Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3/2017

01-09-2017

Involvement of aberrantly expressed microRNAs in the pathogenesis of head and neck squamous cell carcinoma

Authors: Keiichi Koshizuka, Toyoyuki Hanazawa, Takayuki Arai, Atsushi Okato, Naoko Kikkawa, Naohiko Seki

Published in: Cancer and Metastasis Reviews | Issue 3/2017

Login to get access

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs that act as fine-tuners of the post-transcriptional control of protein-coding or noncoding RNAs by repressing translation or cleaving RNA transcripts in a sequence-dependent manner in cells. Accumulating evidence have been indicated that aberrantly expressed miRNAs are deeply involved in human pathogenesis, including cancers. Surprisingly, these small, single-stranded RNAs (18–23 nucleotides) have been shown to function as antitumor or oncogenic RNAs in several types of cancer cells. A single miRNA has regulating hundreds or thousands of different mRNAs, and individual mRNA has been regulated by multiple different miRNAs in normal cells. Therefore, tightly controlled RNA networks can be disrupted by dysregulated of miRNAs in cancer cells. Investigation of novel miRNA-mediated RNA networks in cancer cells could provide new insights in the field of cancer research. In this review, we focus on head and neck squamous cell carcinoma (HNSCC) and discuss current findings of the involvement of aberrantly expressed miRNAs in the pathogenesis of HNSCC.
Literature
1.
go back to reference Bhartiya, D., & Scaria, V. (2016). Genomic variations in non-coding RNAs: structure, function and regulation. Genomics, 107(2–3), 59–68.PubMedCrossRef Bhartiya, D., & Scaria, V. (2016). Genomic variations in non-coding RNAs: structure, function and regulation. Genomics, 107(2–3), 59–68.PubMedCrossRef
2.
go back to reference Beermann, J., Piccoli, M. T., Viereck, J., & Thum, T. (2016). Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev, 96(4), 1297–1325.PubMedCrossRef Beermann, J., Piccoli, M. T., Viereck, J., & Thum, T. (2016). Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev, 96(4), 1297–1325.PubMedCrossRef
3.
go back to reference Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.PubMedCrossRef Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.PubMedCrossRef
5.
go back to reference Friedman, R. C., Farh, K. K., Burge, C. B., & Bartel, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res, 19(1), 92–105.PubMedPubMedCentralCrossRef Friedman, R. C., Farh, K. K., Burge, C. B., & Bartel, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res, 19(1), 92–105.PubMedPubMedCentralCrossRef
6.
7.
go back to reference Nelson, K. M., & Weiss, G. J. (2008). MicroRNAs and cancer: past, present, and potential future. Mol Cancer Ther, 7(12), 3655–3660.PubMedCrossRef Nelson, K. M., & Weiss, G. J. (2008). MicroRNAs and cancer: past, present, and potential future. Mol Cancer Ther, 7(12), 3655–3660.PubMedCrossRef
9.
go back to reference Wang, Y., Hou, J., He, D., Sun, M., Zhang, P., Yu, Y., et al. (2016). The emerging function and mechanism of ceRNAs in cancer. Trends Genet, 32(4), 211–224.PubMedPubMedCentralCrossRef Wang, Y., Hou, J., He, D., Sun, M., Zhang, P., Yu, Y., et al. (2016). The emerging function and mechanism of ceRNAs in cancer. Trends Genet, 32(4), 211–224.PubMedPubMedCentralCrossRef
10.
go back to reference Chen, L., Zhang, S., Wu, J., Cui, J., Zhong, L., Zeng, L., et al. (2017). circRNA_100290 plays a role in oral cancer by functioning as a sponge of the miR-29 family. Oncogene. doi:10.1038/onc.2017.89. Chen, L., Zhang, S., Wu, J., Cui, J., Zhong, L., Zeng, L., et al. (2017). circRNA_100290 plays a role in oral cancer by functioning as a sponge of the miR-29 family. Oncogene. doi:10.​1038/​onc.​2017.​89.
11.
go back to reference Leemans, C. R., Braakhuis, B. J., & Brakenhoff, R. H. (2011). The molecular biology of head and neck cancer. Nat Rev Cancer, 11(1), 9–22.PubMedCrossRef Leemans, C. R., Braakhuis, B. J., & Brakenhoff, R. H. (2011). The molecular biology of head and neck cancer. Nat Rev Cancer, 11(1), 9–22.PubMedCrossRef
12.
go back to reference Siegel, R. L., Miller, K. D., & Jemal, A. (2016). Cancer statistics, 2016. CA Cancer J Clin, 66(1), 7–30.PubMedCrossRef Siegel, R. L., Miller, K. D., & Jemal, A. (2016). Cancer statistics, 2016. CA Cancer J Clin, 66(1), 7–30.PubMedCrossRef
13.
go back to reference Janiszewska, J., Szaumkessel, M., & Szyfter, K. (2013). microRNAs are important players in head and neck carcinoma: a review. Crit Rev Oncol Hematol, 88(3), 716–728.PubMedCrossRef Janiszewska, J., Szaumkessel, M., & Szyfter, K. (2013). microRNAs are important players in head and neck carcinoma: a review. Crit Rev Oncol Hematol, 88(3), 716–728.PubMedCrossRef
14.
go back to reference Chung, C. H., Guthrie, V. B., Masica, D. L., Tokheim, C., Kang, H., Richmon, J., et al. (2015). Genomic alterations in head and neck squamous cell carcinoma determined by cancer gene-targeted sequencing. Ann Oncol, 26(6), 1216–1223.PubMedPubMedCentralCrossRef Chung, C. H., Guthrie, V. B., Masica, D. L., Tokheim, C., Kang, H., Richmon, J., et al. (2015). Genomic alterations in head and neck squamous cell carcinoma determined by cancer gene-targeted sequencing. Ann Oncol, 26(6), 1216–1223.PubMedPubMedCentralCrossRef
15.
16.
go back to reference Lui, V. W., Hedberg, M. L., Li, H., Vangara, B. S., Pendleton, K., Zeng, Y., et al. (2013). Frequent mutation of the PI3K pathway in head and neck cancer defines predictive biomarkers. Cancer Discov, 3(7), 761–769.PubMedPubMedCentralCrossRef Lui, V. W., Hedberg, M. L., Li, H., Vangara, B. S., Pendleton, K., Zeng, Y., et al. (2013). Frequent mutation of the PI3K pathway in head and neck cancer defines predictive biomarkers. Cancer Discov, 3(7), 761–769.PubMedPubMedCentralCrossRef
17.
go back to reference Kulasinghe, A., Perry, C., Jovanovic, L., Nelson, C., & Punyadeera, C. (2015). Circulating tumour cells in metastatic head and neck cancers. Int J Cancer, 136(11), 2515–2523.PubMedCrossRef Kulasinghe, A., Perry, C., Jovanovic, L., Nelson, C., & Punyadeera, C. (2015). Circulating tumour cells in metastatic head and neck cancers. Int J Cancer, 136(11), 2515–2523.PubMedCrossRef
18.
go back to reference Ang, K. K., Zhang, Q., Rosenthal, D. I., Nguyen-Tan, P. F., Sherman, E. J., Weber, R. S., et al. (2014). Randomized phase III trial of concurrent accelerated radiation plus cisplatin with or without cetuximab for stage III to IV head and neck carcinoma: RTOG 0522. J Clin Oncol, 32(27), 2940–2950.PubMedPubMedCentralCrossRef Ang, K. K., Zhang, Q., Rosenthal, D. I., Nguyen-Tan, P. F., Sherman, E. J., Weber, R. S., et al. (2014). Randomized phase III trial of concurrent accelerated radiation plus cisplatin with or without cetuximab for stage III to IV head and neck carcinoma: RTOG 0522. J Clin Oncol, 32(27), 2940–2950.PubMedPubMedCentralCrossRef
19.
go back to reference Sethi, N., Wright, A., Wood, H., & Rabbitts, P. (2014). MicroRNAs and head and neck cancer: reviewing the first decade of research. Eur J Cancer, 50(15), 2619–2635.PubMedCrossRef Sethi, N., Wright, A., Wood, H., & Rabbitts, P. (2014). MicroRNAs and head and neck cancer: reviewing the first decade of research. Eur J Cancer, 50(15), 2619–2635.PubMedCrossRef
20.
go back to reference Wiemer, E. A. (2007). The role of microRNAs in cancer: no small matter. Eur J Cancer, 43(10), 1529–1544.PubMedCrossRef Wiemer, E. A. (2007). The role of microRNAs in cancer: no small matter. Eur J Cancer, 43(10), 1529–1544.PubMedCrossRef
21.
go back to reference Chen, D., Cabay, R. J., Jin, Y., Wang, A., Lu, Y., Shah-Khan, M., et al. (2013). MicroRNA deregulations in head and neck squamous cell carcinomas. J Oral Maxillofac Res, 4(1), e2.PubMedPubMedCentralCrossRef Chen, D., Cabay, R. J., Jin, Y., Wang, A., Lu, Y., Shah-Khan, M., et al. (2013). MicroRNA deregulations in head and neck squamous cell carcinomas. J Oral Maxillofac Res, 4(1), e2.PubMedPubMedCentralCrossRef
22.
go back to reference Zou, A. E., Zheng, H., Saad, M. A., Rahimy, M., Ku, J., Kuo, S. Z., et al. (2016). The non-coding landscape of head and neck squamous cell carcinoma. Oncotarget, 7(32), 51211–51222.PubMedPubMedCentralCrossRef Zou, A. E., Zheng, H., Saad, M. A., Rahimy, M., Ku, J., Kuo, S. Z., et al. (2016). The non-coding landscape of head and neck squamous cell carcinoma. Oncotarget, 7(32), 51211–51222.PubMedPubMedCentralCrossRef
23.
go back to reference Kikkawa, N., Hanazawa, T., Fujimura, L., Nohata, N., Suzuki, H., Chazono, H., et al. (2010). miR-489 is a tumour-suppressive miRNA target PTPN11 in hypopharyngeal squamous cell carcinoma (HSCC). Br J Cancer, 103(6), 877–884.PubMedPubMedCentralCrossRef Kikkawa, N., Hanazawa, T., Fujimura, L., Nohata, N., Suzuki, H., Chazono, H., et al. (2010). miR-489 is a tumour-suppressive miRNA target PTPN11 in hypopharyngeal squamous cell carcinoma (HSCC). Br J Cancer, 103(6), 877–884.PubMedPubMedCentralCrossRef
24.
go back to reference Nohata, N., Hanazawa, T., Kikkawa, N., Sakurai, D., Fujimura, L., Chiyomaru, T., et al. (2011). Tumour suppressive microRNA-874 regulates novel cancer networks in maxillary sinus squamous cell carcinoma. Br J Cancer, 105(6), 833–841.PubMedPubMedCentralCrossRef Nohata, N., Hanazawa, T., Kikkawa, N., Sakurai, D., Fujimura, L., Chiyomaru, T., et al. (2011). Tumour suppressive microRNA-874 regulates novel cancer networks in maxillary sinus squamous cell carcinoma. Br J Cancer, 105(6), 833–841.PubMedPubMedCentralCrossRef
25.
go back to reference Fukumoto, I., Kinoshita, T., Hanazawa, T., Kikkawa, N., Chiyomaru, T., Enokida, H., et al. (2014). Identification of tumour suppressive microRNA-451a in hypopharyngeal squamous cell carcinoma based on microRNA expression signature. Br J Cancer, 111(2), 386–394.PubMedPubMedCentralCrossRef Fukumoto, I., Kinoshita, T., Hanazawa, T., Kikkawa, N., Chiyomaru, T., Enokida, H., et al. (2014). Identification of tumour suppressive microRNA-451a in hypopharyngeal squamous cell carcinoma based on microRNA expression signature. Br J Cancer, 111(2), 386–394.PubMedPubMedCentralCrossRef
26.
go back to reference Fukumoto, I., Hanazawa, T., Kinoshita, T., Kikkawa, N., Koshizuka, K., Goto, Y., et al. (2015). MicroRNA expression signature of oral squamous cell carcinoma: functional role of microRNA-26a/b in the modulation of novel cancer pathways. Br J Cancer, 112(5), 891–900.PubMedPubMedCentralCrossRef Fukumoto, I., Hanazawa, T., Kinoshita, T., Kikkawa, N., Koshizuka, K., Goto, Y., et al. (2015). MicroRNA expression signature of oral squamous cell carcinoma: functional role of microRNA-26a/b in the modulation of novel cancer pathways. Br J Cancer, 112(5), 891–900.PubMedPubMedCentralCrossRef
27.
go back to reference Koshizuka, K., Hanazawa, T., Fukumoto, I., Kikkawa, N., Matsushita, R., Mataki, H., et al. (2017). Dual-receptor (EGFR and c-MET) inhibition by tumor-suppressive miR-1 and miR-206 in head and neck squamous cell carcinoma. J Hum Genet, 62(1), 113–121.PubMedCrossRef Koshizuka, K., Hanazawa, T., Fukumoto, I., Kikkawa, N., Matsushita, R., Mataki, H., et al. (2017). Dual-receptor (EGFR and c-MET) inhibition by tumor-suppressive miR-1 and miR-206 in head and neck squamous cell carcinoma. J Hum Genet, 62(1), 113–121.PubMedCrossRef
28.
go back to reference Iorio, M. V., & Croce, C. M. (2012). MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med, 4(3), 143–159.PubMedPubMedCentralCrossRef Iorio, M. V., & Croce, C. M. (2012). MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med, 4(3), 143–159.PubMedPubMedCentralCrossRef
31.
go back to reference Chendrimada, T. P., Gregory, R. I., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura, K., et al. (2005). TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature, 436(7051), 740–744.PubMedPubMedCentralCrossRef Chendrimada, T. P., Gregory, R. I., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura, K., et al. (2005). TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature, 436(7051), 740–744.PubMedPubMedCentralCrossRef
32.
go back to reference Gregory, R. I., Chendrimada, T. P., Cooch, N., & Shiekhattar, R. (2005). Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell, 123(4), 631–640.PubMedCrossRef Gregory, R. I., Chendrimada, T. P., Cooch, N., & Shiekhattar, R. (2005). Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell, 123(4), 631–640.PubMedCrossRef
33.
go back to reference Hutvagner, G., & Zamore, P. D. (2002). A microRNA in a multiple-turnover RNAi enzyme complex. Science, 297(5589), 2056–2060.PubMedCrossRef Hutvagner, G., & Zamore, P. D. (2002). A microRNA in a multiple-turnover RNAi enzyme complex. Science, 297(5589), 2056–2060.PubMedCrossRef
34.
go back to reference Matranga, C., Tomari, Y., Shin, C., Bartel, D. P., & Zamore, P. D. (2005). Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell, 123(4), 607–620.PubMedCrossRef Matranga, C., Tomari, Y., Shin, C., Bartel, D. P., & Zamore, P. D. (2005). Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell, 123(4), 607–620.PubMedCrossRef
35.
go back to reference Matsushita, R., Yoshino, H., Enokida, H., Goto, Y., Miyamoto, K., Yonemori, M., et al. (2016). Regulation of UHRF1 by dual-strand tumor-suppressor microRNA-145 (miR-145-5p and miR-145-3p): inhibition of bladder cancer cell aggressiveness. Oncotarget, 7(19), 28460–28487.PubMedPubMedCentralCrossRef Matsushita, R., Yoshino, H., Enokida, H., Goto, Y., Miyamoto, K., Yonemori, M., et al. (2016). Regulation of UHRF1 by dual-strand tumor-suppressor microRNA-145 (miR-145-5p and miR-145-3p): inhibition of bladder cancer cell aggressiveness. Oncotarget, 7(19), 28460–28487.PubMedPubMedCentralCrossRef
36.
go back to reference Mataki, H., Seki, N., Mizuno, K., Nohata, N., Kamikawaji, K., Kumamoto, T., et al. (2016). Dual-strand tumor-suppressor microRNA-145 (miR-145-5p and miR-145-3p) coordinately targeted MTDH in lung squamous cell carcinoma. Oncotarget, 7(44), 72084–72098.PubMedPubMedCentral Mataki, H., Seki, N., Mizuno, K., Nohata, N., Kamikawaji, K., Kumamoto, T., et al. (2016). Dual-strand tumor-suppressor microRNA-145 (miR-145-5p and miR-145-3p) coordinately targeted MTDH in lung squamous cell carcinoma. Oncotarget, 7(44), 72084–72098.PubMedPubMedCentral
37.
go back to reference Koshizuka, K., Nohata, N., Hanazawa, T., Kikkawa, N., Arai, T., Okato, A., et al. (2017). Deep sequencing-based microRNA expression signatures in head and neck squamous cell carcinoma: dual strands of pre-miR-150 as antitumor miRNAs. Oncotarget, 8(18), 30288–30304.PubMedPubMedCentral Koshizuka, K., Nohata, N., Hanazawa, T., Kikkawa, N., Arai, T., Okato, A., et al. (2017). Deep sequencing-based microRNA expression signatures in head and neck squamous cell carcinoma: dual strands of pre-miR-150 as antitumor miRNAs. Oncotarget, 8(18), 30288–30304.PubMedPubMedCentral
38.
go back to reference Koshizuka, K., Hanazawa, T., Kikkawa, N., Arai, T., Okato, A., Kurozumi, A., et al. (2017). Regulation of ITGA3 by the anti-tumor miR-199 family inhibits cancer cell migration and invasion in head and neck cancer. Cancer Sci, 108(8), 1681-1692. Koshizuka, K., Hanazawa, T., Kikkawa, N., Arai, T., Okato, A., Kurozumi, A., et al. (2017). Regulation of ITGA3 by the anti-tumor miR-199 family inhibits cancer cell migration and invasion in head and neck cancer. Cancer Sci, 108(8), 1681-1692.
39.
go back to reference Yang, J. S., & Lai, E. C. (2011). Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell, 43(6), 892–903.PubMedPubMedCentralCrossRef Yang, J. S., & Lai, E. C. (2011). Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell, 43(6), 892–903.PubMedPubMedCentralCrossRef
40.
go back to reference Sibley, C. R., Seow, Y., Saayman, S., Dijkstra, K. K., El Andaloussi, S., Weinberg, M. S., et al. (2012). The biogenesis and characterization of mammalian microRNAs of mirtron origin. Nucleic Acids Res, 40(1), 438–448.PubMedCrossRef Sibley, C. R., Seow, Y., Saayman, S., Dijkstra, K. K., El Andaloussi, S., Weinberg, M. S., et al. (2012). The biogenesis and characterization of mammalian microRNAs of mirtron origin. Nucleic Acids Res, 40(1), 438–448.PubMedCrossRef
41.
go back to reference Martin, R., Smibert, P., Yalcin, A., Tyler, D. M., Schafer, U., Tuschl, T., et al. (2009). A Drosophila pasha mutant distinguishes the canonical microRNA and mirtron pathways. Mol Cell Biol, 29(3), 861–870.PubMedCrossRef Martin, R., Smibert, P., Yalcin, A., Tyler, D. M., Schafer, U., Tuschl, T., et al. (2009). A Drosophila pasha mutant distinguishes the canonical microRNA and mirtron pathways. Mol Cell Biol, 29(3), 861–870.PubMedCrossRef
42.
go back to reference Hui, A. B., Lenarduzzi, M., Krushel, T., Waldron, L., Pintilie, M., Shi, W., et al. (2010). Comprehensive microRNA profiling for head and neck squamous cell carcinomas. Clin Cancer Res, 16(4), 1129–1139.PubMedCrossRef Hui, A. B., Lenarduzzi, M., Krushel, T., Waldron, L., Pintilie, M., Shi, W., et al. (2010). Comprehensive microRNA profiling for head and neck squamous cell carcinomas. Clin Cancer Res, 16(4), 1129–1139.PubMedCrossRef
43.
go back to reference Liu, C. J., Tsai, M. M., Hung, P. S., Kao, S. Y., Liu, T. Y., Wu, K. J., et al. (2010). miR-31 ablates expression of the HIF regulatory factor FIH to activate the HIF pathway in head and neck carcinoma. Cancer Res, 70(4), 1635–1644.PubMedCrossRef Liu, C. J., Tsai, M. M., Hung, P. S., Kao, S. Y., Liu, T. Y., Wu, K. J., et al. (2010). miR-31 ablates expression of the HIF regulatory factor FIH to activate the HIF pathway in head and neck carcinoma. Cancer Res, 70(4), 1635–1644.PubMedCrossRef
44.
go back to reference Lajer, C. B., Nielsen, F. C., Friis-Hansen, L., Norrild, B., Borup, R., Garnaes, E., et al. (2011). Different miRNA signatures of oral and pharyngeal squamous cell carcinomas: a prospective translational study. Br J Cancer, 104(5), 830–840.PubMedPubMedCentralCrossRef Lajer, C. B., Nielsen, F. C., Friis-Hansen, L., Norrild, B., Borup, R., Garnaes, E., et al. (2011). Different miRNA signatures of oral and pharyngeal squamous cell carcinomas: a prospective translational study. Br J Cancer, 104(5), 830–840.PubMedPubMedCentralCrossRef
45.
go back to reference Severino, P., Bruggemann, H., Andreghetto, F. M., Camps, C., Klingbeil Mde, F., de Pereira, W. O., et al. (2013). MicroRNA expression profile in head and neck cancer: HOX-cluster embedded microRNA-196a and microRNA-10b dysregulation implicated in cell proliferation. BMC Cancer, 13, 533.PubMedPubMedCentralCrossRef Severino, P., Bruggemann, H., Andreghetto, F. M., Camps, C., Klingbeil Mde, F., de Pereira, W. O., et al. (2013). MicroRNA expression profile in head and neck cancer: HOX-cluster embedded microRNA-196a and microRNA-10b dysregulation implicated in cell proliferation. BMC Cancer, 13, 533.PubMedPubMedCentralCrossRef
46.
go back to reference Zhang, Y., Chen, Y., Yu, J., Liu, G., & Huang, Z. (2014). Integrated transcriptome analysis reveals miRNA-mRNA crosstalk in laryngeal squamous cell carcinoma. Genomics, 104(4), 249–256.PubMedCrossRef Zhang, Y., Chen, Y., Yu, J., Liu, G., & Huang, Z. (2014). Integrated transcriptome analysis reveals miRNA-mRNA crosstalk in laryngeal squamous cell carcinoma. Genomics, 104(4), 249–256.PubMedCrossRef
47.
go back to reference Victoria Martinez, B., Dhahbi, J. M., Nunez Lopez, Y. O., Lamperska, K., Golusinski, P., Luczewski, L., et al. (2015). Circulating small non-coding RNA signature in head and neck squamous cell carcinoma. Oncotarget, 6(22), 19246–19263.PubMedCrossRef Victoria Martinez, B., Dhahbi, J. M., Nunez Lopez, Y. O., Lamperska, K., Golusinski, P., Luczewski, L., et al. (2015). Circulating small non-coding RNA signature in head and neck squamous cell carcinoma. Oncotarget, 6(22), 19246–19263.PubMedCrossRef
48.
go back to reference Wang, F., Lu, J., Peng, X., Wang, J., Liu, X., Chen, X., et al. (2016). Integrated analysis of microRNA regulatory network in nasopharyngeal carcinoma with deep sequencing. J Exp Clin Cancer Res, 35(1), 17.PubMedPubMedCentralCrossRef Wang, F., Lu, J., Peng, X., Wang, J., Liu, X., Chen, X., et al. (2016). Integrated analysis of microRNA regulatory network in nasopharyngeal carcinoma with deep sequencing. J Exp Clin Cancer Res, 35(1), 17.PubMedPubMedCentralCrossRef
49.
go back to reference Xu, Y. F., Li, Y. Q., Guo, R., He, Q. M., Ren, X. Y., Tang, X. R., et al. (2015). Identification of miR-143 as a tumour suppressor in nasopharyngeal carcinoma based on microRNA expression profiling. Int J Biochem Cell Biol, 61, 120–128.PubMedCrossRef Xu, Y. F., Li, Y. Q., Guo, R., He, Q. M., Ren, X. Y., Tang, X. R., et al. (2015). Identification of miR-143 as a tumour suppressor in nasopharyngeal carcinoma based on microRNA expression profiling. Int J Biochem Cell Biol, 61, 120–128.PubMedCrossRef
50.
go back to reference Manikandan, M., Deva Magendhra Rao, A. K., Arunkumar, G., Manickavasagam, M., Rajkumar, K. S., Rajaraman, R., et al. (2016). Oral squamous cell carcinoma: microRNA expression profiling and integrative analyses for elucidation of tumourigenesis mechanism. Mol Cancer, 15, 28.PubMedPubMedCentralCrossRef Manikandan, M., Deva Magendhra Rao, A. K., Arunkumar, G., Manickavasagam, M., Rajkumar, K. S., Rajaraman, R., et al. (2016). Oral squamous cell carcinoma: microRNA expression profiling and integrative analyses for elucidation of tumourigenesis mechanism. Mol Cancer, 15, 28.PubMedPubMedCentralCrossRef
51.
go back to reference Lovat, F., Fassan, M., Gasparini, P., Rizzotto, L., Cascione, L., Pizzi, M., et al. (2015). miR-15b/16-2 deletion promotes B-cell malignancies. Proc Natl Acad Sci U S A, 112(37), 11636–11641.PubMedPubMedCentralCrossRef Lovat, F., Fassan, M., Gasparini, P., Rizzotto, L., Cascione, L., Pizzi, M., et al. (2015). miR-15b/16-2 deletion promotes B-cell malignancies. Proc Natl Acad Sci U S A, 112(37), 11636–11641.PubMedPubMedCentralCrossRef
52.
go back to reference Singchat, W., Hitakomate, E., Rerkarmnuaychoke, B., Suntronpong, A., Fu, B., Bodhisuwan, W., et al. (2016). Genomic alteration in head and neck squamous cell carcinoma (HNSCC) cell lines inferred from karyotyping, molecular cytogenetics, and array comparative genomic hybridization. PLoS One, 11(8), e0160901.PubMedPubMedCentralCrossRef Singchat, W., Hitakomate, E., Rerkarmnuaychoke, B., Suntronpong, A., Fu, B., Bodhisuwan, W., et al. (2016). Genomic alteration in head and neck squamous cell carcinoma (HNSCC) cell lines inferred from karyotyping, molecular cytogenetics, and array comparative genomic hybridization. PLoS One, 11(8), e0160901.PubMedPubMedCentralCrossRef
54.
go back to reference Mataki, H., Enokida, H., Chiyomaru, T., Mizuno, K., Matsushita, R., Goto, Y., et al. (2015). Downregulation of the microRNA-1/133a cluster enhances cancer cell migration and invasion in lung-squamous cell carcinoma via regulation of Coronin1C. J Hum Genet, 60(2), 53–61.PubMedCrossRef Mataki, H., Enokida, H., Chiyomaru, T., Mizuno, K., Matsushita, R., Goto, Y., et al. (2015). Downregulation of the microRNA-1/133a cluster enhances cancer cell migration and invasion in lung-squamous cell carcinoma via regulation of Coronin1C. J Hum Genet, 60(2), 53–61.PubMedCrossRef
55.
go back to reference Nohata, N., Hanazawa, T., Kikkawa, N., Sakurai, D., Sasaki, K., Chiyomaru, T., et al. (2011). Identification of novel molecular targets regulated by tumor suppressive miR-1/miR-133a in maxillary sinus squamous cell carcinoma. Int J Oncol, 39(5), 1099–1107.PubMed Nohata, N., Hanazawa, T., Kikkawa, N., Sakurai, D., Sasaki, K., Chiyomaru, T., et al. (2011). Identification of novel molecular targets regulated by tumor suppressive miR-1/miR-133a in maxillary sinus squamous cell carcinoma. Int J Oncol, 39(5), 1099–1107.PubMed
56.
go back to reference Baskerville, S., & Bartel, D. P. (2005). Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA, 11(3), 241–247.PubMedPubMedCentralCrossRef Baskerville, S., & Bartel, D. P. (2005). Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA, 11(3), 241–247.PubMedPubMedCentralCrossRef
57.
go back to reference Nohata, N., Hanazawa, T., Enokida, H., & Seki, N. (2012). microRNA-1/133a and microRNA-206/133b clusters: dysregulation and functional roles in human cancers. Oncotarget, 3(1), 9–21.PubMedPubMedCentralCrossRef Nohata, N., Hanazawa, T., Enokida, H., & Seki, N. (2012). microRNA-1/133a and microRNA-206/133b clusters: dysregulation and functional roles in human cancers. Oncotarget, 3(1), 9–21.PubMedPubMedCentralCrossRef
58.
go back to reference Nohata, N., Sone, Y., Hanazawa, T., Fuse, M., Kikkawa, N., Yoshino, H., et al. (2011). miR-1 as a tumor suppressive microRNA targeting TAGLN2 in head and neck squamous cell carcinoma. Oncotarget, 2(1–2), 29–42.PubMedPubMedCentralCrossRef Nohata, N., Sone, Y., Hanazawa, T., Fuse, M., Kikkawa, N., Yoshino, H., et al. (2011). miR-1 as a tumor suppressive microRNA targeting TAGLN2 in head and neck squamous cell carcinoma. Oncotarget, 2(1–2), 29–42.PubMedPubMedCentralCrossRef
59.
go back to reference Du, Y. Y., Zhao, L. M., Chen, L., Sang, M. X., Li, J., Ma, M., et al. (2016). The tumor-suppressive function of miR-1 by targeting LASP1 and TAGLN2 in esophageal squamous cell carcinoma. J Gastroenterol Hepatol, 31(2), 384–393.PubMedCrossRef Du, Y. Y., Zhao, L. M., Chen, L., Sang, M. X., Li, J., Ma, M., et al. (2016). The tumor-suppressive function of miR-1 by targeting LASP1 and TAGLN2 in esophageal squamous cell carcinoma. J Gastroenterol Hepatol, 31(2), 384–393.PubMedCrossRef
60.
go back to reference Yoshino, H., Chiyomaru, T., Enokida, H., Kawakami, K., Tatarano, S., Nishiyama, K., et al. (2011). The tumour-suppressive function of miR-1 and miR-133a targeting TAGLN2 in bladder cancer. Br J Cancer, 104(5), 808–818.PubMedPubMedCentralCrossRef Yoshino, H., Chiyomaru, T., Enokida, H., Kawakami, K., Tatarano, S., Nishiyama, K., et al. (2011). The tumour-suppressive function of miR-1 and miR-133a targeting TAGLN2 in bladder cancer. Br J Cancer, 104(5), 808–818.PubMedPubMedCentralCrossRef
61.
go back to reference Yamasaki, T., Yoshino, H., Enokida, H., Hidaka, H., Chiyomaru, T., Nohata, N., et al. (2012). Novel molecular targets regulated by tumor suppressors microRNA-1 and microRNA-133a in bladder cancer. Int J Oncol, 40(6), 1821–1830.PubMed Yamasaki, T., Yoshino, H., Enokida, H., Hidaka, H., Chiyomaru, T., Nohata, N., et al. (2012). Novel molecular targets regulated by tumor suppressors microRNA-1 and microRNA-133a in bladder cancer. Int J Oncol, 40(6), 1821–1830.PubMed
62.
go back to reference Kinoshita, T., Nohata, N., Watanabe-Takano, H., Yoshino, H., Hidaka, H., Fujimura, L., et al. (2012). Actin-related protein 2/3 complex subunit 5 (ARPC5) contributes to cell migration and invasion and is directly regulated by tumor-suppressive microRNA-133a in head and neck squamous cell carcinoma. Int J Oncol, 40(6), 1770–1778.PubMed Kinoshita, T., Nohata, N., Watanabe-Takano, H., Yoshino, H., Hidaka, H., Fujimura, L., et al. (2012). Actin-related protein 2/3 complex subunit 5 (ARPC5) contributes to cell migration and invasion and is directly regulated by tumor-suppressive microRNA-133a in head and neck squamous cell carcinoma. Int J Oncol, 40(6), 1770–1778.PubMed
63.
go back to reference Kinoshita, T., Nohata, N., Fuse, M., Hanazawa, T., Kikkawa, N., Fujimura, L., et al. (2012). Tumor suppressive microRNA-133a regulates novel targets: moesin contributes to cancer cell proliferation and invasion in head and neck squamous cell carcinoma. Biochem Biophys Res Commun, 418(2), 378–383.PubMedCrossRef Kinoshita, T., Nohata, N., Fuse, M., Hanazawa, T., Kikkawa, N., Fujimura, L., et al. (2012). Tumor suppressive microRNA-133a regulates novel targets: moesin contributes to cancer cell proliferation and invasion in head and neck squamous cell carcinoma. Biochem Biophys Res Commun, 418(2), 378–383.PubMedCrossRef
64.
go back to reference Yamamoto, N., Nishikawa, R., Chiyomaru, T., Goto, Y., Fukumoto, I., Usui, H., et al. (2015). The tumor-suppressive microRNA-1/133a cluster targets PDE7A and inhibits cancer cell migration and invasion in endometrial cancer. Int J Oncol, 47(1), 325–334.PubMedCrossRef Yamamoto, N., Nishikawa, R., Chiyomaru, T., Goto, Y., Fukumoto, I., Usui, H., et al. (2015). The tumor-suppressive microRNA-1/133a cluster targets PDE7A and inhibits cancer cell migration and invasion in endometrial cancer. Int J Oncol, 47(1), 325–334.PubMedCrossRef
65.
go back to reference Kent, O. A., McCall, M. N., Cornish, T. C., & Halushka, M. K. (2014). Lessons from miR-143/145: the importance of cell-type localization of miRNAs. Nucleic Acids Res, 42(12), 7528–7538.PubMedPubMedCentralCrossRef Kent, O. A., McCall, M. N., Cornish, T. C., & Halushka, M. K. (2014). Lessons from miR-143/145: the importance of cell-type localization of miRNAs. Nucleic Acids Res, 42(12), 7528–7538.PubMedPubMedCentralCrossRef
66.
go back to reference Yoshino, H., Enokida, H., Itesako, T., Kojima, S., Kinoshita, T., Tatarano, S., et al. (2013). Tumor-suppressive microRNA-143/145 cluster targets hexokinase-2 in renal cell carcinoma. Cancer Sci, 104(12), 1567–1574.PubMedCrossRef Yoshino, H., Enokida, H., Itesako, T., Kojima, S., Kinoshita, T., Tatarano, S., et al. (2013). Tumor-suppressive microRNA-143/145 cluster targets hexokinase-2 in renal cell carcinoma. Cancer Sci, 104(12), 1567–1574.PubMedCrossRef
67.
go back to reference Kojima, S., Enokida, H., Yoshino, H., Itesako, T., Chiyomaru, T., Kinoshita, T., et al. (2014). The tumor-suppressive microRNA-143/145 cluster inhibits cell migration and invasion by targeting GOLM1 in prostate cancer. J Hum Genet, 59(2), 78–87.PubMedCrossRef Kojima, S., Enokida, H., Yoshino, H., Itesako, T., Chiyomaru, T., Kinoshita, T., et al. (2014). The tumor-suppressive microRNA-143/145 cluster inhibits cell migration and invasion by targeting GOLM1 in prostate cancer. J Hum Genet, 59(2), 78–87.PubMedCrossRef
68.
go back to reference Shao, Y., Qu, Y., Dang, S., Yao, B., & Ji, M. (2013). MiR-145 inhibits oral squamous cell carcinoma (OSCC) cell growth by targeting c-Myc and Cdk6. Cancer Cell Int, 13(1), 51.PubMedPubMedCentralCrossRef Shao, Y., Qu, Y., Dang, S., Yao, B., & Ji, M. (2013). MiR-145 inhibits oral squamous cell carcinoma (OSCC) cell growth by targeting c-Myc and Cdk6. Cancer Cell Int, 13(1), 51.PubMedPubMedCentralCrossRef
69.
go back to reference Liu, R., Liao, J., Yang, M., Sheng, J., Yang, H., Wang, Y., et al. (2012). The cluster of miR-143 and miR-145 affects the risk for esophageal squamous cell carcinoma through co-regulating fascin homolog 1. PLoS One, 7(3), e33987.PubMedPubMedCentralCrossRef Liu, R., Liao, J., Yang, M., Sheng, J., Yang, H., Wang, Y., et al. (2012). The cluster of miR-143 and miR-145 affects the risk for esophageal squamous cell carcinoma through co-regulating fascin homolog 1. PLoS One, 7(3), e33987.PubMedPubMedCentralCrossRef
70.
go back to reference Zhang, J., Sun, Q., Zhang, Z., Ge, S., Han, Z. G., & Chen, W. T. (2013). Loss of microRNA-143/145 disturbs cellular growth and apoptosis of human epithelial cancers by impairing the MDM2-p53 feedback loop. Oncogene, 32(1), 61–69.PubMedCrossRef Zhang, J., Sun, Q., Zhang, Z., Ge, S., Han, Z. G., & Chen, W. T. (2013). Loss of microRNA-143/145 disturbs cellular growth and apoptosis of human epithelial cancers by impairing the MDM2-p53 feedback loop. Oncogene, 32(1), 61–69.PubMedCrossRef
71.
go back to reference Sachdeva, M., Zhu, S., Wu, F., Wu, H., Walia, V., Kumar, S., et al. (2009). p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci U S A, 106(9), 3207–3212.PubMedPubMedCentralCrossRef Sachdeva, M., Zhu, S., Wu, F., Wu, H., Walia, V., Kumar, S., et al. (2009). p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci U S A, 106(9), 3207–3212.PubMedPubMedCentralCrossRef
72.
go back to reference Suzuki, H. I., Yamagata, K., Sugimoto, K., Iwamoto, T., Kato, S., & Miyazono, K. (2009). Modulation of microRNA processing by p53. Nature, 460(7254), 529–533.PubMedCrossRef Suzuki, H. I., Yamagata, K., Sugimoto, K., Iwamoto, T., Kato, S., & Miyazono, K. (2009). Modulation of microRNA processing by p53. Nature, 460(7254), 529–533.PubMedCrossRef
73.
go back to reference Chen, Z., Zeng, H., Guo, Y., Liu, P., Pan, H., Deng, A., et al. (2010). miRNA-145 inhibits non-small cell lung cancer cell proliferation by targeting c-Myc. J Exp Clin Cancer Res, 29, 151. Chen, Z., Zeng, H., Guo, Y., Liu, P., Pan, H., Deng, A., et al. (2010). miRNA-145 inhibits non-small cell lung cancer cell proliferation by targeting c-Myc. J Exp Clin Cancer Res, 29, 151.
74.
go back to reference Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. Nature, 408(6810), 307–310.PubMedCrossRef Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. Nature, 408(6810), 307–310.PubMedCrossRef
75.
go back to reference Guimaraes, D. P., & Hainaut, P. (2002). TP53: a key gene in human cancer. Biochimie, 84(1), 83–93.PubMedCrossRef Guimaraes, D. P., & Hainaut, P. (2002). TP53: a key gene in human cancer. Biochimie, 84(1), 83–93.PubMedCrossRef
76.
go back to reference Kumar, M., Lu, Z., Takwi, A. A., Chen, W., Callander, N. S., Ramos, K. S., et al. (2011). Negative regulation of the tumor suppressor p53 gene by microRNAs. Oncogene, 30(7), 843–853.PubMedCrossRef Kumar, M., Lu, Z., Takwi, A. A., Chen, W., Callander, N. S., Ramos, K. S., et al. (2011). Negative regulation of the tumor suppressor p53 gene by microRNAs. Oncogene, 30(7), 843–853.PubMedCrossRef
77.
go back to reference He, L., He, X., Lim, L. P., de Stanchina, E., Xuan, Z., Liang, Y., et al. (2007). A microRNA component of the p53 tumour suppressor network. Nature, 447(7148), 1130–1134.PubMedPubMedCentralCrossRef He, L., He, X., Lim, L. P., de Stanchina, E., Xuan, Z., Liang, Y., et al. (2007). A microRNA component of the p53 tumour suppressor network. Nature, 447(7148), 1130–1134.PubMedPubMedCentralCrossRef
78.
go back to reference Rokavec, M., Li, H., Jiang, L., & Hermeking, H. (2014). The p53/microRNA connection in gastrointestinal cancer. Clin Exp Gastroenterol, 7, 395–413.PubMedPubMedCentral Rokavec, M., Li, H., Jiang, L., & Hermeking, H. (2014). The p53/microRNA connection in gastrointestinal cancer. Clin Exp Gastroenterol, 7, 395–413.PubMedPubMedCentral
79.
go back to reference Zhang, D. G., Zheng, J. N., & Pei, D. S. (2014). P53/microRNA-34-induced metabolic regulation: new opportunities in anticancer therapy. Mol Cancer, 13, 115.PubMedPubMedCentralCrossRef Zhang, D. G., Zheng, J. N., & Pei, D. S. (2014). P53/microRNA-34-induced metabolic regulation: new opportunities in anticancer therapy. Mol Cancer, 13, 115.PubMedPubMedCentralCrossRef
80.
go back to reference Chang, T. C., Wentzel, E. A., Kent, O. A., Ramachandran, K., Mullendore, M., Lee, K. H., et al. (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell, 26(5), 745–752.PubMedPubMedCentralCrossRef Chang, T. C., Wentzel, E. A., Kent, O. A., Ramachandran, K., Mullendore, M., Lee, K. H., et al. (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell, 26(5), 745–752.PubMedPubMedCentralCrossRef
81.
go back to reference Kumar, B., Yadav, A., Lang, J., Teknos, T. N., & Kumar, P. (2012). Dysregulation of microRNA-34a expression in head and neck squamous cell carcinoma promotes tumor growth and tumor angiogenesis. PLoS One, 7(5), e37601.PubMedPubMedCentralCrossRef Kumar, B., Yadav, A., Lang, J., Teknos, T. N., & Kumar, P. (2012). Dysregulation of microRNA-34a expression in head and neck squamous cell carcinoma promotes tumor growth and tumor angiogenesis. PLoS One, 7(5), e37601.PubMedPubMedCentralCrossRef
82.
go back to reference Jiang, H., Zhang, G., Wu, J. H., & Jiang, C. P. (2014). Diverse roles of miR-29 in cancer (review). Oncol Rep, 31(4), 1509–1516.PubMedCrossRef Jiang, H., Zhang, G., Wu, J. H., & Jiang, C. P. (2014). Diverse roles of miR-29 in cancer (review). Oncol Rep, 31(4), 1509–1516.PubMedCrossRef
83.
go back to reference Kinoshita, T., Nohata, N., Hanazawa, T., Kikkawa, N., Yamamoto, N., Yoshino, H., et al. (2013). Tumour-suppressive microRNA-29s inhibit cancer cell migration and invasion by targeting laminin-integrin signalling in head and neck squamous cell carcinoma. Br J Cancer, 109(10), 2636–2645.PubMedPubMedCentralCrossRef Kinoshita, T., Nohata, N., Hanazawa, T., Kikkawa, N., Yamamoto, N., Yoshino, H., et al. (2013). Tumour-suppressive microRNA-29s inhibit cancer cell migration and invasion by targeting laminin-integrin signalling in head and neck squamous cell carcinoma. Br J Cancer, 109(10), 2636–2645.PubMedPubMedCentralCrossRef
84.
go back to reference Nishikawa, R., Chiyomaru, T., Enokida, H., Inoguchi, S., Ishihara, T., Matsushita, R., et al. (2015). Tumour-suppressive microRNA-29s directly regulate LOXL2 expression and inhibit cancer cell migration and invasion in renal cell carcinoma. FEBS Lett, 589(16), 2136–2145.PubMedCrossRef Nishikawa, R., Chiyomaru, T., Enokida, H., Inoguchi, S., Ishihara, T., Matsushita, R., et al. (2015). Tumour-suppressive microRNA-29s directly regulate LOXL2 expression and inhibit cancer cell migration and invasion in renal cell carcinoma. FEBS Lett, 589(16), 2136–2145.PubMedCrossRef
85.
go back to reference Nishikawa, R., Goto, Y., Kojima, S., Enokida, H., Chiyomaru, T., Kinoshita, T., et al. (2014). Tumor-suppressive microRNA-29s inhibit cancer cell migration and invasion via targeting LAMC1 in prostate cancer. Int J Oncol, 45(1), 401–410.PubMedCrossRef Nishikawa, R., Goto, Y., Kojima, S., Enokida, H., Chiyomaru, T., Kinoshita, T., et al. (2014). Tumor-suppressive microRNA-29s inhibit cancer cell migration and invasion via targeting LAMC1 in prostate cancer. Int J Oncol, 45(1), 401–410.PubMedCrossRef
86.
go back to reference Yamamoto, N., Kinoshita, T., Nohata, N., Yoshino, H., Itesako, T., Fujimura, L., et al. (2013). Tumor-suppressive microRNA-29a inhibits cancer cell migration and invasion via targeting HSP47 in cervical squamous cell carcinoma. Int J Oncol, 43(6), 1855–1863.PubMedPubMedCentralCrossRef Yamamoto, N., Kinoshita, T., Nohata, N., Yoshino, H., Itesako, T., Fujimura, L., et al. (2013). Tumor-suppressive microRNA-29a inhibits cancer cell migration and invasion via targeting HSP47 in cervical squamous cell carcinoma. Int J Oncol, 43(6), 1855–1863.PubMedPubMedCentralCrossRef
87.
go back to reference Kamikawaji, K., Seki, N., Watanabe, M., Mataki, H., Kumamoto, T., Takagi, K., et al. (2016). Regulation of LOXL2 and SERPINH1 by antitumor microRNA-29a in lung cancer with idiopathic pulmonary fibrosis. J Hum Genet, 61(12), 985–993.PubMedCrossRef Kamikawaji, K., Seki, N., Watanabe, M., Mataki, H., Kumamoto, T., Takagi, K., et al. (2016). Regulation of LOXL2 and SERPINH1 by antitumor microRNA-29a in lung cancer with idiopathic pulmonary fibrosis. J Hum Genet, 61(12), 985–993.PubMedCrossRef
88.
go back to reference Wang, Y., Zhang, X., Li, H., Yu, J., & Ren, X. (2013). The role of miRNA-29 family in cancer. Eur J Cell Biol, 92(3), 123–128.PubMedCrossRef Wang, Y., Zhang, X., Li, H., Yu, J., & Ren, X. (2013). The role of miRNA-29 family in cancer. Eur J Cell Biol, 92(3), 123–128.PubMedCrossRef
89.
go back to reference Melo, S. A., & Kalluri, R. (2013). miR-29b moulds the tumour microenvironment to repress metastasis. Nat Cell Biol, 15(2), 139–140.PubMedCrossRef Melo, S. A., & Kalluri, R. (2013). miR-29b moulds the tumour microenvironment to repress metastasis. Nat Cell Biol, 15(2), 139–140.PubMedCrossRef
91.
go back to reference Fuse, M., Kojima, S., Enokida, H., Chiyomaru, T., Yoshino, H., Nohata, N., et al. (2012). Tumor suppressive microRNAs (miR-222 and miR-31) regulate molecular pathways based on microRNA expression signature in prostate cancer. J Hum Genet, 57(11), 691–699.PubMedCrossRef Fuse, M., Kojima, S., Enokida, H., Chiyomaru, T., Yoshino, H., Nohata, N., et al. (2012). Tumor suppressive microRNAs (miR-222 and miR-31) regulate molecular pathways based on microRNA expression signature in prostate cancer. J Hum Genet, 57(11), 691–699.PubMedCrossRef
92.
go back to reference Fukumoto, I., Kikkawa, N., Matsushita, R., Kato, M., Kurozumi, A., Nishikawa, R., et al. (2016). Tumor-suppressive microRNAs (miR-26a/b, miR-29a/b/c and miR-218) concertedly suppressed metastasis-promoting LOXL2 in head and neck squamous cell carcinoma. J Hum Genet, 61(2), 109–118.PubMedCrossRef Fukumoto, I., Kikkawa, N., Matsushita, R., Kato, M., Kurozumi, A., Nishikawa, R., et al. (2016). Tumor-suppressive microRNAs (miR-26a/b, miR-29a/b/c and miR-218) concertedly suppressed metastasis-promoting LOXL2 in head and neck squamous cell carcinoma. J Hum Genet, 61(2), 109–118.PubMedCrossRef
93.
go back to reference Yu, L., Lu, J., Zhang, B., Liu, X., Wang, L., Li, S. Y., et al. (2013). miR-26a inhibits invasion and metastasis of nasopharyngeal cancer by targeting EZH2. Oncol Lett, 5(4), 1223–1228.PubMedPubMedCentral Yu, L., Lu, J., Zhang, B., Liu, X., Wang, L., Li, S. Y., et al. (2013). miR-26a inhibits invasion and metastasis of nasopharyngeal cancer by targeting EZH2. Oncol Lett, 5(4), 1223–1228.PubMedPubMedCentral
94.
go back to reference Lu, J., He, M. L., Wang, L., Chen, Y., Liu, X., Dong, Q., et al. (2011). MiR-26a inhibits cell growth and tumorigenesis of nasopharyngeal carcinoma through repression of EZH2. Cancer Res, 71(1), 225–233.PubMedCrossRef Lu, J., He, M. L., Wang, L., Chen, Y., Liu, X., Dong, Q., et al. (2011). MiR-26a inhibits cell growth and tumorigenesis of nasopharyngeal carcinoma through repression of EZH2. Cancer Res, 71(1), 225–233.PubMedCrossRef
95.
go back to reference Koh, C. M., Iwata, T., Zheng, Q., Bethel, C., Yegnasubramanian, S., & De Marzo, A. M. (2011). Myc enforces overexpression of EZH2 in early prostatic neoplasia via transcriptional and post-transcriptional mechanisms. Oncotarget, 2(9), 669–683.PubMedPubMedCentralCrossRef Koh, C. M., Iwata, T., Zheng, Q., Bethel, C., Yegnasubramanian, S., & De Marzo, A. M. (2011). Myc enforces overexpression of EZH2 in early prostatic neoplasia via transcriptional and post-transcriptional mechanisms. Oncotarget, 2(9), 669–683.PubMedPubMedCentralCrossRef
96.
go back to reference Kurozumi, A., Kato, M., Goto, Y., Matsushita, R., Nishikawa, R., Okato, A., et al. (2016). Regulation of the collagen cross-linking enzymes LOXL2 and PLOD2 by tumor-suppressive microRNA-26a/b in renal cell carcinoma. Int J Oncol, 48(5), 1837–1846.PubMedPubMedCentralCrossRef Kurozumi, A., Kato, M., Goto, Y., Matsushita, R., Nishikawa, R., Okato, A., et al. (2016). Regulation of the collagen cross-linking enzymes LOXL2 and PLOD2 by tumor-suppressive microRNA-26a/b in renal cell carcinoma. Int J Oncol, 48(5), 1837–1846.PubMedPubMedCentralCrossRef
97.
go back to reference Miyamoto, K., Seki, N., Matsushita, R., Yonemori, M., Yoshino, H., Nakagawa, M., et al. (2016). Tumour-suppressive miRNA-26a-5p and miR-26b-5p inhibit cell aggressiveness by regulating PLOD2 in bladder cancer. Br J Cancer, 115, 354–363.PubMedPubMedCentralCrossRef Miyamoto, K., Seki, N., Matsushita, R., Yonemori, M., Yoshino, H., Nakagawa, M., et al. (2016). Tumour-suppressive miRNA-26a-5p and miR-26b-5p inhibit cell aggressiveness by regulating PLOD2 in bladder cancer. Br J Cancer, 115, 354–363.PubMedPubMedCentralCrossRef
98.
go back to reference Kano, M., Seki, N., Kikkawa, N., Fujimura, L., Hoshino, I., Akutsu, Y., et al. (2010). miR-145, miR-133a and miR-133b: tumor-suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. Int J Cancer, 127(12), 2804–2814.PubMedCrossRef Kano, M., Seki, N., Kikkawa, N., Fujimura, L., Hoshino, I., Akutsu, Y., et al. (2010). miR-145, miR-133a and miR-133b: tumor-suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. Int J Cancer, 127(12), 2804–2814.PubMedCrossRef
99.
go back to reference Nohata, N., Hanazawa, T., Kikkawa, N., Mutallip, M., Sakurai, D., Fujimura, L., et al. (2011). Tumor suppressive microRNA-375 regulates oncogene AEG-1/MTDH in head and neck squamous cell carcinoma (HNSCC). J Hum Genet, 56(8), 595–601.PubMedCrossRef Nohata, N., Hanazawa, T., Kikkawa, N., Mutallip, M., Sakurai, D., Fujimura, L., et al. (2011). Tumor suppressive microRNA-375 regulates oncogene AEG-1/MTDH in head and neck squamous cell carcinoma (HNSCC). J Hum Genet, 56(8), 595–601.PubMedCrossRef
100.
go back to reference Yan, J. W., Lin, J. S., & He, X. X. (2014). The emerging role of miR-375 in cancer. Int J Cancer, 135(5), 1011–1018.PubMedCrossRef Yan, J. W., Lin, J. S., & He, X. X. (2014). The emerging role of miR-375 in cancer. Int J Cancer, 135(5), 1011–1018.PubMedCrossRef
101.
go back to reference Wei, R., Yang, Q., Han, B., Li, Y., Yao, K., Yang, X., et al. (2017). microRNA-375 inhibits colorectal cancer cells proliferation by downregulating JAK2/STAT3 and MAP3K8/ERK signaling pathways. Oncotarget, 8(10), 16633-16641. Wei, R., Yang, Q., Han, B., Li, Y., Yao, K., Yang, X., et al. (2017). microRNA-375 inhibits colorectal cancer cells proliferation by downregulating JAK2/STAT3 and MAP3K8/ERK signaling pathways. Oncotarget, 8(10), 16633-16641.
102.
go back to reference Ding, L., Xu, Y., Zhang, W., Deng, Y., Si, M., Du, Y., et al. (2010). MiR-375 frequently downregulated in gastric cancer inhibits cell proliferation by targeting JAK2. Cell Res, 20(7), 784–793.PubMedCrossRef Ding, L., Xu, Y., Zhang, W., Deng, Y., Si, M., Du, Y., et al. (2010). MiR-375 frequently downregulated in gastric cancer inhibits cell proliferation by targeting JAK2. Cell Res, 20(7), 784–793.PubMedCrossRef
103.
go back to reference Pfeffer, S. R., Yang, C. H., & Pfeffer, L. M. (2015). The Role of miR-21 in cancer. Drug Dev Res, 76(6), 270–277.PubMedCrossRef Pfeffer, S. R., Yang, C. H., & Pfeffer, L. M. (2015). The Role of miR-21 in cancer. Drug Dev Res, 76(6), 270–277.PubMedCrossRef
104.
go back to reference Ren, J., Zhu, D., Liu, M., Sun, Y., & Tian, L. (2010). Downregulation of miR-21 modulates Ras expression to promote apoptosis and suppress invasion of laryngeal squamous cell carcinoma. Eur J Cancer, 46(18), 3409–3416.PubMedCrossRef Ren, J., Zhu, D., Liu, M., Sun, Y., & Tian, L. (2010). Downregulation of miR-21 modulates Ras expression to promote apoptosis and suppress invasion of laryngeal squamous cell carcinoma. Eur J Cancer, 46(18), 3409–3416.PubMedCrossRef
105.
go back to reference Fu, X., Han, Y., Wu, Y., Zhu, X., Lu, X., Mao, F., et al. (2011). Prognostic role of microRNA-21 in various carcinomas: a systematic review and meta-analysis. Eur J Clin Invest, 41(11), 1245–1253.PubMedCrossRef Fu, X., Han, Y., Wu, Y., Zhu, X., Lu, X., Mao, F., et al. (2011). Prognostic role of microRNA-21 in various carcinomas: a systematic review and meta-analysis. Eur J Clin Invest, 41(11), 1245–1253.PubMedCrossRef
106.
go back to reference Mace, T. A., Collins, A. L., Wojcik, S. E., Croce, C. M., Lesinski, G. B., & Bloomston, M. (2013). Hypoxia induces the overexpression of microRNA-21 in pancreatic cancer cells. J Surg Res, 184(2), 855–860.PubMedPubMedCentralCrossRef Mace, T. A., Collins, A. L., Wojcik, S. E., Croce, C. M., Lesinski, G. B., & Bloomston, M. (2013). Hypoxia induces the overexpression of microRNA-21 in pancreatic cancer cells. J Surg Res, 184(2), 855–860.PubMedPubMedCentralCrossRef
107.
go back to reference Li, L., Li, C., Wang, S., Wang, Z., Jiang, J., Wang, W., et al. (2016). Exosomes Derived from Hypoxic Oral Squamous Cell Carcinoma Cells Deliver miR-21 to Normoxic Cells to Elicit a Prometastatic Phenotype. Cancer Res, 76(7), 1770–1780.PubMedCrossRef Li, L., Li, C., Wang, S., Wang, Z., Jiang, J., Wang, W., et al. (2016). Exosomes Derived from Hypoxic Oral Squamous Cell Carcinoma Cells Deliver miR-21 to Normoxic Cells to Elicit a Prometastatic Phenotype. Cancer Res, 76(7), 1770–1780.PubMedCrossRef
108.
go back to reference Dambal, S., Shah, M., Mihelich, B., & Nonn, L. (2015). The microRNA-183 cluster: the family that plays together stays together. Nucleic Acids Res, 43(15), 7173–7188.PubMedPubMedCentralCrossRef Dambal, S., Shah, M., Mihelich, B., & Nonn, L. (2015). The microRNA-183 cluster: the family that plays together stays together. Nucleic Acids Res, 43(15), 7173–7188.PubMedPubMedCentralCrossRef
109.
go back to reference Zhang, Q. H., Sun, H. M., Zheng, R. Z., Li, Y. C., Zhang, Q., Cheng, P., et al. (2013). Meta-analysis of microRNA-183 family expression in human cancer studies comparing cancer tissues with noncancerous tissues. Gene, 527(1), 26–32.PubMedCrossRef Zhang, Q. H., Sun, H. M., Zheng, R. Z., Li, Y. C., Zhang, Q., Cheng, P., et al. (2013). Meta-analysis of microRNA-183 family expression in human cancer studies comparing cancer tissues with noncancerous tissues. Gene, 527(1), 26–32.PubMedCrossRef
110.
go back to reference Ma, Y., Liang, A. J., Fan, Y. P., Huang, Y. R., Zhao, X. M., Sun, Y., et al. (2016). Dysregulation and functional roles of miR-183-96-182 cluster in cancer cell proliferation, invasion and metastasis. Oncotarget, 7(27), 42805–42825.PubMedPubMedCentralCrossRef Ma, Y., Liang, A. J., Fan, Y. P., Huang, Y. R., Zhao, X. M., Sun, Y., et al. (2016). Dysregulation and functional roles of miR-183-96-182 cluster in cancer cell proliferation, invasion and metastasis. Oncotarget, 7(27), 42805–42825.PubMedPubMedCentralCrossRef
111.
go back to reference Wang, L., Jiang, H., Li, W., Jia, C., Zhang, H., Sun, Y., et al. (2017). Overexpression of TP53 mutation-associated microRNA-182 promotes tumor cell proliferation and migration in head and neck squamous cell carcinoma. Arch Oral Biol, 73, 105–112.PubMedCrossRef Wang, L., Jiang, H., Li, W., Jia, C., Zhang, H., Sun, Y., et al. (2017). Overexpression of TP53 mutation-associated microRNA-182 promotes tumor cell proliferation and migration in head and neck squamous cell carcinoma. Arch Oral Biol, 73, 105–112.PubMedCrossRef
114.
go back to reference Jones, P. A., & Baylin, S. B. (2002). The fundamental role of epigenetic events in cancer. Nat Rev Genet, 3(6), 415–428.PubMed Jones, P. A., & Baylin, S. B. (2002). The fundamental role of epigenetic events in cancer. Nat Rev Genet, 3(6), 415–428.PubMed
115.
go back to reference Lujambio, A., Ropero, S., Ballestar, E., Fraga, M. F., Cerrato, C., Setien, F., et al. (2007). Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res, 67(4), 1424–1429.PubMedCrossRef Lujambio, A., Ropero, S., Ballestar, E., Fraga, M. F., Cerrato, C., Setien, F., et al. (2007). Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res, 67(4), 1424–1429.PubMedCrossRef
116.
go back to reference Chuang, J. C., & Jones, P. A. (2007). Epigenetics and microRNAs. Pediatr Res, 61(5 Pt 2), 24r–29r.PubMedCrossRef Chuang, J. C., & Jones, P. A. (2007). Epigenetics and microRNAs. Pediatr Res, 61(5 Pt 2), 24r–29r.PubMedCrossRef
117.
go back to reference Guil, S., & Esteller, M. (2009). DNA methylomes, histone codes and miRNAs: tying it all together. Int J Biochem Cell Biol, 41(1), 87–95.PubMedCrossRef Guil, S., & Esteller, M. (2009). DNA methylomes, histone codes and miRNAs: tying it all together. Int J Biochem Cell Biol, 41(1), 87–95.PubMedCrossRef
118.
go back to reference Iorio, M. V., Piovan, C., & Croce, C. M. (2010). Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim Biophys Acta, 1799(10–12), 694–701.PubMedCrossRef Iorio, M. V., Piovan, C., & Croce, C. M. (2010). Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim Biophys Acta, 1799(10–12), 694–701.PubMedCrossRef
119.
go back to reference Egger, G., Liang, G., Aparicio, A., & Jones, P. A. (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature, 429(6990), 457–463.PubMedCrossRef Egger, G., Liang, G., Aparicio, A., & Jones, P. A. (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature, 429(6990), 457–463.PubMedCrossRef
120.
go back to reference Klose, R. J., & Bird, A. P. (2006). Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci, 31(2), 89–97.PubMedCrossRef Klose, R. J., & Bird, A. P. (2006). Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci, 31(2), 89–97.PubMedCrossRef
121.
go back to reference Kozaki, K., & Inazawa, J. (2012). Tumor-suppressive microRNA silenced by tumor-specific DNA hypermethylation in cancer cells. Cancer Sci, 103(5), 837–845.PubMedCrossRef Kozaki, K., & Inazawa, J. (2012). Tumor-suppressive microRNA silenced by tumor-specific DNA hypermethylation in cancer cells. Cancer Sci, 103(5), 837–845.PubMedCrossRef
122.
go back to reference Fabbri, M., Garzon, R., Cimmino, A., Liu, Z., Zanesi, N., Callegari, E., et al. (2007). MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A, 104(40), 15805–15810.PubMedPubMedCentralCrossRef Fabbri, M., Garzon, R., Cimmino, A., Liu, Z., Zanesi, N., Callegari, E., et al. (2007). MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A, 104(40), 15805–15810.PubMedPubMedCentralCrossRef
123.
go back to reference Xu, H., Sun, J., Shi, C., Sun, C., Yu, L., Wen, Y., et al. (2015). miR-29s inhibit the malignant behavior of U87MG glioblastoma cell line by targeting DNMT3A and 3B. Neurosci Lett, 590, 40–46.PubMedCrossRef Xu, H., Sun, J., Shi, C., Sun, C., Yu, L., Wen, Y., et al. (2015). miR-29s inhibit the malignant behavior of U87MG glioblastoma cell line by targeting DNMT3A and 3B. Neurosci Lett, 590, 40–46.PubMedCrossRef
124.
go back to reference Solly, F., Koering, C., Mint-Mohamed, A., Maucort-Boulch, D., Robert, G., Auberger, P., et al. (2017). A miRNAs-DNMT1 axis is involved in azacitidine-resistance and predicts survival in higher risk myelodysplastic syndrome and low blast count acute myeloid leukemia. Clin Cancer Res, 23(12), 3025-3034 Solly, F., Koering, C., Mint-Mohamed, A., Maucort-Boulch, D., Robert, G., Auberger, P., et al. (2017). A miRNAs-DNMT1 axis is involved in azacitidine-resistance and predicts survival in higher risk myelodysplastic syndrome and low blast count acute myeloid leukemia. Clin Cancer Res, 23(12), 3025-3034
125.
go back to reference Fraga, M. F., & Esteller, M. (2005). Towards the human cancer epigenome: a first draft of histone modifications. Cell Cycle, 4(10), 1377–1381.PubMedCrossRef Fraga, M. F., & Esteller, M. (2005). Towards the human cancer epigenome: a first draft of histone modifications. Cell Cycle, 4(10), 1377–1381.PubMedCrossRef
126.
go back to reference Yang, X. J., & Seto, E. (2007). HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene, 26(37), 5310–5318.PubMedCrossRef Yang, X. J., & Seto, E. (2007). HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene, 26(37), 5310–5318.PubMedCrossRef
127.
go back to reference Sampath, D., Liu, C., Vasan, K., Sulda, M., Puduvalli, V. K., Wierda, W. G., et al. (2012). Histone deacetylases mediate the silencing of miR-15a, miR-16, and miR-29b in chronic lymphocytic leukemia. Blood, 119(5), 1162–1172.PubMedPubMedCentralCrossRef Sampath, D., Liu, C., Vasan, K., Sulda, M., Puduvalli, V. K., Wierda, W. G., et al. (2012). Histone deacetylases mediate the silencing of miR-15a, miR-16, and miR-29b in chronic lymphocytic leukemia. Blood, 119(5), 1162–1172.PubMedPubMedCentralCrossRef
128.
go back to reference Kim, H. S., Shen, Q., & Nam, S. W. (2015). Histone deacetylases and their regulatory microRNAs in hepatocarcinogenesis. J Korean Med Sci, 30(10), 1375–1380.PubMedPubMedCentralCrossRef Kim, H. S., Shen, Q., & Nam, S. W. (2015). Histone deacetylases and their regulatory microRNAs in hepatocarcinogenesis. J Korean Med Sci, 30(10), 1375–1380.PubMedPubMedCentralCrossRef
129.
go back to reference Scott, G. K., Mattie, M. D., Berger, C. E., Benz, S. C., & Benz, C. C. (2006). Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res, 66(3), 1277–1281.PubMedCrossRef Scott, G. K., Mattie, M. D., Berger, C. E., Benz, S. C., & Benz, C. C. (2006). Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res, 66(3), 1277–1281.PubMedCrossRef
130.
go back to reference Chase, A., & Cross, N. C. (2011). Aberrations of EZH2 in cancer. Clin Cancer Res, 17(9), 2613–2618.PubMedCrossRef Chase, A., & Cross, N. C. (2011). Aberrations of EZH2 in cancer. Clin Cancer Res, 17(9), 2613–2618.PubMedCrossRef
131.
go back to reference Sun, S., Yu, F., Zhang, L., & Zhou, X. (2016). EZH2, an on-off valve in signal network of tumor cells. Cell Signal, 28(5), 481–487.PubMedCrossRef Sun, S., Yu, F., Zhang, L., & Zhou, X. (2016). EZH2, an on-off valve in signal network of tumor cells. Cell Signal, 28(5), 481–487.PubMedCrossRef
132.
go back to reference Tsang, D. P., & Cheng, A. S. (2011). Epigenetic regulation of signaling pathways in cancer: role of the histone methyltransferase EZH2. J Gastroenterol Hepatol, 26(1), 19–27.PubMedCrossRef Tsang, D. P., & Cheng, A. S. (2011). Epigenetic regulation of signaling pathways in cancer: role of the histone methyltransferase EZH2. J Gastroenterol Hepatol, 26(1), 19–27.PubMedCrossRef
134.
go back to reference Goto, Y., Kurozumi, A., Nohata, N., Kojima, S., Matsushita, R., Yoshino, H., et al. (2016). The microRNA signature of patients with sunitinib failure: regulation of UHRF1 pathways by microRNA-101 in renal cell carcinoma. Oncotarget. doi:10.18632/oncotarget.10887. Goto, Y., Kurozumi, A., Nohata, N., Kojima, S., Matsushita, R., Yoshino, H., et al. (2016). The microRNA signature of patients with sunitinib failure: regulation of UHRF1 pathways by microRNA-101 in renal cell carcinoma. Oncotarget. doi:10.​18632/​oncotarget.​10887.
135.
go back to reference Wang, H., Meng, Y., Cui, Q., Qin, F., Yang, H., Chen, Y., et al. (2016). MiR-101 targets the EZH2/Wnt/beta-catenin the pathway to promote the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Sci Rep, 6, 36988.PubMedPubMedCentralCrossRef Wang, H., Meng, Y., Cui, Q., Qin, F., Yang, H., Chen, Y., et al. (2016). MiR-101 targets the EZH2/Wnt/beta-catenin the pathway to promote the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Sci Rep, 6, 36988.PubMedPubMedCentralCrossRef
136.
go back to reference Konno, Y., Dong, P., Xiong, Y., Suzuki, F., Lu, J., Cai, M., et al. (2014). MicroRNA-101 targets EZH2, MCL-1 and FOS to suppress proliferation, invasion and stem cell-like phenotype of aggressive endometrial cancer cells. Oncotarget, 5(15), 6049–6062.PubMedPubMedCentralCrossRef Konno, Y., Dong, P., Xiong, Y., Suzuki, F., Lu, J., Cai, M., et al. (2014). MicroRNA-101 targets EZH2, MCL-1 and FOS to suppress proliferation, invasion and stem cell-like phenotype of aggressive endometrial cancer cells. Oncotarget, 5(15), 6049–6062.PubMedPubMedCentralCrossRef
137.
go back to reference Zhang, K., Zhang, Y., Ren, K., Zhao, G., Yan, K., & Ma, B. (2014). MicroRNA-101 inhibits the metastasis of osteosarcoma cells by downregulation of EZH2 expression. Oncol Rep, 32(5), 2143–2149.PubMedCrossRef Zhang, K., Zhang, Y., Ren, K., Zhao, G., Yan, K., & Ma, B. (2014). MicroRNA-101 inhibits the metastasis of osteosarcoma cells by downregulation of EZH2 expression. Oncol Rep, 32(5), 2143–2149.PubMedCrossRef
138.
go back to reference Wang, H. J., Ruan, H. J., He, X. J., Ma, Y. Y., Jiang, X. T., Xia, Y. J., et al. (2010). MicroRNA-101 is down-regulated in gastric cancer and involved in cell migration and invasion. Eur J Cancer, 46(12), 2295–2303.PubMedCrossRef Wang, H. J., Ruan, H. J., He, X. J., Ma, Y. Y., Jiang, X. T., Xia, Y. J., et al. (2010). MicroRNA-101 is down-regulated in gastric cancer and involved in cell migration and invasion. Eur J Cancer, 46(12), 2295–2303.PubMedCrossRef
139.
go back to reference Zhang, B., Liu, X. X., He, J. R., Zhou, C. X., Guo, M., He, M., et al. (2011). Pathologically decreased miR-26a antagonizes apoptosis and facilitates carcinogenesis by targeting MTDH and EZH2 in breast cancer. Carcinogenesis, 32(1), 2–9.PubMedCrossRef Zhang, B., Liu, X. X., He, J. R., Zhou, C. X., Guo, M., He, M., et al. (2011). Pathologically decreased miR-26a antagonizes apoptosis and facilitates carcinogenesis by targeting MTDH and EZH2 in breast cancer. Carcinogenesis, 32(1), 2–9.PubMedCrossRef
140.
go back to reference Kato, M., Kurozumi, A., Goto, Y., Matsushita, R., Okato, A., Nishikawa, R., et al. (2017). Regulation of metastasis-promoting LOXL2 gene expression by antitumor microRNAs in prostate cancer. J Hum Genet, 62(1), 123–132.PubMedCrossRef Kato, M., Kurozumi, A., Goto, Y., Matsushita, R., Okato, A., Nishikawa, R., et al. (2017). Regulation of metastasis-promoting LOXL2 gene expression by antitumor microRNAs in prostate cancer. J Hum Genet, 62(1), 123–132.PubMedCrossRef
141.
go back to reference Bronner, C., Krifa, M., & Mousli, M. (2013). Increasing role of UHRF1 in the reading and inheritance of the epigenetic code as well as in tumorogenesis. Biochem Pharmacol, 86(12), 1643–1649.PubMedCrossRef Bronner, C., Krifa, M., & Mousli, M. (2013). Increasing role of UHRF1 in the reading and inheritance of the epigenetic code as well as in tumorogenesis. Biochem Pharmacol, 86(12), 1643–1649.PubMedCrossRef
143.
go back to reference Thiery, J. P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer, 2(6), 442–454.PubMedCrossRef Thiery, J. P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer, 2(6), 442–454.PubMedCrossRef
144.
145.
go back to reference Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., et al. (2005). RAS is regulated by the let-7 microRNA family. Cell, 120(5), 635–647.PubMedCrossRef Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., et al. (2005). RAS is regulated by the let-7 microRNA family. Cell, 120(5), 635–647.PubMedCrossRef
146.
go back to reference Lamouille, S., Subramanyam, D., Blelloch, R., & Derynck, R. (2013). Regulation of epithelial-mesenchymal and mesenchymal-epithelial transitions by microRNAs. Curr Opin Cell Biol, 25(2), 200–207.PubMedPubMedCentralCrossRef Lamouille, S., Subramanyam, D., Blelloch, R., & Derynck, R. (2013). Regulation of epithelial-mesenchymal and mesenchymal-epithelial transitions by microRNAs. Curr Opin Cell Biol, 25(2), 200–207.PubMedPubMedCentralCrossRef
147.
go back to reference Bracken, C. P., Gregory, P. A., Khew-Goodall, Y., & Goodall, G. J. (2009). The role of microRNAs in metastasis and epithelial-mesenchymal transition. Cell Mol Life Sci, 66(10), 1682–1699.PubMedCrossRef Bracken, C. P., Gregory, P. A., Khew-Goodall, Y., & Goodall, G. J. (2009). The role of microRNAs in metastasis and epithelial-mesenchymal transition. Cell Mol Life Sci, 66(10), 1682–1699.PubMedCrossRef
148.
go back to reference Spoelstra, N. S., Manning, N. G., Higashi, Y., Darling, D., Singh, M., Shroyer, K. R., et al. (2006). The transcription factor ZEB1 is aberrantly expressed in aggressive uterine cancers. Cancer Res, 66(7), 3893–3902.PubMedCrossRef Spoelstra, N. S., Manning, N. G., Higashi, Y., Darling, D., Singh, M., Shroyer, K. R., et al. (2006). The transcription factor ZEB1 is aberrantly expressed in aggressive uterine cancers. Cancer Res, 66(7), 3893–3902.PubMedCrossRef
150.
go back to reference Sekhon, K., Bucay, N., Majid, S., Dahiya, R., & Saini, S. (2016). MicroRNAs and epithelial-mesenchymal transition in prostate cancer. Oncotarget, 7(41), 67597–67611.PubMedPubMedCentralCrossRef Sekhon, K., Bucay, N., Majid, S., Dahiya, R., & Saini, S. (2016). MicroRNAs and epithelial-mesenchymal transition in prostate cancer. Oncotarget, 7(41), 67597–67611.PubMedPubMedCentralCrossRef
152.
153.
go back to reference Feng, X., Wang, Z., Fillmore, R., & Xi, Y. (2014). MiR-200, a new star miRNA in human cancer. Cancer Lett, 344(2), 166–173.PubMedCrossRef Feng, X., Wang, Z., Fillmore, R., & Xi, Y. (2014). MiR-200, a new star miRNA in human cancer. Cancer Lett, 344(2), 166–173.PubMedCrossRef
154.
go back to reference Hill, L., Browne, G., & Tulchinsky, E. (2013). ZEB/miR-200 feedback loop: at the crossroads of signal transduction in cancer. Int J Cancer, 132(4), 745–754.PubMedCrossRef Hill, L., Browne, G., & Tulchinsky, E. (2013). ZEB/miR-200 feedback loop: at the crossroads of signal transduction in cancer. Int J Cancer, 132(4), 745–754.PubMedCrossRef
155.
go back to reference Korpal, M., & Kang, Y. (2008). The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol, 5(3), 115–119.PubMedPubMedCentralCrossRef Korpal, M., & Kang, Y. (2008). The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol, 5(3), 115–119.PubMedPubMedCentralCrossRef
156.
go back to reference Kim, T., Veronese, A., Pichiorri, F., Lee, T. J., Jeon, Y. J., Volinia, S., et al. (2011). p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J Exp Med, 208(5), 875–883.PubMedPubMedCentralCrossRef Kim, T., Veronese, A., Pichiorri, F., Lee, T. J., Jeon, Y. J., Volinia, S., et al. (2011). p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J Exp Med, 208(5), 875–883.PubMedPubMedCentralCrossRef
157.
go back to reference Liu, Y. N., Yin, J. J., Abou-Kheir, W., Hynes, P. G., Casey, O. M., Fang, L., et al. (2013). MiR-1 and miR-200 inhibit EMT via slug-dependent and tumorigenesis via slug-independent mechanisms. Oncogene, 32(3), 296–306.PubMedCrossRef Liu, Y. N., Yin, J. J., Abou-Kheir, W., Hynes, P. G., Casey, O. M., Fang, L., et al. (2013). MiR-1 and miR-200 inhibit EMT via slug-dependent and tumorigenesis via slug-independent mechanisms. Oncogene, 32(3), 296–306.PubMedCrossRef
158.
go back to reference Chang, Y. S., Chen, W. Y., Yin, J. J., Sheppard-Tillman, H., Huang, J., & Liu, Y. N. (2015). EGF receptor promotes prostate cancer bone metastasis by downregulating miR-1 and activating TWIST1. Cancer Res, 75(15), 3077–3086.PubMedPubMedCentralCrossRef Chang, Y. S., Chen, W. Y., Yin, J. J., Sheppard-Tillman, H., Huang, J., & Liu, Y. N. (2015). EGF receptor promotes prostate cancer bone metastasis by downregulating miR-1 and activating TWIST1. Cancer Res, 75(15), 3077–3086.PubMedPubMedCentralCrossRef
159.
go back to reference Peng, X., Guo, W., Liu, T., Wang, X., Tu, X., Xiong, D., et al. (2011). Identification of miRs-143 and -145 that is associated with bone metastasis of prostate cancer and involved in the regulation of EMT. PLoS One, 6(5), e20341.PubMedPubMedCentralCrossRef Peng, X., Guo, W., Liu, T., Wang, X., Tu, X., Xiong, D., et al. (2011). Identification of miRs-143 and -145 that is associated with bone metastasis of prostate cancer and involved in the regulation of EMT. PLoS One, 6(5), e20341.PubMedPubMedCentralCrossRef
160.
go back to reference Ren, D., Wang, M., Guo, W., Huang, S., Wang, Z., Zhao, X., et al. (2014). Double-negative feedback loop between ZEB2 and miR-145 regulates epithelial-mesenchymal transition and stem cell properties in prostate cancer cells. Cell Tissue Res, 358(3), 763–778.PubMedCrossRef Ren, D., Wang, M., Guo, W., Huang, S., Wang, Z., Zhao, X., et al. (2014). Double-negative feedback loop between ZEB2 and miR-145 regulates epithelial-mesenchymal transition and stem cell properties in prostate cancer cells. Cell Tissue Res, 358(3), 763–778.PubMedCrossRef
161.
go back to reference Kinoshita, T., Hanazawa, T., Nohata, N., Kikkawa, N., Enokida, H., Yoshino, H., et al. (2012). Tumor suppressive microRNA-218 inhibits cancer cell migration and invasion through targeting laminin-332 in head and neck squamous cell carcinoma. Oncotarget, 3(11), 1386–1400.PubMedPubMedCentralCrossRef Kinoshita, T., Hanazawa, T., Nohata, N., Kikkawa, N., Enokida, H., Yoshino, H., et al. (2012). Tumor suppressive microRNA-218 inhibits cancer cell migration and invasion through targeting laminin-332 in head and neck squamous cell carcinoma. Oncotarget, 3(11), 1386–1400.PubMedPubMedCentralCrossRef
162.
go back to reference Mizuno, K., Seki, N., Mataki, H., Matsushita, R., Kamikawaji, K., Kumamoto, T., et al. (2016). Tumor-suppressive microRNA-29 family inhibits cancer cell migration and invasion directly targeting LOXL2 in lung squamous cell carcinoma. Int J Oncol, 48(2), 450–460.PubMedCrossRef Mizuno, K., Seki, N., Mataki, H., Matsushita, R., Kamikawaji, K., Kumamoto, T., et al. (2016). Tumor-suppressive microRNA-29 family inhibits cancer cell migration and invasion directly targeting LOXL2 in lung squamous cell carcinoma. Int J Oncol, 48(2), 450–460.PubMedCrossRef
163.
go back to reference Wu, L., & Zhu, Y. (2015). The function and mechanisms of action of LOXL2 in cancer (Review). Int J Mol Med, 36(5), 1200–1204.PubMedCrossRef Wu, L., & Zhu, Y. (2015). The function and mechanisms of action of LOXL2 in cancer (Review). Int J Mol Med, 36(5), 1200–1204.PubMedCrossRef
164.
go back to reference Moon, H. J., Finney, J., Ronnebaum, T., & Mure, M. (2014). Human lysyl oxidase-like 2. Bioorg Chem, 57, 231–241.PubMedCrossRef Moon, H. J., Finney, J., Ronnebaum, T., & Mure, M. (2014). Human lysyl oxidase-like 2. Bioorg Chem, 57, 231–241.PubMedCrossRef
165.
go back to reference Schietke, R., Warnecke, C., Wacker, I., Schodel, J., Mole, D. R., Campean, V., et al. (2010). The lysyl oxidases LOX and LOXL2 are necessary and sufficient to repress E-cadherin in hypoxia: insights into cellular transformation processes mediated by HIF-1. J Biol Chem, 285(9), 6658–6669.PubMedCrossRef Schietke, R., Warnecke, C., Wacker, I., Schodel, J., Mole, D. R., Campean, V., et al. (2010). The lysyl oxidases LOX and LOXL2 are necessary and sufficient to repress E-cadherin in hypoxia: insights into cellular transformation processes mediated by HIF-1. J Biol Chem, 285(9), 6658–6669.PubMedCrossRef
166.
go back to reference Millanes-Romero, A., Herranz, N., Perrera, V., Iturbide, A., Loubat-Casanovas, J., Gil, J., et al. (2013). Regulation of heterochromatin transcription by Snail1/LOXL2 during epithelial-to-mesenchymal transition. Mol Cell, 52(5), 746–757.PubMedCrossRef Millanes-Romero, A., Herranz, N., Perrera, V., Iturbide, A., Loubat-Casanovas, J., Gil, J., et al. (2013). Regulation of heterochromatin transcription by Snail1/LOXL2 during epithelial-to-mesenchymal transition. Mol Cell, 52(5), 746–757.PubMedCrossRef
167.
go back to reference Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., & Lotvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol, 9(6), 654–659.PubMedCrossRef Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., & Lotvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol, 9(6), 654–659.PubMedCrossRef
168.
go back to reference Kinoshita, T., Yip, K. W., Spence, T., & Liu, F. F. (2017). MicroRNAs in extracellular vesicles: potential cancer biomarkers. J Hum Genet, 62(1), 67–74.PubMedCrossRef Kinoshita, T., Yip, K. W., Spence, T., & Liu, F. F. (2017). MicroRNAs in extracellular vesicles: potential cancer biomarkers. J Hum Genet, 62(1), 67–74.PubMedCrossRef
169.
go back to reference Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., et al. (2008). Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res, 18(10), 997–1006.PubMedCrossRef Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., et al. (2008). Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res, 18(10), 997–1006.PubMedCrossRef
170.
go back to reference Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A, 105(30), 10513–10518.PubMedPubMedCentralCrossRef Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A, 105(30), 10513–10518.PubMedPubMedCentralCrossRef
171.
go back to reference Liu, Q., Yu, Z., Yuan, S., Xie, W., Li, C., Hu, Z., et al. (2016). Circulating exosomal microRNAs as prognostic biomarkers for non-small-cell lung cancer. Oncotarget. doi:10.18632/oncotarget.14369. Liu, Q., Yu, Z., Yuan, S., Xie, W., Li, C., Hu, Z., et al. (2016). Circulating exosomal microRNAs as prognostic biomarkers for non-small-cell lung cancer. Oncotarget. doi:10.​18632/​oncotarget.​14369.
172.
go back to reference Halvorsen, A. R., Helland, A., Gromov, P., Wielenga, V. T., Talman, M. M., Brunner, N., et al. (2017). Profiling of microRNAs in tumor interstitial fluid of breast tumors—a novel resource to identify biomarkers for prognostic classification and detection of cancer. Mol Oncol, 11(2), 220–234.PubMedCrossRef Halvorsen, A. R., Helland, A., Gromov, P., Wielenga, V. T., Talman, M. M., Brunner, N., et al. (2017). Profiling of microRNAs in tumor interstitial fluid of breast tumors—a novel resource to identify biomarkers for prognostic classification and detection of cancer. Mol Oncol, 11(2), 220–234.PubMedCrossRef
173.
go back to reference Foj, L., Ferrer, F., Serra, M., Arevalo, A., Gavagnach, M., Gimenez, N., et al. (2016). Exosomal and non-exosomal urinary miRNAs in prostate cancer detection and prognosis. Prostate, 77(6), 573–583.PubMedCrossRef Foj, L., Ferrer, F., Serra, M., Arevalo, A., Gavagnach, M., Gimenez, N., et al. (2016). Exosomal and non-exosomal urinary miRNAs in prostate cancer detection and prognosis. Prostate, 77(6), 573–583.PubMedCrossRef
174.
go back to reference Pei, Z., Liu, S. M., Huang, J. T., Zhang, X., Yan, D., Xia, Q., et al. (2017). Clinically relevant circulating microRNA profiling studies in pancreatic cancer using meta-analysis. Oncotarget, 8(14), 22616–22624.PubMedPubMedCentral Pei, Z., Liu, S. M., Huang, J. T., Zhang, X., Yan, D., Xia, Q., et al. (2017). Clinically relevant circulating microRNA profiling studies in pancreatic cancer using meta-analysis. Oncotarget, 8(14), 22616–22624.PubMedPubMedCentral
175.
go back to reference Hsu, C. M., Lin, P. M., Wang, Y. M., Chen, Z. J., Lin, S. F., & Yang, M. Y. (2012). Circulating miRNA is a novel marker for head and neck squamous cell carcinoma. Tumour Biol, 33(6), 1933–1942.PubMedCrossRef Hsu, C. M., Lin, P. M., Wang, Y. M., Chen, Z. J., Lin, S. F., & Yang, M. Y. (2012). Circulating miRNA is a novel marker for head and neck squamous cell carcinoma. Tumour Biol, 33(6), 1933–1942.PubMedCrossRef
176.
go back to reference Hou, B., Ishinaga, H., Midorikawa, K., Shah, S. A., Nakamura, S., Hiraku, Y., et al. (2015). Circulating microRNAs as novel prognosis biomarkers for head and neck squamous cell carcinoma. Cancer Biol Ther, 16(7), 1042–1046.PubMedPubMedCentralCrossRef Hou, B., Ishinaga, H., Midorikawa, K., Shah, S. A., Nakamura, S., Hiraku, Y., et al. (2015). Circulating microRNAs as novel prognosis biomarkers for head and neck squamous cell carcinoma. Cancer Biol Ther, 16(7), 1042–1046.PubMedPubMedCentralCrossRef
177.
go back to reference Summerer, I., Unger, K., Braselmann, H., Schuettrumpf, L., Maihoefer, C., Baumeister, P., et al. (2015). Circulating microRNAs as prognostic therapy biomarkers in head and neck cancer patients. Br J Cancer, 113(1), 76–82.PubMedPubMedCentralCrossRef Summerer, I., Unger, K., Braselmann, H., Schuettrumpf, L., Maihoefer, C., Baumeister, P., et al. (2015). Circulating microRNAs as prognostic therapy biomarkers in head and neck cancer patients. Br J Cancer, 113(1), 76–82.PubMedPubMedCentralCrossRef
Metadata
Title
Involvement of aberrantly expressed microRNAs in the pathogenesis of head and neck squamous cell carcinoma
Authors
Keiichi Koshizuka
Toyoyuki Hanazawa
Takayuki Arai
Atsushi Okato
Naoko Kikkawa
Naohiko Seki
Publication date
01-09-2017
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3/2017
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-017-9692-y

Other articles of this Issue 3/2017

Cancer and Metastasis Reviews 3/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine