Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2016

01-06-2016 | Clinical

Galectin-3 in bone tumor microenvironment: a beacon for individual skeletal metastasis management

Authors: Kosei Nakajima, Dong Hyo Kho, Takashi Yanagawa, Melissa Zimel, Elisabeth Heath, Victor Hogan, Avraham Raz

Published in: Cancer and Metastasis Reviews | Issue 2/2016

Login to get access

Abstract

The skeleton is frequently a secondary growth site of disseminated cancers, often leading to painful and devastating clinical outcomes. Metastatic cancer distorts bone marrow homeostasis through tumor-derived factors, which shapes different bone tumor microenvironments depending on the tumor cells’ origin. Here, we propose a novel insight on tumor-secreted Galectin-3 (Gal-3) that controls the induction of an inflammatory cascade, differentiation of osteoblasts, osteoclasts, and bone marrow cells, resulting in bone destruction and therapeutic failure. In the approaching era of personalized medicine, the current treatment modalities targeting bone metastatic environments are provided to the patient with limited consideration of the cancer cells’ origin. Our new outlook suggests delivering individual tumor microenvironment treatments based on the expression level/activity/functionality of tumor-derived factors, rather than utilizing a commonly shared therapeutic umbrella. The notion of “Gal-3-associated bone remodeling” could be the first step toward a specific personalized therapy for each cancer type generating a different bone niche in patients afflicted with non-curable bone metastasis.
Literature
1.
go back to reference Raz, A., Bucana, C., McLellan, W., & Fidler, I. J. (1980). Distribution of membrane anionic sites on B16 melanoma variants with differing lung colonising potential. Nature, 284(5754), 363–364.PubMedCrossRef Raz, A., Bucana, C., McLellan, W., & Fidler, I. J. (1980). Distribution of membrane anionic sites on B16 melanoma variants with differing lung colonising potential. Nature, 284(5754), 363–364.PubMedCrossRef
2.
go back to reference Raz, A., & Lotan, R. (1981). Lectin-like activities associated with human and murine neoplastic cells. Cancer Research, 41(9 Pt 1), 3642–3647.PubMed Raz, A., & Lotan, R. (1981). Lectin-like activities associated with human and murine neoplastic cells. Cancer Research, 41(9 Pt 1), 3642–3647.PubMed
3.
go back to reference Liu, F. T., & Rabinovich, G. A. (2005). Galectins as modulators of tumour progression. Nature Review. Cancer, 5(1), 29–41.CrossRef Liu, F. T., & Rabinovich, G. A. (2005). Galectins as modulators of tumour progression. Nature Review. Cancer, 5(1), 29–41.CrossRef
4.
5.
6.
go back to reference Lakshminarayan, R., Wunder, C., Becken, U., Howes, M. T., Benzing, C., Arumugam, S., et al. (2014). Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nature Cell Biology, 16(6), 595–606.PubMedCrossRef Lakshminarayan, R., Wunder, C., Becken, U., Howes, M. T., Benzing, C., Arumugam, S., et al. (2014). Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nature Cell Biology, 16(6), 595–606.PubMedCrossRef
7.
go back to reference Long, F. (2012). Building strong bones: molecular regulation of the osteoblast lineage. Nature Reviews. Molecular Cell Biology, 13(1), 27–38.CrossRef Long, F. (2012). Building strong bones: molecular regulation of the osteoblast lineage. Nature Reviews. Molecular Cell Biology, 13(1), 27–38.CrossRef
8.
go back to reference Nakajima, K., Kho, D. H., Yanagawa, T., Harazono, Y., Gao, X., Hogan, V., et al. (2014). Galectin-3 inhibits osteoblast differentiation through notch signaling. Neoplasia, 16(11), 939–949.PubMedPubMedCentralCrossRef Nakajima, K., Kho, D. H., Yanagawa, T., Harazono, Y., Gao, X., Hogan, V., et al. (2014). Galectin-3 inhibits osteoblast differentiation through notch signaling. Neoplasia, 16(11), 939–949.PubMedPubMedCentralCrossRef
9.
go back to reference Stock, M., Schäfer, H., Stricker, S., Gross, G., Mundlos, S., & Otto, F. (2003). Expression of galectin-3 in skeletal tissues is controlled by Runx2. The Journal of Biological Chemistry, 278(19), 17360–17367.PubMedCrossRef Stock, M., Schäfer, H., Stricker, S., Gross, G., Mundlos, S., & Otto, F. (2003). Expression of galectin-3 in skeletal tissues is controlled by Runx2. The Journal of Biological Chemistry, 278(19), 17360–17367.PubMedCrossRef
10.
go back to reference Brand, C., Oliveira, F. L., Ricon, L., Fermino, M. L., Boldrini, L. C., Hsu, D. K., et al. (2011). The bone marrow compartment is modified in the absence of galectin-3. Cell and Tissue Research, 346(3), 427–437.PubMedPubMedCentralCrossRef Brand, C., Oliveira, F. L., Ricon, L., Fermino, M. L., Boldrini, L. C., Hsu, D. K., et al. (2011). The bone marrow compartment is modified in the absence of galectin-3. Cell and Tissue Research, 346(3), 427–437.PubMedPubMedCentralCrossRef
11.
go back to reference Edwards, J. R., & Mundy, G. R. (2011). Advances in osteoclast biology: old findings and new insights from mouse models. Nature Reviews. Rheumatology, 7(4), 235–243.PubMedCrossRef Edwards, J. R., & Mundy, G. R. (2011). Advances in osteoclast biology: old findings and new insights from mouse models. Nature Reviews. Rheumatology, 7(4), 235–243.PubMedCrossRef
12.
go back to reference Niida, S., Amizuka, N., Hara, F., Ozawa, H., & Kodama, H. (1994). Expression of Mac-2 antigen in the preosteoclast and osteoclast identified in the op/op mouse injected with macrophage colony-stimulating factor. Journal of Bone and Mineral Research, 9(6), 873–881.PubMedCrossRef Niida, S., Amizuka, N., Hara, F., Ozawa, H., & Kodama, H. (1994). Expression of Mac-2 antigen in the preosteoclast and osteoclast identified in the op/op mouse injected with macrophage colony-stimulating factor. Journal of Bone and Mineral Research, 9(6), 873–881.PubMedCrossRef
13.
go back to reference Nakajima, K., Kho, D. H., Yanagawa, T., Harazono, Y., Hogan, V., Chen, W., et al. (2016). Galectin-3 cleavage alters bone remodeling: different outcomes in breast and prostate cancer skeletal metastasis. Cancer Research, 76(6), 1391–1402. Nakajima, K., Kho, D. H., Yanagawa, T., Harazono, Y., Hogan, V., Chen, W., et al. (2016). Galectin-3 cleavage alters bone remodeling: different outcomes in breast and prostate cancer skeletal metastasis. Cancer Research, 76(6), 1391–1402.
14.
go back to reference Leenen, P. J., Jansen, A. M., & van Ewijk, W. (1986). Murine macrophage cell lines can be ordered in a linear differentiation sequence. Differentiation, 32(2), 157–164.PubMedCrossRef Leenen, P. J., Jansen, A. M., & van Ewijk, W. (1986). Murine macrophage cell lines can be ordered in a linear differentiation sequence. Differentiation, 32(2), 157–164.PubMedCrossRef
15.
go back to reference Crotti, T. N., Dharmapatni, A. A., Alias, E., & Haynes, D. R. (2015). Osteoimmunology: major and costimulatory pathway expression associated with chronic inflammatory induced bone loss. Journal of Immunology Research, 2015(2015), 281287.PubMedPubMedCentral Crotti, T. N., Dharmapatni, A. A., Alias, E., & Haynes, D. R. (2015). Osteoimmunology: major and costimulatory pathway expression associated with chronic inflammatory induced bone loss. Journal of Immunology Research, 2015(2015), 281287.PubMedPubMedCentral
16.
go back to reference Takayanagi, H. (2009). Osteoimmunology and the effects of the immune system on bone. Nature Reviews. Rheumatology, 5(12), 667–676.PubMedCrossRef Takayanagi, H. (2009). Osteoimmunology and the effects of the immune system on bone. Nature Reviews. Rheumatology, 5(12), 667–676.PubMedCrossRef
17.
go back to reference Kong, Y. Y., Feige, U., Sarosi, I., Bolon, B., Tafuri, A., & Morony, S. (1999). Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature, 402(6759), 304–309. Kong, Y. Y., Feige, U., Sarosi, I., Bolon, B., Tafuri, A., & Morony, S. (1999). Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature, 402(6759), 304–309.
18.
go back to reference Forsman, H., Islander, U., Andréasson, E., Andersson, A., Onnheim, K., Karlström, A., et al. (2011). Galectin 3 aggravates joint inflammation and destruction in antigen-induced arthritis. Arthritis and Rheumatism, 63(2), 445–454.PubMedCrossRef Forsman, H., Islander, U., Andréasson, E., Andersson, A., Onnheim, K., Karlström, A., et al. (2011). Galectin 3 aggravates joint inflammation and destruction in antigen-induced arthritis. Arthritis and Rheumatism, 63(2), 445–454.PubMedCrossRef
20.
go back to reference Fournier, P. G., Chirgwin, J. M., & Guise, T. A. (2006). New insights into the role of T cells in the vicious cycle of bone metastases. Current Opinion in Rheumatology, 18(4), 396–404.PubMedCrossRef Fournier, P. G., Chirgwin, J. M., & Guise, T. A. (2006). New insights into the role of T cells in the vicious cycle of bone metastases. Current Opinion in Rheumatology, 18(4), 396–404.PubMedCrossRef
21.
go back to reference Shiozawa, Y., Pedersen, E. A., Havens, A. M., Jung, Y., Mishra, A., Joseph, J., et al. (2011). Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. The Journal of Clinical Investigation, 121(4), 1298–1312.PubMedPubMedCentralCrossRef Shiozawa, Y., Pedersen, E. A., Havens, A. M., Jung, Y., Mishra, A., Joseph, J., et al. (2011). Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. The Journal of Clinical Investigation, 121(4), 1298–1312.PubMedPubMedCentralCrossRef
22.
go back to reference Joseph, J., Shiozawa, Y., Jung, Y., Kim, J. K., Pedersen, E., Mishra, A., et al. (2012). Disseminated prostate cancer cells can instruct hematopoietic stem and progenitor cells to regulate bone phenotype. Molecular Cancer Research, 10(3), 282–292.PubMedPubMedCentralCrossRef Joseph, J., Shiozawa, Y., Jung, Y., Kim, J. K., Pedersen, E., Mishra, A., et al. (2012). Disseminated prostate cancer cells can instruct hematopoietic stem and progenitor cells to regulate bone phenotype. Molecular Cancer Research, 10(3), 282–292.PubMedPubMedCentralCrossRef
23.
go back to reference Krugluger, W., Frigeri, L. G., Lucas, T., Schmer, M., Förster, O., Liu, F. T., et al. (1997). Galectin-3 inhibits granulocyte-macrophage colony-stimulating factor (GM-CSF)-driven rat bone marrow cell proliferation and GM-CSF-induced gene transcription. Immunobiology, 197(1), 97–109.PubMedCrossRef Krugluger, W., Frigeri, L. G., Lucas, T., Schmer, M., Förster, O., Liu, F. T., et al. (1997). Galectin-3 inhibits granulocyte-macrophage colony-stimulating factor (GM-CSF)-driven rat bone marrow cell proliferation and GM-CSF-induced gene transcription. Immunobiology, 197(1), 97–109.PubMedCrossRef
24.
go back to reference Du, Y., Cullum, I., Illidge, T. M., & Ell, P. J. (2007). Fusion of metabolic function and morphology: sequential [18F]fluorodeoxyglucose positron-emission tomography/computed tomography studies yield new insights into the natural history of bone metastases in breast cancer. Journal of Clinical Oncology, 25(23), 3440–3447.PubMedCrossRef Du, Y., Cullum, I., Illidge, T. M., & Ell, P. J. (2007). Fusion of metabolic function and morphology: sequential [18F]fluorodeoxyglucose positron-emission tomography/computed tomography studies yield new insights into the natural history of bone metastases in breast cancer. Journal of Clinical Oncology, 25(23), 3440–3447.PubMedCrossRef
25.
go back to reference Guise, T. A., Yin, J. J., Taylor, S. D., Kumagai, Y., Dallas, M., Boyce, B. F., et al. (1996). Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. The Journal of Clinical Investigation, 98(7), 1544–1549.PubMedPubMedCentralCrossRef Guise, T. A., Yin, J. J., Taylor, S. D., Kumagai, Y., Dallas, M., Boyce, B. F., et al. (1996). Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. The Journal of Clinical Investigation, 98(7), 1544–1549.PubMedPubMedCentralCrossRef
26.
go back to reference Bendre, M. S., Margulies, A. G., Walser, B., Akel, N. S., Bhattacharrya, S., Skinner, R. A., et al. (2005). Tumor-derived interleukin-8 stimulates osteolysis independent of the receptor activator of nuclear factor-kappaB ligand pathway. Cancer Research, 65(23), 11001–11009.PubMedCrossRef Bendre, M. S., Margulies, A. G., Walser, B., Akel, N. S., Bhattacharrya, S., Skinner, R. A., et al. (2005). Tumor-derived interleukin-8 stimulates osteolysis independent of the receptor activator of nuclear factor-kappaB ligand pathway. Cancer Research, 65(23), 11001–11009.PubMedCrossRef
27.
go back to reference Bendre, M. S., Montague, D. C., Peery, T., Akel, N. S., Gaddy, D., & Suva, L. J. (2003). Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease. Bone, 33(1), 28–37.PubMedCrossRef Bendre, M. S., Montague, D. C., Peery, T., Akel, N. S., Gaddy, D., & Suva, L. J. (2003). Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease. Bone, 33(1), 28–37.PubMedCrossRef
28.
go back to reference Aldridge, S. E., Lennard, T. W., Williams, J. R., & Birch, M. A. (2005). Vascular endothelial growth factor acts as an osteolytic factor in breast cancer metastases to bone. British Journal of Cancer, 92(8), 1531–1537.PubMedPubMedCentralCrossRef Aldridge, S. E., Lennard, T. W., Williams, J. R., & Birch, M. A. (2005). Vascular endothelial growth factor acts as an osteolytic factor in breast cancer metastases to bone. British Journal of Cancer, 92(8), 1531–1537.PubMedPubMedCentralCrossRef
29.
go back to reference Kelly, T., Suva, L. J., Nicks, K. M., MacLeod, V., & Sanderson, R. D. (2010). Tumor-derived syndecan-1 mediates distal cross-talk with bone that enhances osteoclastogenesis. Journal of Bone and Mineral Research, 25(6), 1295–1304.PubMedPubMedCentralCrossRef Kelly, T., Suva, L. J., Nicks, K. M., MacLeod, V., & Sanderson, R. D. (2010). Tumor-derived syndecan-1 mediates distal cross-talk with bone that enhances osteoclastogenesis. Journal of Bone and Mineral Research, 25(6), 1295–1304.PubMedPubMedCentralCrossRef
30.
go back to reference Kelly, T., Suva, L. J., Huang, Y., Macleod, V., Miao, H. Q., Walker, R. C., et al. (2005). Expression of heparanase by primary breast tumors promotes bone resorption in the absence of detectable bone metastases. Cancer Research, 65(13), 5778–5784.PubMedCrossRef Kelly, T., Suva, L. J., Huang, Y., Macleod, V., Miao, H. Q., Walker, R. C., et al. (2005). Expression of heparanase by primary breast tumors promotes bone resorption in the absence of detectable bone metastases. Cancer Research, 65(13), 5778–5784.PubMedCrossRef
31.
go back to reference Park, B. K., Zhang, H., Zeng, Q., Dai, J., Keller, E. T., Giordano, T., et al. (2007). NF-kappaB in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GM-CSF. Nature Medicine, 13(1), 62–69.PubMedCrossRef Park, B. K., Zhang, H., Zeng, Q., Dai, J., Keller, E. T., Giordano, T., et al. (2007). NF-kappaB in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GM-CSF. Nature Medicine, 13(1), 62–69.PubMedCrossRef
32.
go back to reference Chen, Y. C., Sosnoski, D. M., & Mastro, A. M. (2010). Breast cancer metastasis to the bone: mechanisms of bone loss. Breast Cancer Research, 12(6), 215.PubMedPubMedCentralCrossRef Chen, Y. C., Sosnoski, D. M., & Mastro, A. M. (2010). Breast cancer metastasis to the bone: mechanisms of bone loss. Breast Cancer Research, 12(6), 215.PubMedPubMedCentralCrossRef
33.
go back to reference Lu, X., Mu, E., Wei, Y., Riethdorf, S., Yang, Q., Yuan, M., et al. (2011). VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors. Cancer Cell, 20(6), 701–714.PubMedPubMedCentralCrossRef Lu, X., Mu, E., Wei, Y., Riethdorf, S., Yang, Q., Yuan, M., et al. (2011). VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors. Cancer Cell, 20(6), 701–714.PubMedPubMedCentralCrossRef
34.
go back to reference Sethi, N., Dai, X., Winter, C. G., & Kang, Y. (2011). Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell, 19(2), 192–205.PubMedPubMedCentralCrossRef Sethi, N., Dai, X., Winter, C. G., & Kang, Y. (2011). Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell, 19(2), 192–205.PubMedPubMedCentralCrossRef
35.
go back to reference Ceci, F., Castellucci, P., Graziani, T., Schiavina, R., Chondrogiannis, S., Bonfiglioli, R., et al. (2015). 11C- choline PET/CT identifies osteoblastic and osteolytic lesions in patients with metastatic prostate cancer. Clinical Nuclear Medicine, 40(5), e265–e270.PubMedCrossRef Ceci, F., Castellucci, P., Graziani, T., Schiavina, R., Chondrogiannis, S., Bonfiglioli, R., et al. (2015). 11C- choline PET/CT identifies osteoblastic and osteolytic lesions in patients with metastatic prostate cancer. Clinical Nuclear Medicine, 40(5), e265–e270.PubMedCrossRef
36.
go back to reference Nelson, J. B., Hedican, S. P., George, D. J., Reddi, A. H., Piantadosi, S., Eisenberger, M. A., et al. (1995). Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nature Medicine, 1(9), 944–949.PubMedCrossRef Nelson, J. B., Hedican, S. P., George, D. J., Reddi, A. H., Piantadosi, S., Eisenberger, M. A., et al. (1995). Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nature Medicine, 1(9), 944–949.PubMedCrossRef
37.
go back to reference Hall, C. L., Bafico, A., Dai, J., Aaronson, S. A., & Keller, E. T. (2005). Prostate cancer cells promote osteoblastic bone metastases through Wnts. Cancer Research, 65(17), 7554–7560.PubMed Hall, C. L., Bafico, A., Dai, J., Aaronson, S. A., & Keller, E. T. (2005). Prostate cancer cells promote osteoblastic bone metastases through Wnts. Cancer Research, 65(17), 7554–7560.PubMed
38.
go back to reference Dai, J., Hall, C. L., Escara-Wilke, J., Mizokami, A., Keller, J. M., & Keller, E. T. (2008). Prostate cancer induces bone metastasis through Wnt-induced bone morphogenetic protein-dependent and independent mechanisms. Cancer Research, 68(14), 5785–5794.PubMedPubMedCentralCrossRef Dai, J., Hall, C. L., Escara-Wilke, J., Mizokami, A., Keller, J. M., & Keller, E. T. (2008). Prostate cancer induces bone metastasis through Wnt-induced bone morphogenetic protein-dependent and independent mechanisms. Cancer Research, 68(14), 5785–5794.PubMedPubMedCentralCrossRef
39.
go back to reference Rabbani, S. A., Desjardins, J., Bell, A. W., Banville, D., Mazar, A., Henkin, J., et al. (1990). An amino- terminal fragment of urokinase isolated from a prostate cancer cell line (PC-3) is mitogenic for osteoblast- like cells. Biochemical and Biophysical Research Communications, 173(3), 1058–1064.PubMedCrossRef Rabbani, S. A., Desjardins, J., Bell, A. W., Banville, D., Mazar, A., Henkin, J., et al. (1990). An amino- terminal fragment of urokinase isolated from a prostate cancer cell line (PC-3) is mitogenic for osteoblast- like cells. Biochemical and Biophysical Research Communications, 173(3), 1058–1064.PubMedCrossRef
40.
go back to reference Achbarou, A., Kaiser, S., Tremblay, G., Ste-Marie, L. G., Brodt, P., Goltzman, D., et al. (1994). Urokinase overproduction results in increased skeletal metastasis by prostate cancer cells in vivo. Cancer Research, 54(9), 2372–2377.PubMed Achbarou, A., Kaiser, S., Tremblay, G., Ste-Marie, L. G., Brodt, P., Goltzman, D., et al. (1994). Urokinase overproduction results in increased skeletal metastasis by prostate cancer cells in vivo. Cancer Research, 54(9), 2372–2377.PubMed
41.
go back to reference Feeley, B. T., Gamradt, S. C., Hsu, W. K., Liu, N., Krenek, L., Robbins, P., et al. (2005). Influence of BMPs on the formation of osteoblastic lesions in metastatic prostate cancer. Journal of Bone and Mineral Research, 20(12), 2189–2199.PubMedCrossRef Feeley, B. T., Gamradt, S. C., Hsu, W. K., Liu, N., Krenek, L., Robbins, P., et al. (2005). Influence of BMPs on the formation of osteoblastic lesions in metastatic prostate cancer. Journal of Bone and Mineral Research, 20(12), 2189–2199.PubMedCrossRef
42.
go back to reference Nishimori, H., Ehata, S., Suzuki, H. I., Katsuno, Y., & Miyazono, K. (2012). Prostate cancer cells and bone stromal cells mutually interact with each other through bone morphogenetic protein-mediated signals. The Journal of Biological Chemistry, 287(24), 20037–20046.PubMedPubMedCentralCrossRef Nishimori, H., Ehata, S., Suzuki, H. I., Katsuno, Y., & Miyazono, K. (2012). Prostate cancer cells and bone stromal cells mutually interact with each other through bone morphogenetic protein-mediated signals. The Journal of Biological Chemistry, 287(24), 20037–20046.PubMedPubMedCentralCrossRef
43.
go back to reference Valta, M. P., Hentunen, T., Qu, Q., Valve, E. M., Harjula, A., Seppänen, J. A., et al. (2006). Regulation of osteoblast differentiation: a novel function for fibroblast growth factor 8. Endocrinology, 147(5), 2171–2182.PubMedCrossRef Valta, M. P., Hentunen, T., Qu, Q., Valve, E. M., Harjula, A., Seppänen, J. A., et al. (2006). Regulation of osteoblast differentiation: a novel function for fibroblast growth factor 8. Endocrinology, 147(5), 2171–2182.PubMedCrossRef
44.
go back to reference Liao, J., Li, X., Koh, A. J., Berry, J. E., Thudi, N., Rosol, T. J., et al. (2008). Tumor expressed PTHrP facilitates prostate cancer-induced osteoblastic lesions. International Journal of Cancer, 123(10), 2267–2278.PubMedPubMedCentralCrossRef Liao, J., Li, X., Koh, A. J., Berry, J. E., Thudi, N., Rosol, T. J., et al. (2008). Tumor expressed PTHrP facilitates prostate cancer-induced osteoblastic lesions. International Journal of Cancer, 123(10), 2267–2278.PubMedPubMedCentralCrossRef
45.
go back to reference Zhang, J., Dai, J., Qi, Y., Lin, D. L., Smith, P., Strayhorn, C., et al. (2001). Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. Journal of Clinical Investigation, 107(10), 1235–1244.PubMedPubMedCentralCrossRef Zhang, J., Dai, J., Qi, Y., Lin, D. L., Smith, P., Strayhorn, C., et al. (2001). Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. Journal of Clinical Investigation, 107(10), 1235–1244.PubMedPubMedCentralCrossRef
46.
go back to reference Corey, E., Brown, L. G., Kiefer, J. A., Quinn, J. E., Pitts, T. E., Blair, J. M., et al. (2005). Osteoprotegerin in prostate cancer bone metastasis. Cancer Research, 65(5), 1710–1718.PubMedCrossRef Corey, E., Brown, L. G., Kiefer, J. A., Quinn, J. E., Pitts, T. E., Blair, J. M., et al. (2005). Osteoprotegerin in prostate cancer bone metastasis. Cancer Research, 65(5), 1710–1718.PubMedCrossRef
47.
go back to reference Smith, M. R., Saad, F., Coleman, R., Shore, N., Fizazi, K., Tombal, B., et al. (2012). Denosumab and bone- metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet, 379(9810), 39–46.PubMedCrossRef Smith, M. R., Saad, F., Coleman, R., Shore, N., Fizazi, K., Tombal, B., et al. (2012). Denosumab and bone- metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet, 379(9810), 39–46.PubMedCrossRef
48.
go back to reference Jin, J. K., Dayyani, F., & Gallick, G. E. (2011). Steps in prostate cancer progression that lead to bone metastasis. International Journal of Cancer, 128(11), 2545–2561.PubMedPubMedCentralCrossRef Jin, J. K., Dayyani, F., & Gallick, G. E. (2011). Steps in prostate cancer progression that lead to bone metastasis. International Journal of Cancer, 128(11), 2545–2561.PubMedPubMedCentralCrossRef
49.
go back to reference Lynch, C. C., Hikosaka, A., Acuff, H. B., Martin, M. D., Kawai, N., Singh, R. K., et al. (2005). MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell, 7(5), 485–496.PubMedCrossRef Lynch, C. C., Hikosaka, A., Acuff, H. B., Martin, M. D., Kawai, N., Singh, R. K., et al. (2005). MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell, 7(5), 485–496.PubMedCrossRef
50.
go back to reference Lehr, J. E., & Pienta, K. J. (1998). Preferential adhesion of prostate cancer cells to a human bone marrow endothelial cell line. Journal of the National Cancer Institute, 90(2), 118–123.PubMedCrossRef Lehr, J. E., & Pienta, K. J. (1998). Preferential adhesion of prostate cancer cells to a human bone marrow endothelial cell line. Journal of the National Cancer Institute, 90(2), 118–123.PubMedCrossRef
51.
go back to reference Glinskii, O. V., Huxley, V. H., Glinsky, G. V., Pienta, K. J., Raz, A., & Glinsky, V. V. (2005). Mechanical entrapment is insufficient and intercellular adhesion is essential for metastatic cell arrest in distant organs. Neoplasia, 7(5), 522–527.PubMedPubMedCentralCrossRef Glinskii, O. V., Huxley, V. H., Glinsky, G. V., Pienta, K. J., Raz, A., & Glinsky, V. V. (2005). Mechanical entrapment is insufficient and intercellular adhesion is essential for metastatic cell arrest in distant organs. Neoplasia, 7(5), 522–527.PubMedPubMedCentralCrossRef
52.
go back to reference Glinskii, O. V., Sud, S., Mossine, V. V., Mawhinney, T. P., Anthony, D. C., Glinsky, G. V., et al. (2012). Inhibition of prostate cancer bone metastasis by synthetic TF antigen mimic/galectin-3 inhibitor lactulose-L-leucine. Neoplasia, 14(1), 65–73.PubMedPubMedCentralCrossRef Glinskii, O. V., Sud, S., Mossine, V. V., Mawhinney, T. P., Anthony, D. C., Glinsky, G. V., et al. (2012). Inhibition of prostate cancer bone metastasis by synthetic TF antigen mimic/galectin-3 inhibitor lactulose-L-leucine. Neoplasia, 14(1), 65–73.PubMedPubMedCentralCrossRef
53.
go back to reference Rubio, R., Gutierrez-Aranda, I., Sáez-Castillo, A. I., Labarga, A., Rosu-Myles, M., Gonzalez-Garcia, S., et al. (2013). The differentiation stage of p53-Rb-deficient bone marrow mesenchymal stem cells imposes the phenotype of in vivo sarcoma development. Oncogene, 32(41), 4970–4980.PubMedCrossRef Rubio, R., Gutierrez-Aranda, I., Sáez-Castillo, A. I., Labarga, A., Rosu-Myles, M., Gonzalez-Garcia, S., et al. (2013). The differentiation stage of p53-Rb-deficient bone marrow mesenchymal stem cells imposes the phenotype of in vivo sarcoma development. Oncogene, 32(41), 4970–4980.PubMedCrossRef
54.
go back to reference Kinpara, K., Mogi, M., Kuzushima, M., & Togari, A. (2000). Osteoclast differentiation factor in human osteosarcoma cell line. Journal of Immunoassay, 21(4), 327–340.PubMedCrossRef Kinpara, K., Mogi, M., Kuzushima, M., & Togari, A. (2000). Osteoclast differentiation factor in human osteosarcoma cell line. Journal of Immunoassay, 21(4), 327–340.PubMedCrossRef
55.
go back to reference Miyamoto, N., Higuchi, Y., Mori, K., Ito, M., Tsurudome, M., Nishio, M., et al. (2002). Human osteosarcoma-derived cell lines produce soluble factor(s) that induces differentiation of blood monocytes to osteoclast-like cells. International Immunopharmacology, 2(1), 25–38.PubMedCrossRef Miyamoto, N., Higuchi, Y., Mori, K., Ito, M., Tsurudome, M., Nishio, M., et al. (2002). Human osteosarcoma-derived cell lines produce soluble factor(s) that induces differentiation of blood monocytes to osteoclast-like cells. International Immunopharmacology, 2(1), 25–38.PubMedCrossRef
56.
go back to reference Itoh, K., Udagawa, N., Matsuzaki, K., Takami, M., Amano, H., Shinki, T., et al. (2000). Importance of membrane- or matrix-associated forms of M-CSF and RANKL/ODF in osteoclastogenesis supported by SaOS-4/3 cells expressing recombinant PTH/PTHrP receptors. Journal of Bone and Mineral Research, 15(9), 1766–1775.PubMedCrossRef Itoh, K., Udagawa, N., Matsuzaki, K., Takami, M., Amano, H., Shinki, T., et al. (2000). Importance of membrane- or matrix-associated forms of M-CSF and RANKL/ODF in osteoclastogenesis supported by SaOS-4/3 cells expressing recombinant PTH/PTHrP receptors. Journal of Bone and Mineral Research, 15(9), 1766–1775.PubMedCrossRef
57.
go back to reference Avnet, S., Longhi, A., Salerno, M., Halleen, J. M., Perut, F., Granchi, D., et al. (2008). Increased osteoclast activity is associated with aggressiveness of osteosarcoma. International Journal of Oncology, 33(6), 1231–1238.PubMed Avnet, S., Longhi, A., Salerno, M., Halleen, J. M., Perut, F., Granchi, D., et al. (2008). Increased osteoclast activity is associated with aggressiveness of osteosarcoma. International Journal of Oncology, 33(6), 1231–1238.PubMed
58.
go back to reference Urist, M. R., Nakata, N., Felser, J. M., Nogami, H., Hanamura, H., Miki, T., et al. (1977). An osteosarcoma cell and matrix retained morphogen for normal bone formation. Clinical Orthopaedics and Related Research, 124, 251–266.PubMed Urist, M. R., Nakata, N., Felser, J. M., Nogami, H., Hanamura, H., Miki, T., et al. (1977). An osteosarcoma cell and matrix retained morphogen for normal bone formation. Clinical Orthopaedics and Related Research, 124, 251–266.PubMed
59.
go back to reference Zhou, X., Jing, J., Peng, J., Mao, W., Zheng, Y., Wang, D., et al. (2014). Expression and clinical significance of galectin-3 in osteosarcoma. Gene, 546(2), 403–407.PubMedCrossRef Zhou, X., Jing, J., Peng, J., Mao, W., Zheng, Y., Wang, D., et al. (2014). Expression and clinical significance of galectin-3 in osteosarcoma. Gene, 546(2), 403–407.PubMedCrossRef
60.
go back to reference Park, G. B., Kim, D. J., Kim, Y. S., Lee, H. K., Kim, C. W., & Hur, D. Y. (2015). Silencing of galectin-3 represses osteosarcoma cell migration and invasion through inhibition of FAK/Src/Lyn activation and β-catenin expression and increases susceptibility to chemotherapeutic agents. International Journal of Oncology, 46(1), 185–194.PubMed Park, G. B., Kim, D. J., Kim, Y. S., Lee, H. K., Kim, C. W., & Hur, D. Y. (2015). Silencing of galectin-3 represses osteosarcoma cell migration and invasion through inhibition of FAK/Src/Lyn activation and β-catenin expression and increases susceptibility to chemotherapeutic agents. International Journal of Oncology, 46(1), 185–194.PubMed
61.
go back to reference Lei, P., He, H., Hu, Y., & Liao, Z. (2015). Small interfering RNA-induced silencing of galectin-3 inhibits the malignant phenotypes of osteosarcoma in vitro. Molecular Medicine Reports, 12(4), 6316–6322.PubMed Lei, P., He, H., Hu, Y., & Liao, Z. (2015). Small interfering RNA-induced silencing of galectin-3 inhibits the malignant phenotypes of osteosarcoma in vitro. Molecular Medicine Reports, 12(4), 6316–6322.PubMed
62.
go back to reference Mercer, N., Ahmed, H., McCarthy, A. D., Etcheverry, S. B., Vasta, G. R., & Cortizo, A. M. (2004). AGE- R3/galectin-3 expression in osteoblast-like cells: regulation by AGEs. Molecular and Cellular Biology, 266(1-2), 17–24. Mercer, N., Ahmed, H., McCarthy, A. D., Etcheverry, S. B., Vasta, G. R., & Cortizo, A. M. (2004). AGE- R3/galectin-3 expression in osteoblast-like cells: regulation by AGEs. Molecular and Cellular Biology, 266(1-2), 17–24.
63.
go back to reference Choi, S. J., Oba, Y., Gazitt, Y., Alsina, M., Cruz, J., Anderson, J., et al. (2001). Antisense inhibition of macrophage inflammatory protein 1-alpha blocks bone destruction in a model of myeloma bone disease. Journal of Clinical Investigation, 108(12), 1833–1841.PubMedPubMedCentralCrossRef Choi, S. J., Oba, Y., Gazitt, Y., Alsina, M., Cruz, J., Anderson, J., et al. (2001). Antisense inhibition of macrophage inflammatory protein 1-alpha blocks bone destruction in a model of myeloma bone disease. Journal of Clinical Investigation, 108(12), 1833–1841.PubMedPubMedCentralCrossRef
64.
go back to reference Tian, E., Zhan, F., Walker, R., Rasmussen, E., Ma, Y., Barlogie, B., et al. (2003). The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. The New England Journal of Medicine, 349(26), 2483–2494.PubMedCrossRef Tian, E., Zhan, F., Walker, R., Rasmussen, E., Ma, Y., Barlogie, B., et al. (2003). The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. The New England Journal of Medicine, 349(26), 2483–2494.PubMedCrossRef
65.
go back to reference Yaccoby, S., Ling, W., Zhan, F., Walker, R., Barlogie, B., & Shaughnessy, J. D. J. (2007). Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood, 109(5), 2106–2111.PubMedPubMedCentralCrossRef Yaccoby, S., Ling, W., Zhan, F., Walker, R., Barlogie, B., & Shaughnessy, J. D. J. (2007). Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood, 109(5), 2106–2111.PubMedPubMedCentralCrossRef
66.
go back to reference Ehrlich, L. A., Chung, H. Y., Ghobrial, I., Choi, S. J., Morandi, F., Colla, S., et al. (2005). IL-3 is a potential inhibitor of osteoblast differentiation in multiple myeloma. Blood, 106(4), 1407–1414.PubMedCrossRef Ehrlich, L. A., Chung, H. Y., Ghobrial, I., Choi, S. J., Morandi, F., Colla, S., et al. (2005). IL-3 is a potential inhibitor of osteoblast differentiation in multiple myeloma. Blood, 106(4), 1407–1414.PubMedCrossRef
67.
go back to reference Chauhan, D., Li, G., Podar, K., Hideshima, T., Neri, P., He, D., et al. (2005). A novel carbohydrate-based therapeutic GCS-100 overcomes bortezomib resistance and enhances dexamethasone-induced apoptosis in multiple myeloma cells. Cancer Research, 65(18), 8350–8358.PubMedCrossRef Chauhan, D., Li, G., Podar, K., Hideshima, T., Neri, P., He, D., et al. (2005). A novel carbohydrate-based therapeutic GCS-100 overcomes bortezomib resistance and enhances dexamethasone-induced apoptosis in multiple myeloma cells. Cancer Research, 65(18), 8350–8358.PubMedCrossRef
68.
go back to reference Streetly, M. J., Maharaj, L., Joel, S., Schey, S. A., Gribben, J. G., & Cotter, F. E. (2010). GCS-100, a novel galectin-3 antagonist, modulates MCL-1, NOXA, and cell cycle to induce myeloma cell death. Blood, 115(19), 3939–3948.PubMedCrossRef Streetly, M. J., Maharaj, L., Joel, S., Schey, S. A., Gribben, J. G., & Cotter, F. E. (2010). GCS-100, a novel galectin-3 antagonist, modulates MCL-1, NOXA, and cell cycle to induce myeloma cell death. Blood, 115(19), 3939–3948.PubMedCrossRef
69.
go back to reference Jimi, E., Furuta, H., Matsuo, K., Tominaga, K., Takahashi, T., & Nakanishi, O. (2011). The cellular and molecular mechanisms of bone invasion by oral squamous cell carcinoma. Oral Diseases, 17(5), 462–468.PubMedCrossRef Jimi, E., Furuta, H., Matsuo, K., Tominaga, K., Takahashi, T., & Nakanishi, O. (2011). The cellular and molecular mechanisms of bone invasion by oral squamous cell carcinoma. Oral Diseases, 17(5), 462–468.PubMedCrossRef
70.
go back to reference Zhang, X., Junior, C. R., Liu, M., Li, F., D’Silva, N. J., & Kirkwood, K. L. (2013). Oral squamous carcinoma cells secrete RANKL directly supporting osteolytic bone loss. Oral Oncology, 49(2), 119–128.PubMedCrossRef Zhang, X., Junior, C. R., Liu, M., Li, F., D’Silva, N. J., & Kirkwood, K. L. (2013). Oral squamous carcinoma cells secrete RANKL directly supporting osteolytic bone loss. Oral Oncology, 49(2), 119–128.PubMedCrossRef
71.
go back to reference Carter, R. L., Tsao, S. W., Burman, J. F., Pittam, M. R., Clifford, P., & Shaw, H. J. (1983). Patterns and mechanisms of bone invasion by squamous carcinomas of the head and neck. American Journal of Surgery, 146(4), 451–455.PubMedCrossRef Carter, R. L., Tsao, S. W., Burman, J. F., Pittam, M. R., Clifford, P., & Shaw, H. J. (1983). Patterns and mechanisms of bone invasion by squamous carcinomas of the head and neck. American Journal of Surgery, 146(4), 451–455.PubMedCrossRef
72.
go back to reference Shibahara, T., Nomura, T., Cui, N. H., & Noma, H. (2005). A study of osteoclast-related cytokines in mandibular invasion by squamous cell carcinoma. International Journal of Oral and Maxillofacial Surgery, 34(7), 789–793.PubMedCrossRef Shibahara, T., Nomura, T., Cui, N. H., & Noma, H. (2005). A study of osteoclast-related cytokines in mandibular invasion by squamous cell carcinoma. International Journal of Oral and Maxillofacial Surgery, 34(7), 789–793.PubMedCrossRef
73.
go back to reference Tada, T., Jimi, E., Okamoto, M., Ozeki, S., & Okabe, K. (2005). Oral squamous cell carcinoma cells induce osteoclast differentiation by suppression of osteoprotegerin expression in osteoblasts. International Journal of Cancer, 116(2), 253–262.PubMedCrossRef Tada, T., Jimi, E., Okamoto, M., Ozeki, S., & Okabe, K. (2005). Oral squamous cell carcinoma cells induce osteoclast differentiation by suppression of osteoprotegerin expression in osteoblasts. International Journal of Cancer, 116(2), 253–262.PubMedCrossRef
74.
go back to reference Okamoto, M., Hiura, K., Ohe, G., Ohba, Y., Terai, K., Oshikawa, T., et al. (2000). Mechanism for bone invasion of oral cancer cells mediated by interleukin-6 in vitro and in vivo. Cancer, 89(9), 1966–1975.PubMedCrossRef Okamoto, M., Hiura, K., Ohe, G., Ohba, Y., Terai, K., Oshikawa, T., et al. (2000). Mechanism for bone invasion of oral cancer cells mediated by interleukin-6 in vitro and in vivo. Cancer, 89(9), 1966–1975.PubMedCrossRef
75.
go back to reference Takayama, Y., Mori, T., Nomura, T., Shibahara, T., & Sakamoto, M. (2010). Parathyroid-related protein plays a critical role in bone invasion by oral squamous cell carcinoma. International Journal of Oncology, 36(6), 1387–1394.PubMed Takayama, Y., Mori, T., Nomura, T., Shibahara, T., & Sakamoto, M. (2010). Parathyroid-related protein plays a critical role in bone invasion by oral squamous cell carcinoma. International Journal of Oncology, 36(6), 1387–1394.PubMed
76.
go back to reference Tang, C. H., Chuang, J. Y., Fong, Y. C., Maa, M. C., Way, T. D., & Hung, C. H. (2008). Bone-derived SDF-1 stimulates IL-6 release via CXCR4, ERK and NF-kappaB pathways and promotes osteoclastogenesis in human oral cancer cells. Carcinogenesis, 29(8), 483–492.CrossRef Tang, C. H., Chuang, J. Y., Fong, Y. C., Maa, M. C., Way, T. D., & Hung, C. H. (2008). Bone-derived SDF-1 stimulates IL-6 release via CXCR4, ERK and NF-kappaB pathways and promotes osteoclastogenesis in human oral cancer cells. Carcinogenesis, 29(8), 483–492.CrossRef
77.
go back to reference Pandruvada, S. N., Yuvaraj, S., Liu, X., Sundaram, K., Shanmugarajan, S., Ries, W. L., et al. (2010). Role of CXC chemokine ligand 13 in oral squamous cell carcinoma associated osteolysis in athymic mice. International Journal of Cancer, 126(10), 2319–2329.PubMedPubMedCentral Pandruvada, S. N., Yuvaraj, S., Liu, X., Sundaram, K., Shanmugarajan, S., Ries, W. L., et al. (2010). Role of CXC chemokine ligand 13 in oral squamous cell carcinoma associated osteolysis in athymic mice. International Journal of Cancer, 126(10), 2319–2329.PubMedPubMedCentral
78.
go back to reference Gillenwater, A., Xu, X. C., El-Naggar, A. K., Clayman, G. L., & Lotan, R. (1996). Expression of galectins in head and neck squamous cell carcinoma. Head & Neck, 18(5), 422–432.CrossRef Gillenwater, A., Xu, X. C., El-Naggar, A. K., Clayman, G. L., & Lotan, R. (1996). Expression of galectins in head and neck squamous cell carcinoma. Head & Neck, 18(5), 422–432.CrossRef
79.
go back to reference Hossaka, T. A., Ribeiro, D. A., Focchi, G., André, S., Fernandes, M., Lopes Carapeto, F. C., et al. (2014). Expression of Galectins 1, 3 and 9 in normal oral epithelium, oral squamous papilloma, and oral squamous cell carcinoma. Dental Research Journal, 11(4), 508–512.PubMedPubMedCentral Hossaka, T. A., Ribeiro, D. A., Focchi, G., André, S., Fernandes, M., Lopes Carapeto, F. C., et al. (2014). Expression of Galectins 1, 3 and 9 in normal oral epithelium, oral squamous papilloma, and oral squamous cell carcinoma. Dental Research Journal, 11(4), 508–512.PubMedPubMedCentral
80.
go back to reference Aggarwal, S., Sharma, S. C., & Das, S. N. (2015). Galectin-1 and galectin-3: plausible tumour markers for oral squamous cell carcinoma and suitable targets for screening high-risk population. Clinica Chimica Acta, 442, 13–21.CrossRef Aggarwal, S., Sharma, S. C., & Das, S. N. (2015). Galectin-1 and galectin-3: plausible tumour markers for oral squamous cell carcinoma and suitable targets for screening high-risk population. Clinica Chimica Acta, 442, 13–21.CrossRef
81.
go back to reference Atkins, G. J., Haynes, D. R., Graves, S. E., Evdokiou, A., Hay, S., Bouralexis, S., et al. (2000). Expression of osteoclast differentiation signals by stromal elements of giant cell tumors. Journal of Bone and Mineral Research, 15(4), 640–649.PubMedCrossRef Atkins, G. J., Haynes, D. R., Graves, S. E., Evdokiou, A., Hay, S., Bouralexis, S., et al. (2000). Expression of osteoclast differentiation signals by stromal elements of giant cell tumors. Journal of Bone and Mineral Research, 15(4), 640–649.PubMedCrossRef
82.
go back to reference Baud’huin, M., Renault, R., Charrier, C., Riet, A., Moreau, A., Brion, R., et al. (2010). Interleukin-34 is expressed by giant cell tumours of bone and plays a key role in RANKL-induced osteoclastogenesis. The Journal of Pathology, 221(1), 77–86.PubMedCrossRef Baud’huin, M., Renault, R., Charrier, C., Riet, A., Moreau, A., Brion, R., et al. (2010). Interleukin-34 is expressed by giant cell tumours of bone and plays a key role in RANKL-induced osteoclastogenesis. The Journal of Pathology, 221(1), 77–86.PubMedCrossRef
83.
go back to reference Skubitz, K. M., Cheng, E. Y., Clohisy, D. R., Thompson, R. C., & Skubitz, A. P. (2004). Gene expression in giant-cell tumors. The Journal of Laboratory and Clinical Medicine, 144(4), 193–200.PubMedCrossRef Skubitz, K. M., Cheng, E. Y., Clohisy, D. R., Thompson, R. C., & Skubitz, A. P. (2004). Gene expression in giant-cell tumors. The Journal of Laboratory and Clinical Medicine, 144(4), 193–200.PubMedCrossRef
84.
go back to reference Smink, J. J., Tunn, P. U., & Leutz, A. (2012). Rapamycin inhibits osteoclast formation in giant cell tumor of bone through the C/EBPβ - MafB axis. Journal of Molecular Medicine (Berl), 90(1), 25–30.CrossRef Smink, J. J., Tunn, P. U., & Leutz, A. (2012). Rapamycin inhibits osteoclast formation in giant cell tumor of bone through the C/EBPβ - MafB axis. Journal of Molecular Medicine (Berl), 90(1), 25–30.CrossRef
85.
go back to reference Japanese Society of Medical Oncology. Comprehensive guidelines on the diagnosis and treatment of bone metastases [in Japanese] (2015). Japanese Society of Medical Oncology. Comprehensive guidelines on the diagnosis and treatment of bone metastases [in Japanese] (2015).
86.
go back to reference Coleman, R. E. (2006). Clinical features of metastatic bone disease and risk of skeletal morbidity. Clinical Cancer Research, 12(20 Pt 2), 6243s–6249s.PubMedCrossRef Coleman, R. E. (2006). Clinical features of metastatic bone disease and risk of skeletal morbidity. Clinical Cancer Research, 12(20 Pt 2), 6243s–6249s.PubMedCrossRef
87.
go back to reference Gralow, J. R., Sybil Biermann, J., Farooki, A., Fornier, M. N., Gagel, R. F., Kumar, R., et al. (2013). NCCN Task Force Report: bone health in cancer care. Journal of the National Comprehensive Cancer Network, 11(3), S1–S51.PubMed Gralow, J. R., Sybil Biermann, J., Farooki, A., Fornier, M. N., Gagel, R. F., Kumar, R., et al. (2013). NCCN Task Force Report: bone health in cancer care. Journal of the National Comprehensive Cancer Network, 11(3), S1–S51.PubMed
88.
go back to reference Coleman, R., Body, J. J., Aapro, M., Hadji, P., Herrstedt, J., & Group., E. G. W. (2014). Bone health in cancer patients: ESMO Clinical Practice Guidelines. Annals of Oncology, 25(3), 124–137. Coleman, R., Body, J. J., Aapro, M., Hadji, P., Herrstedt, J., & Group., E. G. W. (2014). Bone health in cancer patients: ESMO Clinical Practice Guidelines. Annals of Oncology, 25(3), 124–137.
89.
go back to reference Fizazi, K., Carducci, M., Smith, M., Damião, R., Brown, J., Karsh, L., et al. (2011). Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet, 377(9768), 813–822.PubMedPubMedCentralCrossRef Fizazi, K., Carducci, M., Smith, M., Damião, R., Brown, J., Karsh, L., et al. (2011). Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet, 377(9768), 813–822.PubMedPubMedCentralCrossRef
90.
go back to reference Stopeck, A. T., Lipton, A., Body, J. J., Steger, G. G., Tonkin, K., de Boer, R. H., et al. (2010). Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. Journal of Clinical Oncology, 28(35), 5132–5139.PubMedCrossRef Stopeck, A. T., Lipton, A., Body, J. J., Steger, G. G., Tonkin, K., de Boer, R. H., et al. (2010). Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. Journal of Clinical Oncology, 28(35), 5132–5139.PubMedCrossRef
91.
go back to reference Scagliotti, G. V., Hirsh, V., Siena, S., Henry, D. H., Woll, P. J., Manegold, C., et al. (2012). Overall survival improvement in patients with lung cancer and bone metastases treated with denosumab versus zoledronic acid: subgroup analysis from a randomized phase 3 study. Journal of Thoracic Oncology, 7(12), 1823–1829.PubMedCrossRef Scagliotti, G. V., Hirsh, V., Siena, S., Henry, D. H., Woll, P. J., Manegold, C., et al. (2012). Overall survival improvement in patients with lung cancer and bone metastases treated with denosumab versus zoledronic acid: subgroup analysis from a randomized phase 3 study. Journal of Thoracic Oncology, 7(12), 1823–1829.PubMedCrossRef
92.
go back to reference Henry, D. H., Costa, L., Goldwasser, F., Hirsh, V., Hungria, V., Prausova, J., et al. (2011). Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. Journal of Clinical Oncology, 29(9), 1125–1132.PubMedCrossRef Henry, D. H., Costa, L., Goldwasser, F., Hirsh, V., Hungria, V., Prausova, J., et al. (2011). Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. Journal of Clinical Oncology, 29(9), 1125–1132.PubMedCrossRef
93.
go back to reference Saad, F., & Eastham, J. A. (2010). Zoledronic acid use in patients with bone metastases from renal cell carcinoma or bladder cancer. Seminars in Oncology, Suppl 1, S38–S44.CrossRef Saad, F., & Eastham, J. A. (2010). Zoledronic acid use in patients with bone metastases from renal cell carcinoma or bladder cancer. Seminars in Oncology, Suppl 1, S38–S44.CrossRef
94.
go back to reference Orita, Y., Sugitani, I., Toda, K., Manabe, J., & Fujimoto, Y. (2011). Zoledronic acid in the treatment of bone metastases from differentiated thyroid carcinoma. Thyroid, 21(1), 31–35.PubMedCrossRef Orita, Y., Sugitani, I., Toda, K., Manabe, J., & Fujimoto, Y. (2011). Zoledronic acid in the treatment of bone metastases from differentiated thyroid carcinoma. Thyroid, 21(1), 31–35.PubMedCrossRef
95.
go back to reference Santini, D., Pantano, F., Riccardi, F., Di Costanzo, G. G., Addeo, R., Guida, F. M., et al. (2014). Natural history of malignant bone disease in hepatocellular carcinoma: final results of a multicenter bone metastasis survey. PloS One, 9(8), e105268.PubMedPubMedCentralCrossRef Santini, D., Pantano, F., Riccardi, F., Di Costanzo, G. G., Addeo, R., Guida, F. M., et al. (2014). Natural history of malignant bone disease in hepatocellular carcinoma: final results of a multicenter bone metastasis survey. PloS One, 9(8), e105268.PubMedPubMedCentralCrossRef
96.
go back to reference Silvestris, N., Pantano, F., Ibrahim, T., Gamucci, T., De Vita, F., Di Palma, T., et al. (2013). Natural history of malignant bone disease in gastric cancer: final results of a multicenter bone metastasis survey. PloS One, 8(10), e74402.PubMedPubMedCentralCrossRef Silvestris, N., Pantano, F., Ibrahim, T., Gamucci, T., De Vita, F., Di Palma, T., et al. (2013). Natural history of malignant bone disease in gastric cancer: final results of a multicenter bone metastasis survey. PloS One, 8(10), e74402.PubMedPubMedCentralCrossRef
97.
go back to reference Santini, D., Tampellini, M., Vincenzi, B., Ibrahim, T., Ortega, C., Virzi, V., et al. (2012). Natural history of bone metastasis in colorectal cancer: final results of a large Italian bone metastases study. Annals of Oncology, 23(8), 2072–2077.PubMedCrossRef Santini, D., Tampellini, M., Vincenzi, B., Ibrahim, T., Ortega, C., Virzi, V., et al. (2012). Natural history of bone metastasis in colorectal cancer: final results of a large Italian bone metastases study. Annals of Oncology, 23(8), 2072–2077.PubMedCrossRef
98.
go back to reference Balan, V., Nangia-Makker, P., Schwartz, A. G., Jung, Y. S., Tait, L., Hogan, V., et al. (2008). Racial disparity in breast cancer and functional germ line mutation in galectin-3 (rs4644): a pilot study. Cancer Research, 68(24), 10045–10050.PubMedPubMedCentralCrossRef Balan, V., Nangia-Makker, P., Schwartz, A. G., Jung, Y. S., Tait, L., Hogan, V., et al. (2008). Racial disparity in breast cancer and functional germ line mutation in galectin-3 (rs4644): a pilot study. Cancer Research, 68(24), 10045–10050.PubMedPubMedCentralCrossRef
Metadata
Title
Galectin-3 in bone tumor microenvironment: a beacon for individual skeletal metastasis management
Authors
Kosei Nakajima
Dong Hyo Kho
Takashi Yanagawa
Melissa Zimel
Elisabeth Heath
Victor Hogan
Avraham Raz
Publication date
01-06-2016
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2016
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-016-9622-4

Other articles of this Issue 2/2016

Cancer and Metastasis Reviews 2/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine