. G., et al. (2005). New cytotoxic salinosporamides from the marine Actinomycete Salinispora tropica. The Journal of Organic Chemistry, 70, 6196–6203.PubMedCrossRef
160.
go back to reference Corey, E. J., & Li, W. D. (1999). Total synthesis and biological activity of lactacystin, omuralide and analogs. Chemical & Pharmaceutical Bulletin, 47, 1–10.CrossRef Corey, E. J., & Li, W. D. (1999). Total synthesis and biological activity of lactacystin, omuralide and analogs. Chemical & Pharmaceutical Bulletin, 47, 1–10.CrossRef
161.
go back to reference Feling, R. H., et al. (2003). Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angewandte Chemie (International Ed. in English), 42, 355–357.CrossRef Feling, R. H., et al. (2003). Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angewandte Chemie (International Ed. in English), 42, 355–357.CrossRef
162.
go back to reference Groll, M., Huber, R., & Potts, B. C. M. (2006). Crystal structures of Salinosporamide A (NPI-0052) and B (NPI-0047) in complex with the 20S proteasome reveal important consequences of beta-lactone ring opening and a mechanism for irreversible binding. Journal of the American Chemical Society, 128, 5136–5141.PubMedCrossRef Groll, M., Huber, R., & Potts, B. C. M. (2006). Crystal structures of Salinosporamide A (NPI-0052) and B (NPI-0047) in complex with the 20S proteasome reveal important consequences of beta-lactone ring opening and a mechanism for irreversible binding. Journal of the American Chemical Society, 128, 5136–5141.PubMedCrossRef
163.
go back to reference Manam, R. R., et al. (2008). Leaving groups prolong the duration of 20S proteasome inhibition and enhance the potency of salinosporamides. Journal of Medicinal Chemistry, 51, 6711–6724.PubMedCrossRef Manam, R. R., et al. (2008). Leaving groups prolong the duration of 20S proteasome inhibition and enhance the potency of salinosporamides. Journal of Medicinal Chemistry, 51, 6711–6724.PubMedCrossRef
164.
go back to reference Miller, C. P., et al. (2011). Specific and prolonged proteasome inhibition dictates apoptosis induction by marizomib and its analogs. Chemico-Biological Interactions, 194, 58–68.PubMedPubMedCentralCrossRef Miller, C. P., et al. (2011). Specific and prolonged proteasome inhibition dictates apoptosis induction by marizomib and its analogs. Chemico-Biological Interactions, 194, 58–68.PubMedPubMedCentralCrossRef
165.
go back to reference Chauhan, D., et al. (2005). A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from bortezomib. Cancer Cell, 8, 407–419.PubMedCrossRef Chauhan, D., et al. (2005). A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from bortezomib. Cancer Cell, 8, 407–419.PubMedCrossRef
166.
go back to reference Kuhn, D. J., et al. (2009). Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood, 113, 4667–4676.PubMedPubMedCentralCrossRef Kuhn, D. J., et al. (2009). Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood, 113, 4667–4676.PubMedPubMedCentralCrossRef
167.
go back to reference Muchamuel, T., et al. (2009). A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nature Medicine, 15, 781–787.PubMedCrossRef Muchamuel, T., et al. (2009). A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nature Medicine, 15, 781–787.PubMedCrossRef
168.
go back to reference Basler, M., Dajee, M., Moll, C., Groettrup, M., & Kirk, C. J. (2010). Prevention of experimental colitis by a selective inhibitor of the immunoproteasome. Journal of Immunology, 185, 634–641.CrossRef Basler, M., Dajee, M., Moll, C., Groettrup, M., & Kirk, C. J. (2010). Prevention of experimental colitis by a selective inhibitor of the immunoproteasome. Journal of Immunology, 185, 634–641.CrossRef
169.
go back to reference Ohshima-Hosoyama, S., Davare, M. A., Hosoyama, T., Nelon, L. D., & Keller, C. (2011). Bortezomib stabilizes NOXA and triggers ROS-associated apoptosis in medulloblastoma. Journal of Neuro-Oncology, 105, 475–483.PubMedCrossRef Ohshima-Hosoyama, S., Davare, M. A., Hosoyama, T., Nelon, L. D., & Keller, C. (2011). Bortezomib stabilizes NOXA and triggers ROS-associated apoptosis in medulloblastoma. Journal of Neuro-Oncology, 105, 475–483.PubMedCrossRef
170.
171.
go back to reference Taniguchi, E., et al. (2009). Bortezomib reverses a post-translational mechanism of tumorigenesis for patched1 haploinsufficiency in medulloblastoma. Pediatric Blood & Cancer, 53, 136–144.CrossRef Taniguchi, E., et al. (2009). Bortezomib reverses a post-translational mechanism of tumorigenesis for patched1 haploinsufficiency in medulloblastoma. Pediatric Blood & Cancer, 53, 136–144.CrossRef
172.
173.
go back to reference Dimopoulos, M. A., et al. (2017). Carfilzomib or bortezomib in relapsed or refractory multiple myeloma (ENDEAVOR): an interim overall survival analysis of an open-label, randomised, phase 3 trial. The Lancet Oncology, 18, 1327–1337.PubMedCrossRef Dimopoulos, M. A., et al. (2017). Carfilzomib or bortezomib in relapsed or refractory multiple myeloma (ENDEAVOR): an interim overall survival analysis of an open-label, randomised, phase 3 trial. The Lancet Oncology, 18, 1327–1337.PubMedCrossRef
174.
go back to reference Abbott, N. J., Patabendige, A. A. K., Dolman, D. E. M., Yusof, S. R., & Begley, D. J. (2010). Structure and function of the blood-brain barrier. Neurobiology of Disease, 37, 13–25.PubMedCrossRef Abbott, N. J., Patabendige, A. A. K., Dolman, D. E. M., Yusof, S. R., & Begley, D. J. (2010). Structure and function of the blood-brain barrier. Neurobiology of Disease, 37, 13–25.PubMedCrossRef
175.
go back to reference Zünkeler, B., et al. (1996). Quantification and pharmacokinetics of blood-brain barrier disruption in humans. Journal of Neurosurgery, 85, 1056–1065.PubMedCrossRef Zünkeler, B., et al. (1996). Quantification and pharmacokinetics of blood-brain barrier disruption in humans. Journal of Neurosurgery, 85, 1056–1065.PubMedCrossRef
176.
go back to reference Balyasnikova, I. V., Ferguson, S. D., Han, Y., Liu, F., & Lesniak, M. S. (2011). Therapeutic effect of neural stem cells expressing TRAIL and bortezomib in mice with glioma xenografts. Cancer Letters, 310, 148–159.PubMedPubMedCentralCrossRef Balyasnikova, I. V., Ferguson, S. D., Han, Y., Liu, F., & Lesniak, M. S. (2011). Therapeutic effect of neural stem cells expressing TRAIL and bortezomib in mice with glioma xenografts. Cancer Letters, 310, 148–159.PubMedPubMedCentralCrossRef
177.
go back to reference Asklund, T., et al. (2012). Synergistic killing of glioblastoma stem-like cells by bortezomib and HDAC inhibitors. Anticancer Research, 32, 2407–2413.PubMed Asklund, T., et al. (2012). Synergistic killing of glioblastoma stem-like cells by bortezomib and HDAC inhibitors. Anticancer Research, 32, 2407–2413.PubMed
178.
go back to reference Premkumar, D. R., Jane, E. P., Agostino, N. R., DiDomenico, J. D., & Pollack, I. F. (2013). Bortezomib-induced sensitization of malignant human glioma cells to vorinostat-induced apoptosis depends on reactive oxygen species production, mitochondrial dysfunction, Noxa upregulation, Mcl-1 cleavage, and DNA damage. Molecular Carcinogenesis, 52, 118–133.PubMedCrossRef Premkumar, D. R., Jane, E. P., Agostino, N. R., DiDomenico, J. D., & Pollack, I. F. (2013). Bortezomib-induced sensitization of malignant human glioma cells to vorinostat-induced apoptosis depends on reactive oxygen species production, mitochondrial dysfunction, Noxa upregulation, Mcl-1 cleavage, and DNA damage. Molecular Carcinogenesis, 52, 118–133.PubMedCrossRef
179.
go back to reference Friday, B. B., et al. (2012). Phase II trial of vorinostat in combination with bortezomib in recurrent glioblastoma: a north central cancer treatment group study. Neuro-Oncology, 14, 215–221.PubMedCrossRef Friday, B. B., et al. (2012). Phase II trial of vorinostat in combination with bortezomib in recurrent glioblastoma: a north central cancer treatment group study. Neuro-Oncology, 14, 215–221.PubMedCrossRef
180.
go back to reference Labussiere, M., Pinel, S., Delfortrie, S., Plenat, F., & Chastagner, P. (2008). Proteasome inhibition by bortezomib does not translate into efficacy on two malignant glioma xenografts. Oncology Reports, 20, 1283–1287.PubMed Labussiere, M., Pinel, S., Delfortrie, S., Plenat, F., & Chastagner, P. (2008). Proteasome inhibition by bortezomib does not translate into efficacy on two malignant glioma xenografts. Oncology Reports, 20, 1283–1287.PubMed
181.
182.
go back to reference Singh, A. V., et al. (2010). Pharmacodynamic and efficacy studies of the novel proteasome inhibitor NPI-0052 (marizomib) in a human plasmacytoma xenograft murine model. British Journal of Haematology, 149, 550–559.PubMedPubMedCentralCrossRef Singh, A. V., et al. (2010). Pharmacodynamic and efficacy studies of the novel proteasome inhibitor NPI-0052 (marizomib) in a human plasmacytoma xenograft murine model. British Journal of Haematology, 149, 550–559.PubMedPubMedCentralCrossRef
183.
go back to reference Di, K., et al. (2016). Marizomib activity as a single agent in malignant gliomas: ability to cross the blood-brain barrier. Neuro-Oncology, 18, 840–848.PubMedCrossRef Di, K., et al. (2016). Marizomib activity as a single agent in malignant gliomas: ability to cross the blood-brain barrier. Neuro-Oncology, 18, 840–848.PubMedCrossRef
184.
go back to reference Manton, C. A., et al. (2016). Induction of cell death by the novel proteasome inhibitor marizomib in glioblastoma in vitro and in vivo. Scientific Reports, 6, 18953.PubMedPubMedCentralCrossRef Manton, C. A., et al. (2016). Induction of cell death by the novel proteasome inhibitor marizomib in glioblastoma in vitro and in vivo. Scientific Reports, 6, 18953.PubMedPubMedCentralCrossRef
185.
go back to reference Berkowitz, A., & Walker, S. (2012). Bortezomib-induced peripheral neuropathy in patients with multiple myeloma. Clinical Journal of Oncology Nursing, 16, 86–89.PubMedCrossRef Berkowitz, A., & Walker, S. (2012). Bortezomib-induced peripheral neuropathy in patients with multiple myeloma. Clinical Journal of Oncology Nursing, 16, 86–89.PubMedCrossRef
186.
go back to reference Argyriou, A. A., Iconomou, G., & Kalofonos, H. P. (2008). Bortezomib-induced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood, 112, 1593–1599.PubMedCrossRef Argyriou, A. A., Iconomou, G., & Kalofonos, H. P. (2008). Bortezomib-induced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood, 112, 1593–1599.PubMedCrossRef
187.
go back to reference Wolf, S., Barton, D., Kottschade, L., Grothey, A., & Loprinzi, C. (2008). Chemotherapy-induced peripheral neuropathy: prevention and treatment strategies. European journal of cancer (Oxford, England : 1990), 44, 1507–1515.CrossRef Wolf, S., Barton, D., Kottschade, L., Grothey, A., & Loprinzi, C. (2008). Chemotherapy-induced peripheral neuropathy: prevention and treatment strategies. European journal of cancer (Oxford, England : 1990), 44, 1507–1515.CrossRef
188.
go back to reference Delforge, M., et al. (2010). Treatment-related peripheral neuropathy in multiple myeloma: the challenge continues. The Lancet. Oncology, 11, 1086–1095.PubMedCrossRef Delforge, M., et al. (2010). Treatment-related peripheral neuropathy in multiple myeloma: the challenge continues. The Lancet. Oncology, 11, 1086–1095.PubMedCrossRef
189.
go back to reference Zou, W., et al. (2006). Vitamin C inactivates the proteasome inhibitor PS-341 in human cancer cells. Clinical cancer research : an official journal of the American Association for Cancer Research, 12, 273–280.CrossRef Zou, W., et al. (2006). Vitamin C inactivates the proteasome inhibitor PS-341 in human cancer cells. Clinical cancer research : an official journal of the American Association for Cancer Research, 12, 273–280.CrossRef
190.
go back to reference Richardson PG et al., paper presented at the American Society of Hematology Meeting Abstract, Nov 01 2011. Richardson PG et al., paper presented at the American Society of Hematology Meeting Abstract, Nov 01 2011.
191.
go back to reference Yoo, J. Y., et al. (2014). Bortezomib-induced unfolded protein response increases oncolytic HSV-1 replication resulting in synergistic antitumor effects. Clinical Cancer Research, 20, 3787–3798.PubMedPubMedCentralCrossRef Yoo, J. Y., et al. (2014). Bortezomib-induced unfolded protein response increases oncolytic HSV-1 replication resulting in synergistic antitumor effects. Clinical Cancer Research, 20, 3787–3798.PubMedPubMedCentralCrossRef
192.
go back to reference Yoo, J. Y., et al. (2016). Bortezomib treatment sensitizes oncolytic HSV-1-treated tumors to NK cell immunotherapy. Clinical Cancer Research, 22, 5265–5276.PubMedPubMedCentralCrossRef Yoo, J. Y., et al. (2016). Bortezomib treatment sensitizes oncolytic HSV-1-treated tumors to NK cell immunotherapy. Clinical Cancer Research, 22, 5265–5276.PubMedPubMedCentralCrossRef
193.
go back to reference Leestemaker, Y., et al. (2017). Proteasome activation by small molecules. Cell Chemical Biology, 24, 725–736 e727.PubMedCrossRef Leestemaker, Y., et al. (2017). Proteasome activation by small molecules. Cell Chemical Biology, 24, 725–736 e727.PubMedCrossRef
194.
go back to reference Phuphanich, S., et al. (2010). Phase 1 clinical trial of bortezomib in adults with recurrent malignant glioma. Journal of Neuro-Oncology, 100, 95–103.PubMedCrossRef Phuphanich, S., et al. (2010). Phase 1 clinical trial of bortezomib in adults with recurrent malignant glioma. Journal of Neuro-Oncology, 100, 95–103.PubMedCrossRef
195.
go back to reference Blaney, S. M., et al. (2004). Phase I study of the proteasome inhibitor bortezomib in pediatric patients with refractory solid tumors: a Children’s Oncology Group study (ADVL0015). Journal of Clinical Oncology, 22, 4804–4809.PubMedCrossRef Blaney, S. M., et al. (2004). Phase I study of the proteasome inhibitor bortezomib in pediatric patients with refractory solid tumors: a Children’s Oncology Group study (ADVL0015). Journal of Clinical Oncology, 22, 4804–4809.PubMedCrossRef
196.
go back to reference Portnow, J., et al. (2012). A phase I study of bortezomib and temozolomide in patients with advanced solid tumors. Cancer Chemotherapy and Pharmacology, 69, 505–514.PubMedCrossRef Portnow, J., et al. (2012). A phase I study of bortezomib and temozolomide in patients with advanced solid tumors. Cancer Chemotherapy and Pharmacology, 69, 505–514.PubMedCrossRef
197.
go back to reference Yin, D., et al. (2005). Proteasome inhibitor PS-341 causes cell growth arrest and apoptosis in human glioblastoma multiforme (GBM). Oncogene, 24, 344–354.PubMedCrossRef Yin, D., et al. (2005). Proteasome inhibitor PS-341 causes cell growth arrest and apoptosis in human glioblastoma multiforme (GBM). Oncogene, 24, 344–354.PubMedCrossRef
198.
go back to reference Riordan, B., Yu, L. J., Hatsis, P., Brockman, A., Daniels, S., Stagliano, N., Finklestein, S., Ren, J., Milton, M., & Miwa, G. (2006). Study of brain and whole blood PK/PD of bortezomib in rat models. Journal of Clinical Oncology, 24, 12036. Riordan, B., Yu, L. J., Hatsis, P., Brockman, A., Daniels, S., Stagliano, N., Finklestein, S., Ren, J., Milton, M., & Miwa, G. (2006). Study of brain and whole blood PK/PD of bortezomib in rat models. Journal of Clinical Oncology, 24, 12036.
199.
go back to reference Muscal, J. A., et al. (2013). A phase I trial of vorinostat and bortezomib in children with refractory or recurrent solid tumors: a Children’s Oncology Group phase I consortium study (ADVL0916). Pediatric Blood & Cancer, 60, 390–395.CrossRef Muscal, J. A., et al. (2013). A phase I trial of vorinostat and bortezomib in children with refractory or recurrent solid tumors: a Children’s Oncology Group phase I consortium study (ADVL0916). Pediatric Blood & Cancer, 60, 390–395.CrossRef
200.
go back to reference McCracken, D. J., Celano, E. C., Voloschin, A. D., Read, W. L., & Olson, J. J. (2016). Phase I trial of dose-escalating metronomic temozolomide plus bevacizumab and bortezomib for patients with recurrent glioblastoma. Journal of Neuro-Oncology, 130, 193–201.PubMedCrossRef McCracken, D. J., Celano, E. C., Voloschin, A. D., Read, W. L., & Olson, J. J. (2016). Phase I trial of dose-escalating metronomic temozolomide plus bevacizumab and bortezomib for patients with recurrent glioblastoma. Journal of Neuro-Oncology, 130, 193–201.PubMedCrossRef
201.
go back to reference Bota, D. A., et al. (2013). Proteasome inhibition with bortezomib induces cell death in GBM stem-like cells and temozolomide-resistant glioma cell lines, but stimulates GBM stem-like cells’ VEGF production and angiogenesis. Journal of Neurosurgery, 119, 1415–1423.PubMedPubMedCentralCrossRef Bota, D. A., et al. (2013). Proteasome inhibition with bortezomib induces cell death in GBM stem-like cells and temozolomide-resistant glioma cell lines, but stimulates GBM stem-like cells’ VEGF production and angiogenesis. Journal of Neurosurgery, 119, 1415–1423.PubMedPubMedCentralCrossRef
Metadata
Title
The ubiquitin-proteasome pathway in adult and pediatric brain tumors: biological insights and therapeutic opportunities
Authors
Wafik Zaky
Christa Manton
Claudia P. Miller
Soumen Khatua
Vidya Gopalakrishnan
Joya Chandra
Publication date
01-12-2017
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2017
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-017-9700-2

Other articles of this Issue 4/2017

Cancer and Metastasis Reviews 4/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine